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ABSTRACT

In this paper, we study the efficiency of a time paral-
lel simulation method, namely the time segmentation
approach, that can be applied to simulate long sample
paths of a variety of discrete event systems. We show
that the efficiency of the method is closely related to
the amount of time required for sample paths of the
system generated with a common sequence of events
to couple (i.e., become identical). Then we provide
bounds and estimates of the expected coupling time
for Markovian queueing networks of loss and commu-
nication blocking stations as a function of the number
of stations and buffer capacities in the network.

1 INTRODUCTION

Discrete event simulation has proven to be an effec-
tive tool for analysis and evaluation of stochastic sys-
tems. However, many simulation experiments require
extensive computations to provide reliable estimates
for the performance measures of interest. There-
fore, developing efficient methods for distributing the
computational load of such simulation experi-
ments among multiple processing units is a crucial
part of numerical evaluation of these systems. Nu-
merous methods for implementation of simulation ex-
periments on multiple processing units (i.e., parallel
simulation) have been studied in recent years. The
goal of most of these methods is to exploit the char-
acteristics of the system under study to establish valid
communication between multiple processors and sim-
ulate the system as efficiently as possible. A survey
of recent advances in parallel simulation can be found
in Fujimoto (1993).

In this paper, we investigate applications of the
time segmentation method for efficient simulation of
a class of Markovian queueing networks. This method
is a time parallel simulation approach in which paral-
lelism is achieved by partitioning the time domain of
the simulation into smaller segments and distributing
the processors among these segments. Time parallel
simulation approaches using similar ideas have been
studied by Heidelberger and Stone (1990), Greenberg,
Lubachevsky, and Mitrani (1990), and Lin and La-
zowska (1991), among others.

The time segmentation approach was originally
proposed by Andradóttir and Ott (1995). They
show that the time segmentation method is applica-
ble to Markovian queueing networks that consist of ei-
ther loss stations or communication blocking stations.
Their results have been generalized to Markovian
queueing systems containing both loss and commu-
nication blocking stations by Hoseyni-Nasab and An-
dradóttir (1996, 1997). The efficiency of the time seg-
mentation approach is closely related to the amount
of time required for the sample paths of the system
to couple (see Section 2). Both Andradóttir and Ott
(1995) and Hoseyni-Nasab and Andradóttir (1996,
1997) have studied the efficiency of the approach by
investigating the dependence of the coupling times
on the parameters of the system under study. In this
paper we investigate the dependence of the expected
coupling times of Markovian queueing networks of
loss and communication blocking stations on the size
of the network. In particular, we study the growth
rate of the expected coupling times with respect to
the number of stations and the buffer capacities in
the network.

The remainder of this paper is organized as fol-
lows: In Section 2 we present the time segmenta-
tion method and briefly discuss the conditions under
which this method is applicable. In Section 3 we ex-
plain how the time segmentation method is applicable
to Markovian queueing networks of loss and commu-
nication blocking stations. In Section 4 we investigate
the efficiency of the approach by providing bounds for
the expected coupling times as a function of the size
of the network under study. In Section 5 we further
examine the results of Section 4 using numerical ex-
amples. Finally, Section 6 contains some concluding
remarks.
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2 THE TIME SEGMENTATION METHOD

In this section we present a parallel simulation ap-
proach, namely the time segmentation method, which
can be applied to simulate long sample paths of a va-
riety of discrete event systems using multiple proces-
sors. Generating long sample paths is of particular
interest in steady-state simulation as well as in cer-
tain transient simulation experiments. We will also
discuss how the efficiency of the time segmentation
method is related to the magnitude of the coupling
times of the sample paths of the system under study.
For more detailed discussions of the time segmenta-
tion approach, the reader is referred to Andradóttir
and Ott (1995) and Hoseyni-Nasab and Andradóttir
(1997).

Suppose that we would like to generate a sam-
ple path of a discrete event system S on the interval
[0, T ]. Let A and B be arbitrary sample paths of the
system and let NA(t) and NB(t) denote the state of
the system at time t in sample paths A and B, respec-
tively. Suppose that it is possible to generate valid
sample paths of the system in parallel using a com-
mon sequence of potential events in such a way that
if NA(0) ≤ NB(0), then NA(t) ≤ NB(t), for all t > 0.
Moreover, suppose that there exist two sample paths
of the system, sample paths l and u, such that for
any sample path A, Nl(0) ≤ NA(0) ≤ Nu(0). Then
Nl(t) ≤ NA(t) ≤ Nu(t), for all t > 0 and all sample
paths A. This means that the states of the system in
sample paths l and u bound the state of the system in
all sample paths, at all times, from below and above,
respectively. This property implies that by the time
the bounding sample paths l and u couple (i.e., when
Nl(t) = Nu(t)), all other sample paths that are being
generated with the same sequence of events will have
also coupled with sample paths l and u.

