
AN HCFG MODEL OF A TRAFFIC INTERSECTION
SPECIFIED USING HiMASS-j

Thorsten Daum

Simulation Research Group
439 Link Hall

Syracuse University
Syracuse, NY 13244, U.S.A.
ABSTRACT

The specification of a simulation model of a complex
traffic intersection using the Hierarchical Modeling
And Simulation System-Java (HiMASS-j) is presented.
HiMASS-j is an object-oriented Java 1.1 based simu-
lation software system that uses the Hierarchical Con-
trol Flow Graph (HCFG) Model paradigm. Models
specified in this paradigm use two complementary hi-
erarchical specification structures, one to specify the
model components and their interconnections and the
other to specify the behaviors of the individual com-
ponents. Models are specified in HiMASS-j via visual
interactive modeling.

1 INTRODUCTION

This is a companion paper to “A Java based Sys-
tem for Specifying Hierarchical Control Flow Graph
Models” (Daum and Sargent 1997) contained in these
proceedings. That paper provides a brief overview of
the Hierarchical Control Flow Graph (HCFG) Model
paradigm and discusses the portion of Hierarchical
Modeling And Simulation System-Java (HiMASS-j)
used for specifying HCFG Models via visual interac-
tive modeling (VIM). It is assumed that the reader is
familiar with that paper.

The purpose of this paper is to illustrate the use
of HiMASS-j in the modeling of a non-trivial sys-
tem. The system modeled is a complex multilane traf-
fic intersection that involves vehicles, streetcars, and
pedestrians. The purpose of this model is to study the
relationships between traffic light patterns/sequences
and the waiting time of vehicles in the intersection.

HCFG Models use two complementary types of
hierarchical structures. The first type specifies the
components that make up the model and how they
are interconnected. This specification is called a Hi-
erarchical Interconnection Graph (HIG). The second
type of specification, the HCFG, is used to specify
the behaviors of the individual atomic components of
the model.
HiMASS-j is a Java (Arnold 1996) based object-

oriented software system developed and tested on Sun
SPARC workstations running Solaris and Pentium
based personnel computers running Linux and Win-
dows 95; however, due to the platform independent
nature of Java, HiMASS-j can be run on any system
that provides Java 1.1 support.

The remainder of the paper contains the follow-
ing: an overview of the traffic intersection in Sec-
tion 2, a description of the HIG, the HCFGs, and the
Experimental Frame (EF) of the simulation model in
Section 3, animation of the simulation model in Sec-
tion 4, and a summary in Section 5.

2 THE SYSTEM

The simulation model created describes the busy in-
tersection of Südring and Halberstädter Straße, which
are two major streets in the city of Magdeburg, Ger-
many (see Figure 1). The streets coming from the
north, south, and west each have two vehicle lanes
that expand into three lanes before the intersection.
The street coming from the east remains at two lanes

Figure 1: The Intersection of Südring and Hal-
berstädter Straße



An HCFG Model of a Traffic Intersection Specified Using HiMASS-j 159
Figure 2: The Model Tree

for the intersection. Street car tracks are in the mid-
dle of the street between the vehicle lanes. Traffic
consists of vehicles and pedestrians coming from all
four directions and street cars coming from the north,
west, and east. Traffic flow for vehicles, pedestrians,
and streetcars is regulated by traffic lights. Traffic
lights are synchronized and operate on fixed cycles
preprogrammed for different times of the day. Cur-
rently, the intersection is not equipped to automat-
ically adapt the traffic light cycle to varying traffic
conditions. For a more detailed overview of the inter-
section see Figure 18.

Maps of the area and detailed data about the av-
erage hourly number of vehicles for each direction and
time of day were provided by the city of Magdeburg
Department of Transportation.

Streets coming from the north, west, and south
respectively have individual lanes for vehicles turning
right, going straight, and turning left. The street
from the east has two vehicle lanes: one for vehicles
turning right or going straight, the other for vehicles
going straight or turning left. Street cars coming from
the north turn right, street cars from the west can
turn left or go straight, and street cars from the east
go straight.

