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ABSTRACT

This paper summarizes the current state-of-the-art
on uniform random number generation for stochas-
tic simulation. It recalls the basic ideas, discusses
some linear methods and their theoretical analysis,
and provides pointers to further details and to rec-
ommended implementations.

1 WHAT IS A GOOD RNG?

Without a good random number generator (RNG),
simulation results are often meaningless. And ques-
tionable generators are still all over the place, so many
experiments rest on shaky foundations. Why this
problem was not solved long ago? Because it is not
so easy. A so-called RNG actually produces a totally
deterministic and periodic sequence of numbers, once
its initial state (or seed) is chosen. This is in total
contradiction with the assumption of a sequence of in-
dependent and identically distributed (i.i.d.) random
variables, and there is no clean way to completely
reconcile these two opposite aspects. Therefore, ev-
erything we do in this context is heuristic. This be-
ing said, the heuristic arguments lead to criteria that
need theory to be analyzed.

A RNG has a state that evolves in a finite state
space S, according to a recurrence of the form sn =
f(sn−1), n ≥ 1, where the initial state s0 ∈ S is called
the seed , and f : S → S is the transition function.
At step n, the generator outputs un = g(sn), where
g : S → [0, 1] is the output function. The output
sequence of the RNG is thus {un, n ≥ 0}. The output
space could be more general, but we shall assume here
that it is the real interval [0, 1]. Since S is finite, the
sequence must be periodic (possibly after some initial
transient). Let ρ be the period length. Typically,
one has ρ near |S|, that is, ρ ≈ 2b if the state is
represented over b bits, otherwise there is a waste of
computer memory.

We now momentarily forget the deterministic na-
ture of the RNG and view the un as random vari-
ables. This could make sense if, for example, the
seed s0 and/or some parameters of the functions f
and g are chosen at random. Define the null hy-
pothesis H0: “The un are i.i.d. U(0, 1) (i.e., uniform
over the interval (0, 1)) random variables”. This hy-
pothesis H0 means that for each n and t, the vec-
tor un = (un, . . . , un+t−1) is uniformly distributed
over the t-dimensional unit hypercube It = [0, 1]t.
Of course, this cannot hold, due to the finiteness of
S. But for small t, a discretized version of it could
hold, as follows.

Replace the interval [0, 1] by the finite set ZZm =
{0, 1/m, 2/m, . . ., (m− 1)/m} for some large integer
m, and suppose that s0 is random, uniformly dis-
tributed over S, which is assumed to be of cardinality
ρ. Consider the hypothesis H′0: “u0 (and therefore
each un) is uniformly distributed over the set ZZtm”.
The hypothesis H′0 can hold exactly only if ρ is a mul-
tiple ofmt. In practice, ρ is often slightly smaller than
a multiple ofmt, andH′0 can hold approximately. For
t such that mt � ρ, the set Ψ = {un, 1 ≤ n ≤ ρ} is
only a small fraction of ZZtm. In this case, which points
of ZZtm should be in Ψ? Our opinion is that the points
of Ψ should be uniformly spread over ZZtm, for all t
up to some reasonably large value determined by our
analysis capabilities. This is our main criterion for
discriminating among generators and for construct-
ing what we call “good ones”.

As a realistic illustration, let m = 230 and ρ ≈
2210. Then, H′0 can hold approximately, if the gen-
erator is well designed, for t ≤ 7. For t > 7, the
fraction of ZZtm that can be covered by Ψ is approxi-
mately 2−30(t−7). As t increases, this fraction quickly
becomes extremely tiny, and nothing can be done
against this, aside from increasing ρ.

Note that our reasoning makes sense only if s0 is
random and if ρ is huge. One may argue that the
points of Ψ should look like random points over ZZtm
instead of being too evenly distributed. But if Ψ is
viewed as a sample space from which points are taken
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at random by the generator, without replacement,
then a superuniform (i.e., very even) distribution of
Ψ is justified.