To generate a sample path of the system on the
interval [0, T ], we proceed as follows: We partition
the time horizon of the simulation experiment into P
equal segments, [0, T/P ], . . . , [(P − 1)T/P, T ], where
P is the number of available processors. Suppose
interval i refers to the interval [(i − 1)T/P, iT/P ],
1 ≤ i ≤ P . Each processor is assigned to one segment
of the sample path and is responsible for generating
the sample path over a time period of length T/P
corresponding to that segment. In order for a pro-
cessor to initiate the simulation of the sample path
on its corresponding segment, the processor needs to
know the state of the system at the end of the sam-
ple path on the previous segment (i.e., to generate a
valid sample path we need to ensure that the state of
the system at the end of each segment matches the
state of the system at the beginning of the next seg-
ment). We start the simulation of the sample path
on the interval [0, T/P ] from the true initial state of
the sample path. On the other subintervals, the ini-
tial states of the sample path are not known at first
(note that all processors start processing at the same
time). Therefore, the corresponding processors start
simulating sample paths l and u using a common se-
quence of potential events for the sample paths of
each interval. For i = 2, . . . , P , let

T ic = inf

{
t ∈

[
(i− 1)T

P
,
iT

P

)
: Nl(t) = Nu(t)

}
be the coupling time of sample paths l and u gen-
erated by processor i. If T ic < iT/P , then Nl(t) =
Nu(t), for t ∈ [T ic , iT/P ). This means that after the
bounding paths of the system on subinterval i cou-
ple, then the processor corresponding to that interval
can start collecting data as the state of the system no
longer depends on the initial state of the sample path.
Therefore the information collected on the interval
[T ic , iT/P ) is valid data for the true sample path.
Also, assuming that sample paths l and u on interval
i−1 couple prior to the end of that interval, then the
real initial state of the sample path on interval i is the
same as the final state of the coupled sample paths
on interval i− 1. To complete the sample path on in-
terval i, we start the simulation from the true initial
state (given by the final state of the coupled bounding
paths on interval i−1) and simulate the sample path
on the interval [(i−1)T/P,min

{
T ic , iT/P

}
) using the

same sequence of events as the bounding sample paths
of the interval. On the other hand, if sample paths l
and u on interval i − 1 are not coupled prior to the
end of that interval, then we again simulate two sam-
ple paths l′ and u′ by initiating two sample paths on
interval i starting at the final states Nl((i − 1)T/P )
and Nu((i − 1)T/P ) of sample paths l and u on in-
terval i− 1 and using the same sequence of potential
events as the one used to generate sample paths l and
u on interval i. By repeating this process, possibly
several times, and combining the data collected on all
the subintervals, we can generate a complete sample
path of the system on the interval [0, T ].

In the above procedure, if all the bounding paths
l and u couple prior to the end of their corresponding
intervals, then the true initial state of the sample path
on each subinterval will be known upon completing
the simulation of the coupled bounding sample paths
on the previous interval. Also, it is clear that if the
coupling times are small, then a larger portion of the
sample path will be generated during the simulation
of the bounding sample paths l and u of the subin-
tervals. On the other hand, if the bounding sample
paths on the subintervals do not couple, then we will
collect no data during the simulation of the bounding
paths l and u and the true initial points of the sam-
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ple paths on the subintervals are yet to be determined
by repeating the procedure with new bounding paths.
This discussion suggests that the amount of computer
time spent on generating a sample path of S on the
interval [0, T ] using the time segmentation approach
is an increasing function of the coupling times of the
bounding paths of the system. Therefore, the magni-
tude of these coupling times can be used to measure
the efficiency of the time segmentation approach. In
the following sections we study the behavior of the
coupling times of a class of Markovian queueing net-
works and show that the time segmentation method
can be applied to efficiently simulate sample paths of
such systems under weak conditions.