Traffic lights in the intersection work as follows:
vehicles from the east have one traffic light, which
means that vehicles turning right must yield to pedes-
trians and vehicles turning left must yield to pedes-
trians and opposing traffic. Traffic from the north,
south, and west, respectively, has a traffic light for
left turns and another traffic light for vehicles go-
ing straight or turning right. In general, all vehi-
cles coming from one direction have a green light at
the same time, with vehicles turning left usually hav-
ing shorter green periods to accommodate pedestrian
traffic. Street cars from the north turning right and
from the west turning left have green lights when ve-
hicles from the west turning left have a green light.
Street cars from the west and east proceeding straight
have green lights when vehicles from the east have a
green light.

3 THEHCFGMODEL

The HIG of the intersection model has five levels.
It contains over 400 AC instances and over 60 CC
instances that were specified using 14 AC types and
20 CC types. The complexity of the intersection is
modeled in the HIG; the ACs have simple HCFGs.
Figure 2 shows part of the model tree in the Model
Navigator window. Note that instance names start
with a lower case letter and type names start with an
upper case letter.

The remainder of this section discusses the HIG, a
selected number of HCFGs, the specification of edge
conditions and events, and the EF.

3.1 Hierarchica l Interconnection Graph

The top level CC, Südring (the street name is com-
monly used for the intersection as well), consists of
four CCs, north, south, east, and west (Figure 3).
These CCs are connected by several multichannels
specifying the interactions between the CCs. Each
of these CCs contains three CCs; e.g., the East CC
contains CC ped (specifying pedestrian traffic), CC

Figure 3: The Top Level CC



160 Daum
Figure 4: The East CC

fromEast, and CC toEast (see Figure 2). Channels,
multichannels and six connection boxes are used to
connect ped, fromEast, and toEast to the external
ports of East (Figure 4). North, South, and West are
specified accordingly. The FromEast CC (Figures 2
and 5) contains three CCs (centerRight, centerLeft,
and streetCars) for specifying the two car lanes and
the street car track, and one AC ‘light’. Channels,
multichannels, and two connection boxes are used to
connect the components to each other and to the
external ports of FromEast. The other From (e.g.
FromWest) and To CCs are specified similarly.

Figure 5: The FromEast CC
Figure 6: The CenterRight CC

The CenterRight CC (Figures 2 and 6) contains
three ACs (source, lightCtrl, and split) and three CCs
(lane, right, and straight) which are of type Path
(Figures 2 and 7).

A Path CCS specifies the most basic element of
an intersection, which is a continuous stretch of road,
track, or sidewalk where traffic can always flow unre-
stricted, i.e., there are no intersecting traffic or other
obstacles. A Path contains five ACs. In the model,
Path instances connect to other instances of Path,
traffic light controllers, sources, sinks, etc.

Figure 7: The Path CC



An HCFG Model of a Traffic Intersection Specified Using HiMASS-j 161
Figure 8: The Storage HCFG

Every instance of Path requires three parameters:
a distinct name, a capacity, and a time. The capacity
is the maximum number of entities (vehicles, street-
cars, or pedestrians) that the Path can accommodate,
time is the fastest possible time in which an entity can
travel the entire length of the Path, and the name is
for the generation of trace information. Both time
and capacity relate to the length and the speed of a
Path instance and to the length properties of the kind
of entities on this Path.

Although it has a simple interface, parameterized
instances of the same Path CC are used to specify all
roads, walks, and tracks in the model. Components
used to model the other properties of the intersection
are TrafficLight, LightCtrl, Split, Block, ExpSource,
and Sink.

Two kinds of messages are used in the model.
“Entity messages” represent vehicles, street cars, and
pedestrians. Other messages solely change and/or
query the state of components, such as the state of
traffic lights, the number of entity messages in a Path
instance, etc.