In order to make this “uniformity of Ψ” crite-
rion effective from a practical viewpoint, a good the-
oretical understanding of the structure of Ψ is re-
quired. This is (essentially) what is meant by the-
oretical analysis of RNGs. After a RNG has been de-
signed and implemented, empirically-minded people
will certainly want to apply empirical statistical tests.
The number of such tests is unlimited and no amount
of empirical testing can ever prove that a given gener-
ator is flawless. However, the fact that well-designed
RNGs pass most reasonable statistical tests that are
usually applied is somewhat reassuring. It makes less
likely the possibility of an implementation error or
that some major defect has been overlooked. The de-
sign and test of a RNG operates much like the design
and test of a new car: Even if the car has been con-
structed based on the most solid theoretical analysis,
there will always be people who will want to test it on
the road, and for good reasons. Ideally, the statisti-
cal tests should be selected in close relation with the
target application, that is, be based on a test statistic
T that closely mimic the random variable of interest,
and where a good approximation of the distribution
of T under H0 is available. But this ideal is impracti-
cal, especially when designing and testing generators
for general purpose software packages. In principle,
for any RNG, since ρ < ∞, one can easily construct
a test that this RNG will fail arbitrarily badly. But
if ρ is large enough, such a test may be impossible to
run in “practical” time.

A long period, good structure of the points, and
passing statistical tests, are not the only required
qualities. Simulations involving billions of random
numbers are increasingly frequent, and the gener-
ator’s speed is often a critical factor, regardless of
the available computing power. The size of required
memory may become important when virtual genera-
tors (or substreams) are maintained in parallel. This
is required, for example, for proper implementation
of certain variance reduction techniques. Portability
means that the generator can be implemented easily
in a standard high-level language, and produce the
same sequence with a wide range of compilers and
computers. Repeatability , i.e., being able to repro-
duce the same sequence all over again, is important
for program verification and for variance reduction.
This is a major advantage of RNGs over random num-
bers generated by physical devices. Jumping ahead
means the ability to quickly compute, given the cur-
rent state sn, the state sn+ν for any large ν. This is
useful for breaking up the sequence into long disjoint
substreams making up virtual generators. The pack-
ages of L’Ecuyer and Côté (1991) and L’Ecuyer and
Andres (1997) implement tools to manipulate such
substreams.

In the remainder of this paper, we survey some
of the recent literature on RNGs. The coverage is
certainly not exhaustive and is tainted by the au-
thor’s own interests and opinions. I apologize in
advance to those whose interesting papers have not
been cited. Further pointers on other aspects or
on other RNG classes can be found from the refer-
ences given here. More extensive coverages of RNGs
are given in Eichenauer-Herrmann (1995), Fishman
(1996), Hellekalek (1995), Knuth (1981), L’Ecuyer
(1990), L’Ecuyer (1994), L’Ecuyer (1997c), Niederre-
iter (1992), Niederreiter (1995b), Ripley (1990), and
Tezuka (1995), among others. The next section de-
scribes RNGs based on linear recurrences in modular
integer arithmetic. In Section 4, we survey some de-
velopments regarding the combination of such linear-
type generators. Section 3 discusses their lattice
structure and equidistribution properties. Section 5
mentions classes of nonlinear generators, Section 6
summarizes some work on empirical testing, and Sec-
tion 7 points to recommended implementations.

2 LINEAR RECURRENCES

A multiple recursive generator (MRG) is defined by
the recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod m; (1)

un = xn/m. (2)

The modulus m and order k are positive integers, the
coefficients ai belong to ZZm = {0, 1, . . ., m− 1}, and
the state at step n is sn = (xn−k+1, . . . , xn). For
prime m and properly chosen ai’s, the sequence has
(maximal) period length ρ = mk − 1. This can be
achieved with only two non-zero ai’s (Knuth 1981;
L’Ecuyer 1997c), i.e.,

xn = (arxn−r + akxn−k) mod m. (3)

This slim version makes the implementation faster.
The classical linear congruential generator (LCG)
corresponds to the case k = 1.

Taking m = 2e for e > 1 (a power-of-two mod-
ulus) also makes things easier from the implementa-
tion viewpoint, but leads to a much shorter period
for k > 1 and to several important structural de-
fects (L’Ecuyer 1990; L’Ecuyer 1997c). This should
be avoided.

One approach for using a power-of-two modulus
while keeping a long period and the potential for
good properties is the linear recurrence with a carry
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(Couture and L’Ecuyer 1995; Marsaglia 1994):

xn = (a1xn−1 + · · ·+ akxn−k + cn−1) mod b,

cn = (a1xn−1 + · · ·+ akxn−k + cn−1) div b,

un = xn/b.

where “div” is the integer division, b can be a power
of two, and cn is called the carry at step n. This so-
called Multiply-with-Carry (MWC) generator turns
out to be approximately equivalent (with a difference
of less than 1/b on the un’s) to an LCG with modulus

m =
∑k
`=0 a`b

`, where a0 = −1, and multiplier a
equal to the inverse of b modulo m. These MWC
generators can thus be analyzed much in the same
way as LCGs from the structural viewpoint, and offer
a promising avenue for constructing fast and robust
generators. Couture and L’Ecuyer (1997) give an in-
depth theoretical analysis of their properties.