3 APPLICATION TO QUEUEING
NETWORKS

In this section we show that the time segmentation
approach is applicable to a class of queueing networks
with loss and communication blocking stations. Be-
fore stating the results, we need to introduce our
model. Let S be a network of n queueing stations,
and for i = 1, . . . , n, let si < ∞ and Bi < ∞ de-
note the number of servers and the buffer capac-
ity at station i, respectively, and let Ci = Bi + si.
Suppose the service times at all servers of station i
are independent and exponentially distributed with
rate µi, i = 1, . . . , n, and let the arrivals to stations
1, . . . , n be distributed according to independent Pois-
son processes with rates λ1, . . . , λn, respectively. For
i = 1, . . . , n, suppose pij is the probability that a
job will attempt to join the queue at station j, im-
mediately after a service completion at station i, for
j = 1, . . . , n, and let pi,n+1 be the probability that
a job will leave the system after being served at sta-
tion i. Moreover, suppose each station in the system
is either a loss station (i.e., an arriving job to the
station that finds a full buffer leaves the system im-
mediately), or a communication blocking station (i.e.,
an arriving job to the station that finds a full buffer
leaves the system immediately, unless it is arriving
from another station in the network, in which case it
undergoes another service time at the station of its
most recent service completion and then gets rerouted
using the probabilities {pij}). This model will be used
throughout the rest of this paper.

Let N(t) = (N1(t), . . . , Nn(t)) denote the state of
the system at time t, where Ni(t) is the number of
jobs in station i at time t, for i = 1, . . . , n. It is clear
that {N(t)} is a continuous time Markov chain. It has
been shown in Hoseyni-Nasab and Andradóttir (1996,
1997) that we can generate multiple sample paths of
the Markov chain {N(t)} in parallel using a common
sequence of events as follows: We generate exponen-
tially distributed arrival times and service times with
rates λi and siµi, respectively, i = 1, . . . , n. Upon de-
termining the next scheduled event (i.e., determining
the station at which the event is to be executed and
whether the event is an arrival or a service comple-
tion), we check each sample path to see if the event is
feasible for that sample path. An arrival is a feasible
event at station i in a sample path if the buffer of
station i is not full. Also, a service completion time
generated with rate siµi will be accepted (i.e., con-
sidered to be feasible) or rejected using thinning by
rejection according to the number of busy servers at
station i in each sample path (i.e., a scheduled service
completion at time t in station i is accepted in sample
path A with probability sAi (t)/si, where sAi (t) is the
number of busy servers in station i in sample path
A just prior to time t). If an event is feasible for a
sample path, then we execute the event and update
the state of the system accordingly. If an event is
not feasible for a sample path, we will simply ignore
that event and the state of the system in that sample
path will remain unchanged. This procedure for par-
allel simulation of multiple sample paths of discrete
event systems using a common sequence of potential
events is essentially based on uniformization of the
Markov chain {N(t)} and has been studied also by
Vakili (1991).

Next, we need to show that sample paths of the
system that are simulated in parallel using a com-
mon sequence of potential events satisfy the coupling
properties that are required for the time segmentation
approach to work. In particular, we need to iden-
tify two sample paths whose coupling guarantees the
coupling of all the other sample paths. Let sample
path l be the sample path that starts at the state
where all servers of all stations are idle and sample
path u be the sample path that starts at the state
where the buffers of all stations are full. Let T l,uc
denote the coupling time of sample paths l and u.
Hoseyni-Nasab and Andradóttir (1996, 1997) show
that the sample paths l and u serve as the bound-
ing paths required for the time segmentation method
to work, and that E

{
T l,uc

}
< ∞ (provided that the

Markov chain {N(t)} is irreducible). Therefore, we
can use the procedure described in Section 2 with
sample paths l and u as the bounding paths on each
interval and generate a long sample path of a sys-
tem that satisfies the conditions of our model using
multiple processors.

4 THE BEHAVIOR OF THE COUPLING
TIMES

The efficiency of the time segmentation method is
closely related to the magnitude of the coupling times
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of the system under study. Therefore, in order for
the time segmentation approach to be efficiently ap-
plicable to simulate large systems, we need to ensure
that the coupling time of the system grows reason-
ably slowly with respect to the size of the system.
In this section we discuss the dependence of the ex-
pected coupling times on the number of stations and
the buffer capacities in the network. All the networks
under study satisfy the conditions of our model. The
proofs of the results in this section can be found in
Hoseyni-Nasab and Andradóttir (1997).

The following proposition shows that under cer-
tain conditions, the expected coupling time of the
queueing system S grows no faster than linearly with
respect to the number of stations in the network.