CC Path has five input and four output ports.
“Entity messages” can enter Path through input
ports in1 and in2 and exit through output port ‘out’.
Path has two ‘in’ ports because channels can connect
the ‘out’ ports of two Path instances to in1 and in2
of another Path instance, representing, e.g., vehicles
merging into the same lane. Output ports prev1 and
prev2 transmit messages to the respective previous
instances of Path to indicate that an entity message
has entered this Path instance and thus has left the
Path instance it came from. Input ports next1 and
next2 connect to ports prev1 and prev2 of the next
Path to receive such messages. Input port ‘query’
receives messages that query whether the storage is
empty and output port ‘answer’ carries a return mes-
sage if this is the case.
3.2 Hierarchical Control Flow Graphs

Some of the HCFGs contained in CC Path and the
HCFGs of AC ExpSource, AC TrafficLight and AC
LightCtrl are described.

3.2.1 The Storage HCFG

The Storage HCFG (Figure 8) contains three Con-
trol States (CSs). The initial CS is SNF, which rep-
resents the state of the Storage when it is not full.
This state indicates that entities can enter this path.
Entities entering a path are modeled by a port edge
associated with input port ‘in’ originating at SNF.
Whenever SNF has the Point of Control (POC) and
there is a message waiting at port ‘in’, the edge from
SNF to QF is traversed executing event e in because
this edge has the highest priority. The Event e in
receives a message, increments the storage counter,
sends a copy of the received “entity message” to out-
put port ‘out’ (Figure 7) to be processed by the next
AC of Path, and sends another message to output
port leave prev that will eventually cause the Storage
AC in the previous path to decrement its counter.

Two edges originate from CS QF (Queries if stor-
age is Full). Both edges have null events (events that
do nothing) and serve the sole purpose of travers-
ing the POC to CS SF (Storage Full) or back to
SNF, based on the value of the storage counter. The
boolean condition isStorageFull is always evaluated
first because the associated edge has the highest pri-
ority. If the condition is true, the POC traverses to
SF; otherwise, the lower priority edge, which by def-
inition as a TrueEdge is always true, will cause the
POC to traverse to SNF. If a message (indicating that
an entity has left this path) is waiting at input port
‘leave’, the edge is selected by the POC to traverse
to SNF from either SF or SNF and event e leave will
be executed, decrementing the storage counter. A
message waiting at input port ‘query’ indicates that
another path, that may be potentially blocked by en-
tities traveling on this path, wants to know if this
path is empty. The event e query will send a message
to output port ‘answer’ only if the storage counter is
zero.

3.2.2 The Facility HCFG

The Facility HCFG (Figure 9) has two CSs:
RE(leased) and SE(ized). A PortEdge associated with
input port ‘in’ originates at RE. If an “entity mes-
sage” is waiting at ‘in’ and RE has the POC, the
message is received, copied to output port ‘out’ and
the POC traverses to SE. If a message is waiting at
input port ‘release’ and SE has the POC, the message
is received, deleted, and the POC traverses back to



162 Daum
Figure 9: The Facility HCFG

RE so that the next “entity message” at ‘in’ can be
received, etc.

3.2.3 The Connect HCFG

The Connect HCFG (see Figure 7) simply routes mes-
sages between its ports. Its purpose is to reduce
the number of ports in CC Path and to simplify the
Path’s subcomponents; in particular Storage, Lag,
and Facility. Messages coming in on next1 and next2,
e.g., can be routed to Storage.leaves or Facility.release.
Without the routing provided by Connect, the num-
ber of these ports would have to be doubled and ad-
ditional edges added to the Storage, Lag, and Facility
ACs.

3.2.4 The ExpSource HCFG

ExpSource generates “entity messages” with expo-
nential interarrival times. The mean and the type
of entities to be generated are AC parameters, and
the mean and the seed of the random number gen-
erator (RNG) can be changed through the Experi-
mental Frame. ExpSource (Figure 10) contains one
CS S1 and one MCS ExpDelay. Although ExpSource
is simple, encapsulating the exponential delay has a
purpose. The implementation of the RNG and the
desired distribution can be encapsulated, hiding the
implementation details. Should the RNG or distri-
bution need to be changed, a new delay MCS can

Figure 10: The ExpSource HCFG
Figure 11: The TrafficLight HCFG

easily be plugged in without changing the functional-
ity of ExpSource, e.g., by using the EF. Furthermore,
ExpDelay itself can be reused in different models as
exponential delays are very common and the specifi-
cation is independent of the ExpSource MCS.