In (2), each number is a multiple of 1/m. To
reduce this discretization error, one may construct
each output value from more than one term of the
recurrence (1). For example,

un =
L∑
j=1

xns+j−1m
−j , (4)

where s and L ≤ k are positive integers. If (1) has
period ρ and gcd(ρ, s) = 1, then (4) also has period ρ.
The digital expansion (4) permits one to take smaller
values of m. An important special case is m = 2.
Then, un is constructed from L successive bits of the
binary sequence (1), with spacings of s − L bits be-
tween the blocks. The resulting RNG is called a lin-
ear feedback shift register (LFSR) or Tausworthe gen-
erator (Knuth 1981; Niederreiter 1992; Tausworthe
1965). Its implementation is discussed by Bratley,
Fox, and Schrage (1987), Fishman (1996), L’Ecuyer
(1996b), and Tezuka (1995).

Another approach is to have L copies of the re-
currence (1) running in parallel, with different initial
values, and use one copy for each digit of the frac-
tional expansion of un. If {xj,n} denotes the jth copy
and if xj,n = xn+dj for all j and n, then

un =
L∑
j=1

xj,nm
−j =

L∑
j=1

xn+djm
−j . (5)

If dj = (j−1)d for some integer d and if gcd(d, ρ) = 1,
then n + dj = n + (j − 1)d = (ns + j − 1)d, so
(5) becomes equivalent to (4) if we replace {xn} by
{yn = xnd}, which can be accomplished by changing
the coefficients of (1) appropriately. Whenm = 2 and
(3) is used, the generator (5) is called a generalized
feedback shift register (GFSR) generator (Fushimi
and Tezuka 1983; Fushimi 1989). Denoting Xn =
(x1,n, . . . , xk,n), we have

Xn = Xn−r ⊕Xn−k, (6)

where ⊕ denotes the bitwise exclusive-or, and this
provides for an extremely fast implementation of the
GFSR.

A modification of the GFSR is the lagged-
Fibonacci generator, where ⊕ can be replaced by any
arithmetic or logical operation, such as +, −, etc. For
example, the additive generator (Knuth 1981):

Xn = (Xn−r +Xn−k) mod m, (7)

where m = 2L, is proposed on many systems, in-
cluding UNIX. It is a special case of the MRG with
a power-of-two modulus. Slight variations of it are
the add-with-carry (AWC) and subtract-with-borrow
(SWB), proposed by Marsaglia and Zaman (1991),
which are in fact special cases of the MWC genera-
tor with only two nonzero coefficients aj , both equal
to ±1. The modification permits to increase the pe-
riod length from 2k+L−1 up to approximately 2kL.
However, all these generators have gross structural
defects. For example, for the additive one, all triples
of the form (un, un+k−r, un+k), n ≥ 0, lie in only two
planes in the three-dimensional unit cube, and for
the AWC/SWB generators, the same happens with
the triples (un, un+r, un+k) (see L’Ecuyer 1997a).

Other (better) types of modifications of (6), which
maintain the speed but increase the period length
from 2k−1 to 2kL−1, are the twisted GFSR proposed
by Matsumoto and Kurita (1994) and Matsumoto
and Nishimura (1997). The multiple recursive ma-
trix method of Niederreiter (1995a) provides a general
framework that encompasses many of these modifica-
tions and variants.

3 COMBINED GENERATORS

Combination is a way of increasing the period length
and improving the statistical properties of genera-
tors (Knuth 1981; L’Ecuyer and Côté 1991; L’Ecuyer
1994; L’Ecuyer 1996b; L’Ecuyer 1996a; Marsaglia
1985; Tezuka 1995; Wang and Compagner 1993).
However, blind combinations or mixtures give no
guarantee of improvement. It is important to under-
stand the structure of the resulting generator. Among
the classes of combined generators that have been suc-
cessfully analyzed theoretically, one finds the com-
bined MRGs and the combined Tausworthe/GFSR
generators.