Proposition 4.1 For the Markovian queueing net-
work S, suppose Ci ≤ C < ∞, for i = 1, . . . , n.
Moreover, suppose that the Markov chain {N(t)} is
irreducible and that there exists a real number p such
that 0 < p < 1, and that for every station i at least
one of the following two conditions is satisfied (for all
n ≥ 1):

1. λi ≥ p and λi
siµi(1−pii)+

∑
j 6=i

pjisjµj
≥ p; or

2. µi(1− pii) ≥ p and
µipi,n+1

λi+
∑

j 6=i
pjisjµj

≥ p.

Then the expected coupling time grows at most lin-
early with respect to n.

The conditions of Proposition 4.1 seem to be
rather restrictive as they require the network to have
either significant arrivals or significant departures at
every station. The following result is a generalization
of Proposition 4.1 which shows that the expected cou-
pling time of the system grows no faster than linearly
with respect to the number of stations even if some
stations in the network do not satisfy the conditions
of Proposition 4.1.

Proposition 4.2 Suppose S is a Markovian network
of queues as defined in the statement of Proposition
4.1. Suppose there exists a real number p such that
0 < p < 1, and that for every station i at least one
of the following three conditions is satisfied (for all
n ≥ 1):

1. λi ≥ p and λi
siµi(1−pii)+

∑
j 6=i

pjisjµj
≥ p; or

2. µi(1− pii) ≥ p and
µipi,n+1

λi+
∑

j 6=i
pjisjµj

≥ p; or

3. µi(1− pii) ≥ p and
µi(1−pii)

λi+
∑

j 6=i
pjisjµj

≥ p.

Furthermore, let L be the maximum number of sta-
tions that are visited by a customer and do not satisfy
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Condition 1 or 2 between any two successive service
completions at stations that do satisfy either Condi-
tion 1 or Condition 2, and suppose that L <∞. Then
the expected coupling time grows at most linearly with
respect to n.

The size of the queueing network S depends on both
the number of stations and the buffer capacities of the
network. Propositions 4.1 and 4.2 show that, under
certain conditions, the expected coupling time does
not grow faster than linearly with respect to the num-
ber of stations. The following proposition indicates
that for certain networks of loss stations, a similar
result holds for the behavior of the expected coupling
times with respect to the buffer capacities of the sta-
tions.

Proposition 4.3 Suppose S is a feed-forward net-
work of n loss queueing stations (i.e., pij = 0 for i >
j). For i = 1, . . . , n, let si ≤ s and Ci = Bi+si ≤ C,
where s > 0 is a fixed, positive integer. Then the
following hold:

1. If n = 1 (i.e., there is only one station in the
system) and if either λ1 > 0 or µ1(1−p11) > 0,
then the expected coupling time grows at most
linearly or quadratically with respect to C1, if
λ1 6= s1µ1(1 − p11) or λ1 = s1µ1(1 − p11), re-
spectively.

2. For any n ≥ 1, the expected coupling time of S
grows at most quadratically with respect to C,
provided that either λi > 0 or µi(1 − pii) > 0,
for i = 1, . . . , n.

3. If for every station i either λi > siµi(1 − pii)
or µi(1− pii) > λi +

∑
j 6=i pjisjµj , then the ex-

pected coupling time of S grows at most linearly
with respect to C.

Propositions 4.1-4.3 indicate that for certain queueing
networks, the expected coupling time grows reason-
ably slowly with respect to the size of the network. In
the next section, we present some numerical results
that support the conclusions of Propositions 4.1-4.3.

5 NUMERICAL RESULTS

In this section we study the behavior of the expected
coupling times of networks of queues satisfying our
model (see Section 3) as a function of the size of the
network through a number of numerical experiments.
Our goal is to examine the necessity of the conditions
of Propositions 4.1-4.3.

In Hoseyni-Nasab and Andradóttir (1996) we have
presented numerical results of simulation experiments
with tandem networks of communication blocking
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queueing stations with si = 1, Bi = 10, µi = 1,
pi,i+1 = 1, for i = 1, . . . , n,

λ1 = 1, and λi = 0, for i 6= 1. Note that for
large n, this system does not satisfy the conditions
of Propositions 4.1 and 4.2. The numerical results
given in Hoseyni-Nasab and Andradóttir (1996) sug-
gest that the coupling times of this network grow
faster than linearly with respect to the number of
stations in the network and hence the conditions of
Proposition 4.1 appear to be at least to some extent
necessary for linear growth of the expected coupling
times with respect to the number of stations in the
network. The results given in Hoseyni-Nasab and An-
dradóttir (1996) also confirm that the growth rate
of the coupling times with respect to the number
of stations appears to be linear if either λi > 0 or
µi(1 − pii) > 0, for all i = 1, . . . , n (see Proposition
4.1). To continue the numerical studies presented in
Hoseyni-Nasab and Andradóttir (1996), we have sim-
ulated queueing networks with the same parameters
as the network described above except that λi = 0.1,
for i ∈ {20, 40, 60, 80}, provided that n > i. In each
experiment we simulate the bounding sample paths
using a common sequence of events and obtain con-
fidence intervals for the expected coupling times by
generating 100 independent replications of the two
bounding sample paths. The results of our experi-
ments are presented in Table 1.