3.2.5 The TrafficLight and LightCtrl HCFGs

The TrafficLight HCFG (Figure 11) contains three
CSs R(ed), Y(ellow), and G(reen) and three Time-
Edges that connect R to G, G to Y, and Y to R. The
time delay functions red, yellow, and green return the
times the light is in a particular state. The values for
red and green are specified in the EF. The events red-
ToGreen and yellowToRed send messages to output
ports open and close, respectively, causing the con-
nected LightCtrl to change its state accordingly.

The LightCtrl HCFG (Figure 12) contains two
CSs: OP(en) and CL(osed). Two edges originate
from OP: (i) a self-looping PortEdge associated with
input port ‘in’; its event copies the message from ‘in’
to output port ‘out’ and (ii) a PortEdge to CL asso-
ciated with input port ‘close’. This port is connected
to TrafficLight.close, which sends a message when the
light changes to red causing the POC to traverse the
edge to CL, until a message to ‘open’ causes the POC
to traverse the PortEdge originating at CL back to
OP. In the HIG, a LightCtrl instance is placed be-
tween two Path instances to block “entity message”
traffic when the light is red.

Figure 12: The LightCtrl HCFG



An HCFG Model of a Traffic Intersection Specified Using HiMASS-j 163
Figure 13: The Lag HCFG

3.3 Specifying Conditions and Events

In HiMASS-j time delay functions, boolean functions,
and event routines are specified in dialog boxes by
text and helper functions. A basic knowledge of the
Java syntax is required.

The Lag AC (Figure 7) is used to illustrate the
specifications of time delay and boolean functions and
event routines. Lag AC is a simple server advancing
the timestamp of each incoming “entity message” by
the time it takes an entity to travel one entity length.
If that time has passed, it copies the message to out-
put port ‘out’ and sends a new message to output port
‘rel prev’ that will eventually cause the Facility in the
previous path to change its state to released. This is
necessary to prevent entities that are queued up at
a stop to start moving simultaneously after the stop
condition such as a red traffic light has been changed.

The Lag HCFG (Figure 13) has two CSs, two
events enqueue and dequeue, one time delay func-
tion nextDequeue, and one boolean function isEmpty.
The two CSs are N(ot)E(mpty) and E(mpty) indicat-
ing whether there are message or no messages in the
internal queue of Lag. When a message is sent to in-
put port ‘in’, the PortEdge originating at the CS that
has the POC becomes true and the event enqueue is
executed. This event is specified by selecting the Edit
tool and clicking on “enqueue” in the edge attribute
label. This will cause the HiMASS-j system to open
an Event Editor dialog box. A modeler then speci-
fies the event by typing it into the text box. Helper
functions aid in the specification of the event. Fig-
ure 14 shows the fully specified event. Line 1 of the
event was produced by the helper function Receive

Figure 14: The enqueue Event
Figure 15: The nextDequeue Time Delay Function

Message. It declares a local variable m of type Mes-
sage, which is a standard HiMASS-j data type, and
initializes m with a reference to a Message object that
is returned by the receive method of input port ‘in’.
In line 2 the current time of the AC is stored in field
d1 of the message. The standard HiMASS-j messages
have two integer, two double precision floating point,
and two string member fields. (A modeler can, if de-
sired, create other types of messages). In line 3 the
message m is added to the message queue “queue” of
the Lag MCS. A message queue is a commonly used
data structure and is provided by HiMASS-j.