Take J MRGs of order k, the form

xj,n = (aj,1xj,n−1+· · ·+aj,kxj,n−k) mod mj, (8)
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with distinct prime moduli and maximal period ρj =
mk
j −1. Let δ1, . . . , δJ be arbitrary integers such that

gcd(δj , mj) = 1 for each j and define the combina-
tions

zn =

 J∑
j=1

δjxj,n

 mod m1; ũn = zn/m1 (9)

and

wn =

 J∑
j=1

δjxj,n

mj

 mod 1. (10)

Let m =
∏J
j=1mj , nj be the inverse of m/mj modulo

mj , and

ai =

 J∑
j=1

aj,injm

mj

 mod m

for i = 1, . . . , k. Then, the periodic sequence {wn}
is exactly the same as the sequence {un} given by
the MRG (1–2), and the sequence {ũn} is almost the
same in the sense that |un − ũn| is uniformly very
close to zero when the mj ’s are close to each other.
See L’Ecuyer and Tezuka (1991), L’Ecuyer (1996b)
for details and proofs. Therefore, these combinations
can be seen as convenient ways of implementing an
MRG with a large composite modulus. The maximal
period for the combination is ρ = lcm(ρ1, . . . , ρJ ) =

21−J
∏J
j=1 ρj . The main advantages of these combi-

nations are (a) an increased period length, while all
computations are performed modulo relatively small
integers mj ; (b) the fact that (1) can have many non-
zero coefficients even if the recurrence (8) of each
component has few of them.

LFSR and GFSR generators whose recurrence is
based on a trinomial, like in (3), are fast but have
important statistical defects (Matsumoto and Ku-
rita 1994; Matsumoto and Kurita 1996; Compag-
ner 1991). Again, this may be resolved by combi-
nation. Tezuka and L’Ecuyer (1991) and Wang and
Compagner (1993) propose to combine J “easy-to-
implement” LFSR generators, the jth producing a
sequence {uj,n, n ≥ 0}, by a bitwise exclusive-or of
the uj,n’s: un = u1,n ⊕ · · · ⊕ uJ,n. The resulting
generator is equivalent to a LFSR generator whose
recurrence has a reducible characteristic polynomial
equal to the product of the characteristic polynomi-
als of the individual components. The period could
reach

∏J
j=1(2kj−1), where kj is the the degree of the

characteristic polynomial of component j, provided
that the kj are pairwise coprime. GFSR and twisted
GFSR generators can also be combined in a simi-
lar way. Such combinations can be viewed as prac-
tical ways of implementing recurrences with “good”
characteristic polynomials, with many nonzero coef-
ficients.

4 LATTICES, EQUIDISTRIBUTION, AND
DISCREPANCY

The set

Tt = {un = (un, . . . , un+t−1) | n ≥ 0,

(x0, . . . , xk−1) ∈ ZZkm}

of all t-tuples of successive values produced by (1–
2), from all possible initial states, is the intersection
of a lattice Lt with the unit hypercube [0, 1)t. This
means that the points of Tt lie in a limited number of
equidistant parallel hyperplanes (Knuth 1981). For
the points to be evenly distributed over the entire
period, the distance dt between those successive hy-
perplanes should be small. One can define the figure
of merit

MT = min
t≤T

d∗t
dt

for any positive integer T , where d∗t = γtm
−k/t is an

absolute lower bound on the smallest possible dt, and
γt is the so-called Hermite constant. The constant γt
is known exactly only for t ≤ 8 but approximations
of it are available for t > 8 (L’Ecuyer 1997d). An MT

close to 1 means a superuniform distribution over the
full period. L’Ecuyer (1997d) has computed tables of
LCGs with good figures of merit M8, M16, and M32,
for m equal to the largest prime less than 2e, for sev-
eral values of e from 8 to 64. L’Ecuyer (1997b) pro-
vides combined MRGs which are good with respect
to these figures of merit, together with computer im-
plementations in C.

Computing dt, called the spectral test , amounts to
solving a quadratic optimization problem with inte-
ger variables. The programs of L’Ecuyer and Couture
(1997) compute dt up to around 40 or more, and can
handle large modulim. Couture and L’Ecuyer (1996)
explain how to analyze the (shifted) lattice associated
with the set of recurrent states (only), for a given ini-
tial state, when that set generates a strict sublattice
of Lt.