Table 1: Dependence of the Expected Coupling Times
of Tandem Networks of Communication Blocking Sta-
tions on the Number of Stations in the System

Number of Coupling Times
Stations, n (95% Confidence Interval)

1 34.63 (± 3.33)
2 67.39 (± 5.98)
5 169.30 (± 13.96)
10 487.51 (± 36.34)
20 1,249.09 (± 89.68)
40 1,366.08 (± 93.59)
60 1,277.05 (± 80.69)
80 1,333.19 (± 79.97)
100 1,320.97 (± 90.31)

The results presented in Table 1 suggest that the
expected coupling times do not appear to grow lin-
early with respect to the number of stations in the
system for n ≤ 20. However, for n > 20 the growth
rate appears to be sublinear. The results clearly agree
with the conclusion of Proposition 4.2.

Our next set of numerical results investigates the
behavior of the expected coupling times with respect
to the buffer capacities in the system. We have sim-
ulated tandem queueing networks of n = 5 stations,
with si = 1, µi = 1, pi,i+1 = 1, for i = 1, . . . , 5,
λ1 = 1, λi = 0, for i = 2, . . . , 5, and Bi = B ∈
{1, 2, 5, 10, 20, 40, 60, 80, 100}, for i = 1, . . . , 5. The
experiments have been conducted for both systems
of communication blocking stations and systems of
loss stations. Again, the confidence intervals are ob-
tained by simulating 100 independent replications of
the bounding sample paths. Note that these sys-
tems do not satisfy the conditions of part 3 of Propo-
sition 4.3, because for all i ∈ {1, . . . , 5}, neither
λi > siµi(1−pii) nor µi(1−pii) > λi+

∑
j 6=i pjisjµj .

The results are presented in Tables 2 and 3.

Table 2: Dependence of the Expected Coupling Times
of Tandem Networks of Communication Blocking Sta-
tions on the Buffer Capacities in the System

Buffer Coupling Times
Capacity, B (95% Confidence Interval)

1 14.77 (± 1.21)
2 25.55 (± 2.05)
5 70.66 (± 5.02)
10 174.23 (± 12.97)
20 575.62 (± 39.74)
40 2,027.81 (± 159.98)
60 4,347.95 (± 344.66)
80 7,905.56 (± 611.16)
100 11,954.75 (± 984.09)

The numerical results presented in Tables 2 and
3 indicate that the growth rates of the expected cou-
pling times of the networks under study appear to be
superlinear with respect to the buffer capacities. This
suggests that the conditions of part 3 of Proposition
4.3 are to some extent necessary for the expected cou-
pling times to grow linearly with respect to the buffer
capacities. More numerical experiments, in addition
to analytical studies, are required to determine the
growth rates of the expected coupling times with re-
spect to the size of the system for systems that do
not satisfy the conditions of Propositions 4.1-4.3.

6 SUMMARY AND CONCLUDING
REMARKS

This paper is concerned with the time segmentation
method for parallel simulation of discrete event sys-
tems. We discuss how the expected coupling time of
the system under study can be used to evaluate the ef-
ficiency of the method and present a number of results
aiming at understanding the behavior of the expected
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Table 3: Dependence of the Expected Coupling Times
of Tandem Networks of Loss Stations on the Buffer
Capacities in the System

Buffer Coupling Times
Capacity, B (95% Confidence Interval)

1 14.77 (± 1.21)
2 21.85 (± 1.58)
5 30.72 (± 1.73)
10 85.80 (± 5.38)
20 316.65 (± 18.02)
40 1,029.29 (± 54.14)
60 2,508.57 (± 134.00)
80 3,928.49 (± 239.68)
100 6,773.52 (± 401.04)

coupling times for a class of Markovian queueing net-
works. We show that, under certain conditions, the
expected coupling times grow linearly with respect to
the size of the network (i.e., the number of stations
and buffer capacities of the network) and examine
the conditions of our results through a number of nu-
merical examples. Further studies of the extent of
applicability and efficiency of the time segmentation
method are subjects of our current research.
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