After event enqueue is executed, the POC tra-
verses to CS NE. If there are no messages waiting at
input port ‘in’, the BoolEdge from NE to E is eval-
uated. Since a message has just been added to the
message queue, the edge is false and the TimeEdge
originating at NE is evaluated. The TimeEdge be-
comes true after a simulation time delay specified by
the time delay function nextDequeue. A time de-
lay function returns a non-negative value (including
zero, which indicates that the condition is true im-
mediately). The time delay function is specified by
clicking on “nextDequeue” in the edge attribute la-
bel, which will open the Time Delay Function Edi-
tor dialog box. Figure 15 shows the Editor box with
the specified time delay function. The code in line 1
obtains a reference to the first message in the queue
without removing it from the queue. In line 2 the time
the first queue element must still remain in the queue
is computed by adding the fixed delay to the time the
message was added to the queue and subtracting the
current time of this AC, and then returned.

If the TimeEdge becomes true, event dequeue (Fig-
ure 16) is executed. The code in line 1 removes the
first element from the queue and assigns it to a local

Figure 16: The dequeue Event



164 Daum
Figure 17: The isEmpty Boolean Function

variable m of type Message. In line 2 a new message
m2 is created and initialized with the current time.
(This is the standard method of creating messages).
The integer field i2 of m2 is then assigned with the
value in m.i2 which is the id of the previous path. In
line 4 m is send to output port ‘out’ and in line 5 m2
is send to output port rel prev, notifying the previous
path that the entity represented by m has left it.

After the execution of dequeue the POC traverses
the edge back to CS NE. If no new message is waiting
at ‘in’, the BoolEdge to CS E is evaluated. Figure 17
shows the specification of isEmpty, the boolean func-
tion of the edge. Boolean functions are specified sim-
ilarly to time delay functions. The only difference is
that time delay functions return a non-negative num-
ber whereas boolean functions return either true or
false. If the message queue of HCFG Lag is empty
(Line 1), the function returns true and the POC tra-
verses the edge to CS E. If the queue is not empty,
the function returns false (Line 4) and the next edge
originating at NE is evaluated.

Time delay functions, boolean functions, and
events can be reused and additional helper functions
can be added to HiMASS-j, making it easier to specify
functions and events.

3.4 Experimental Frame

HiMASS-j makes the use of Experimental Frames
straightforward and easy. Dialog boxes that provide
the functionality to specify model element parame-
ters, variables, initial CSs, and types each have a
checkbox “get from EF”. By selecting this checkbox, a
modeler makes a parameter, variable, etc. available to
the EF. The HiMASS-j system automatically gener-
ates an entry in an EF file that can be edited by using
dialog boxes and helper functions. During model ini-
tialization, the HiMASS-j simulator attempts to ini-
tialize the element with a value from the specified EF
file. If no matching entry is found, a default value is
used, and if no default value is specified in the model,
the simulation run terminates with an error message.

The intersection model makes extensive use of the
EF. The means and seeds of Random Number Gener-
ators for instances of ExpSource and Split are spec-
ified in the EF, as well as the return values of the
time delay functions of TrafficLight instances. That
makes changing the average number of entities (e.g.,
for a different time of day) and the traffic light cycle
easy.

4 ANIMATION

A simulation run produces a trace file that can
be used for the animation of the model using Proof
Animation (Wolverine Software 1995). Proof Ani-
mation is a vector-based, file-driven, post-processing
animation system. It has a CAD-like drawing abil-
ity for creating layouts, paths, and shapes and pro-
vides a set of animation commands and the ability to
process program-generated sequences of those com-
mands. Figure 18 shows a picture of the animation.

The Proof layout and paths were generated ma-
nipulating a computerized (scanned) image of a map
of the intersection provided by the city of Magdeburg
Department of Transportation. Paths in Proof are
sets of ordered, directional line and/or arc segments.
If an entity is placed on a path it will move along the
path at the specified speed until it reaches the end
of the path or until it is blocked by another entity,
in which case it will be temporarily halted until the
blockage goes away. That is the desired behavior for
the traffic intersection.