One may want to consider vectors of non-
successive values produced by the generator: fix a
set of non-negative integers I = {i1, i2, · · · , it}, put

Tt(I) = {(ui1+n, . . . , uit+n) | n ≥ 0,

s0 = (x0, . . . , xk−1) ∈ ZZkm},

and let dt(I) be the distance between successive
hyperplanes in the lattice generated by Tt(I) and
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ZZkm/m. For t > k, one has the lower bound

dt(I) ≥

 k∑
j=0

a2
j

−1/2

if {j ≥ 0 | ak−j 6= 0} ⊆ I. Couture and L’Ecuyer
(1994), Couture and L’Ecuyer (1996) and L’Ecuyer
and Couture (1997) discuss how to compute dt(I) in
different contexts. The fact that for the AWC/SWB
and additive or subtractive lagged-Fibonacci gener-
ators, the set T3(I) (aside from the zero vector) is
contained in only two planes, for a certain set I as
mentioned previously, is a special case of their re-
sults. They also show, for example, that the two com-
bined generators proposed in Marsaglia, Narasimhan,
and Zaman (1990) and Marsaglia, Zaman, and Tsang
(1990) can be approximated by linear congruential
generators for which d6(I) ≥ 1/

√
6 ≈ 0.408 for cer-

tain sets I. For simulations dealing with random
points in space, those bad structures could have a
dramatic effect (Ferrenberg, Landau, and Wong 1992;
L’Ecuyer 1992).

A different way of looking at uniformity is to ana-
lyze the equidistribution of the point set Tt produced
by the generator, as follows (Couture, L’Ecuyer, and
Tezuka 1993; L’Ecuyer 1994; L’Ecuyer 1996b; Tezuka
1995). This is typically applied to LFSR, GFSR,
and other similar generators. Partition the hypercube
[0, 1)t into 2t` cubic cells of equal size. If each cell con-
tains the same number of points of Tt, the sequence
(or the set Tt) is called (t, `)-equidistributed . Assum-
ing that Tt has cardinality 2k, this is possible only
for ` ≤ bk/tc. When Tt is (t, bk/tc)-equidistributed
for t = 1, . . . , k, it is called maximally equidistributed
(ME). Several ME combined LFSR generators are
listed in L’Ecuyer (1996b), L’Ecuyer (1997e), to-
gether with fast computer implementations.

Another measure of uniformity of a set ofN points
in t dimensions is through the notion of discrepancy
(see Niederreiter 1992 for details). When the aim is
to imitate i.i.d. uniform random variables, the set of
points that are used during a simulation should have
a discrepancy comparable to what is normally ex-
pected from a set of random points, which is roughly
O(N−1/2). Niederreiter (1992) gives general discrep-
ancy bounds for several classes of generators, mostly
for N = ρ. However, no efficient algorithm is avail-
able for computing the discrepancy exactly, except
for certain special cases.

5 NONLINEAR GENERATORS

Some argue that since the structure of linear se-
quences is too regular, nonlinear generators should
be used instead (Eichenauer-Herrmann 1995; Helle-
kalek 1995; Niederreiter 1995b; Niederreiter 1992).
Nonlinearity can be introduced by either (a) using a
linear transition function f with a nonlinear output
function g, (b) using a nonlinear recurrence.

A simple example of (a) is the explicit inver-
sive generator of Eichenauer-Herrmann (1993): let
xn = an + c, for n ≥ 0, where a 6= 0 and c are in
ZZm, m prime, zn = x−1

n = (an + c)m−2 mod m, and
un = zn/m. The period is ρ = m and it can be
shown (Niederreiter 1994a) that every hyperplane in
IRt contains at most t points from the set Tt. Other
variants of inversive nonlinear generators can be
found in Eichenauer-Herrmann (1992), Eichenauer-
Herrmann (1995), L’Ecuyer (1997c), Niederreiter
(1992), Niederreiter (1994b), Niederreiter (1995b),
and the references given there. These nonlinear gen-
erators tend to avoid the planes and have the right
asymptotic orders of magnitude for their discrepan-
cies. Those based on power-of-two moduli, however,
have defects similar to the LCGs and MRGs with
power-of-two moduli (see, e.g., L’Ecuyer, Compag-
ner, and Cordeau 1996).

Other nonlinear generators have also been pro-
posed in the field of cryptology. For example, the
BBS generator, proposed by Blum, Blum, and Schub
(1986), evolves according to

xn = x2
n−1 mod m,

where m is the product of two distinct k-bit primes,
both congruent to 3 modulo 4, and gcd(x0, m) = 1.
At each step, the generator outputs the last ν bits
of xn, where ν is in O(log(k)). Under the assump-
tion that factoring is hard, and that m and x0 are
chosen “randomly” in a specific way, it is proven
that no polynomial-time (in k) statistical test can
distinguish (in some specific sense) the output of a
BBS generator from a sequence of i.i.d. uniforms.
This means that for large enough k, the generator
should behave very nicely from a statistical point of
view. But nobody knows for sure how large is large
enough. For more about cryptographic-type gener-
ators, see Lagarias (1993) and L’Ecuyer and Proulx
(1989). These generators are rather slow compared
with those usually employed for simulation.

6 EMPIRICAL TESTS

Applying empirical statistical tests to RNGs is a
highly heuristic affair. A test is defined by a statis-
tic T , function of a finite number of output values,
and whose distribution under H0 can be well ap-
proximated. The test tries to find empirical evidence
against H0. If such evidence can be found in reason-
able time, then H0 is rejected. This happens when
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the p-value
p = P [T > t1 | H0],

where t1 is the value taken by T , is too close to either
0 or 1. One can also construct a two-levels test, by
comparing the empirical distribution of (say) N “in-
dependent” copies of T to the theoretical distribution
of T .

When testing RNGs, an arbitrarily large sample
size can be taken to increase the power of the test
and come up with a clear decision when suspicious
p-values occur. One can reject H0 is p < 10−8, for ex-
ample, and increase the sample size or repeat the test
with other segments of the sequence when p is sus-
picious (p = .005, for example). In most cases, clear
evidence against H0 will quickly show up or suspicion
will disappear. Note that when H0 is not rejected for
a given test, this proves nothing. It may well be re-
jected by the next test. It may be a good idea to
run important simulations twice using random num-
ber generators of totally different families (e.g., linear
and nonlinear).

Knuth (1981) describes a set of tests considered
as “standard” for testing RNGs. Marsaglia (1996)
has proposed a battery of tests called DIEHARD,
which he considers more stringent than the classi-
cal tests in Knuth (1981). A software package that
contains most of the tests proposed so far, as well as
several classes of generators implemented in generic
form, is under development (L’Ecuyer 1996c). Exam-
ples of other statistical tests applied to random num-
ber generators can be found in Ferrenberg, Landau,
and Wong (1992), L’Ecuyer (1992), L’Ecuyer (1994),
L’Ecuyer, Cordeau, and Simard (1997), L’Ecuyer,
Compagner, and Cordeau (1996), L’Ecuyer (1997f),
Leeb and Wegenkittl (1997), Stephens (1986). Af-
ter extensive experiments with these tests, the fol-
lowing (among other things) has been observed: (i)
All RNGs with period lengths less than 232 (say),
especially the linear ones, fail several tests with rel-
atively small sample sizes; (ii) RNGs with power-of-
two moduli are worst-behaved than those with prime
moduli, especially for their low-order bits; (iii) LF-
SRs and GFSRs based on primitive trinomials, or
lagged-Fibonacci and AWC/SWB generators, whose
structure is too simplistic, also fail some tests spec-
tacularly; (iv) Combined generators with long periods
and good or fair structural properties (lattice struc-
ture or equidistribution) pass the tests quite well; (v)
When a large fraction of the period is used, nonlinear
inversive generators with prime modulus do better
than the LCGs.
7 IMPLEMENTATIONS

Computer implementations of generators with good
theoretical support, well tested, and reasonably ef-
ficient, include those of the combined MRGs of
L’Ecuyer (1996a), L’Ecuyer and Andres (1997) and
L’Ecuyer (1997b), the combined Tausworthe gen-
erators of L’Ecuyer (1996b) and L’Ecuyer (1997e),
the twisted GFSRs of Matsumoto and Kurita
(1994) and Matsumoto and Nishimura (1997),
and perhaps RANLUX in James (1994), with
the highest luxury level. More references and
implementations can be found from the URL
pages: http://www.iro.umontreal.ca/∼lecuyer
and http://random.mat.sbg.ac.at on the internet.
Of course, none of these RNGs is totally guaranteed
against all possible defects. Such guarantee is impos-
sible.
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