There is a direct relationship between Proof paths
and Path CCs. A Path CC models a part of the road-
way where moving entities can only be blocked by
entities in front of it (that may be stopped at a traf-
fic light). The time and capacity parameters of the
Path CCs were obtained from the length and time
attributes of the corresponding Proof paths. A Path
instance adds a Proof command to the trace file each
time an entity message enters the Path instance. This
command is used by Proof Animation to place an en-
tity on the specified Proof path, removing it from the
previous Proof path and thus providing for smooth
animation.

5 SUMMARY

A description of a complex HCFG model using
HiMASS-j was presented. HCFG models contain a
HIG specifying the model components and their in-
terconnections and a set of HCFGs specifying the be-
havior of atomic model components. The HIG and
HCFGs are specified via VIM, using graphical user
interfaces and dialog boxes. Events and edge condi-
tions are specified by text adhering to Java syntax.
Dialog boxes and helper functions aid this process
significantly. No advanced programming knowledge
is required.



An HCFG Model of a Traffic Intersection Specified Using HiMASS-j 165
Figure 18: Animation of the Intersection
HiMASS-j offers a flexible way to build discrete
event simulation models. The hierarchical nature of
the HCFG Model paradigm allows for the representa-
tion of complex systems in a way that is intuitive and
comprehensible. The intersection model uses over 400
ACs, yet could be structured in a way that was clear
and straightforward; the HIG consists of five levels of
hierarchy which contain the complexity of the model.

HiMASS-j has comprehensive capabilities for reuse
that simplified the building of the described model.
Although over 400 AC instances were employed, only
14 AC types were used and thus only 14 ACs had
to be specified. Furthermore, 60 instances of the
CC type Path were used. The ability to parameter-
ize model element instances was crucial for effective
reuse.

The EF features provided by HiMASS-j are useful.
Initial conditions and other parameters can easily be
changed between simulation runs without the need to
recompile the model. This allows a compiled model
to be given to a user who needs no knowledge of the
way the model was specified to conduct meaningful
simulation runs.

VIM as provided by HiMASS-j proved to be an in-
tuitive tool to build discrete event simulation models
easily and quickly. The visual aspect of VIM provides
a natural way of modeling, the modeler is less likely to
build a model that is incorrect, thus a verified model
can be achieved faster than with text based tools for
model specification. VIM is also useful if the simu-
lation results should be animated because the visual
structure of the HIG can be specified to resemble the
layout of the animation.
ACKNOWLEDGMENTS

Professor Robert G. Sargent of Syracuse University
supported and aided in the writing of this paper.
Uwe Ilgenstein of Otto von Guericke University devel-
oped the Proof Animation layout for the intersection
model.

REFERENCES

Arnold, K. and J. Gosling. 1996 The Java Program-
ming Language. Reading, Mass.: Addison Wesley.

Daum, T. and R. Sargent. 1997. A Java based sys-
tem for specifying hierarchical control flow graph
models. In: S. Andratdottir, K. Healy, D. With-
ers, and B. Nelson, eds., Proc. of the 1997 Winter
Simulation Conference.

Wolverine Software. 1995. Using Proof Animation
(Second Edition). Annandale, Va.: Wolverine Soft-
ware Corporation.

AUTHOR BIOGRAPHY

THORSTEN DAUM is a graduate student at Otto
von Guericke University in Magdeburg who is work-
ing towards a degree in simulation and computer
graphics. His interests include the development of vi-
sual interactive modeling systems for simulation and
Java software. He is a visiting researcher with the
SimulationResearch Group and CASE Center at Syra-
cuse University.


	AN HCFG MODEL OF A TRAFFIC INTERSECTION SPECIFIED USING HiMASS-j
	ABSTRACT
	1 INTRODUCTION
	2 THE SYSTEM
	3 THEHCFGMODEL
	3.1 Hierarchica l Interconnectio n Graph
	3.2 Hierarchical Control Flow Graphs
	3.3 Specifying Conditions and Events
	3.4 Experimental Frame

	4 ANIMATION
	5 SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 158
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


