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ABSTRACT

An efficient “Simulation Optimization” technique is
developed to solve system design problems which can
not be expressed in explicit analytical or mathematical
models.  In particular, we explore a new paradigm called
the “Reverse-Simulation optimization method” which is
quite different from current simulation optimization
methods in the literature. This paper focuses on the
method of on-line determination of steady-state, which is
a very important issue in Reverse-Simulation
optimization, and the construction of a Reverse-
Simulation algorithm with expert systems.

The proposed algorithm finds the steady-state of a
system and an optimal state. The algorithm employs the
Lyapunov exponent of Chaos theory to determine both
the steady-state and optimal state of a system.

1  INTRODUCTION

Modern complex real world systems often can be
modeled as discrete event systems (DES). These systems
are typically driven by the occurrence of discrete events
and their state changes over time. In order to measure the
complex interactions of such discrete events, DES are
usually evaluated either via deterministic approximation
techniques or stochastic simulation.

Simulation modeling has been widely used to analyze
complex stochastic systems and compute performance
measures, etc. The primary focus of system optimization
in this setting is on the identification of the best values of
controllable parameters. Moreover, it is desirable for
simulation optimization methods to perform simulation
replications with less expensive computing costs.

Simulation optimization is an active research area
which involves optimizing stochastic systems using
various simulation techniques. Simulation optimization
requires the evaluation of a simulation model in the form
of responses to a “What if” question. Recently, the
advancement of computer technologies enables us to
answer to “How to” questions as well.

Comprehensive reviews of the literature on simulation
optimization have been provided by Glynn (1988),
Meketon (1987), Jacobson and Schruben (1989),
Safizadeh (1990), Ho and Cao (1990), and Rubinstein
and Shapiro (1993).  The difficulties facing simulation
optimization methods are as follows (Azadivar 1992).
First, an analytical expression of the objective functions
or the constraints does not exist in the problems.
Second, the objective functions and constraints exhibit
stochastic behaviors of the decision variables.  Third,
running computer simulation programs is much more
expensive than evaluating analytical functions.

In this paper, the Reverse-Simulation method, which
is a single run optimization method, is employed to
remedy the problems outlined above.

The organization of this paper is as follows.  In
Section 2, we describe the concepts and procedures of
Reverse-Simulation.  Sections 3 illustrates a construc-
tive example of the method using the SLAMSYSTEM
language and expert systems.  Section 4 discusses the
problems associated with applying the method to an
M/M/s queueing model.  Section 5 proposes a new
algorithm to solve the problem of the Reverse-
Simulation method outlined in Section 4.  The proposed
algorithm exploits the Lyapunov exponent of chaos
theory.  Efficiency gains of the proposed algorithm are
also presented in this section.  A concluding remark
along with a future research area are given in Section 6.

2  THE REVERSE-SIMULATION METHOD

The Reverse-Simulation method was proposed by Wild
and Pignatiello (1991) for the first time and improved by
Kwanjai and Wild (1992), He, Wild and Griggs (1994),
and Wild and Pignatiello (1994).

The Reverse-Simulation method is a heuristic
procedure which starts with desired performance target
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values or ranges of values and adjusts the system
configuration dynamically to conform to user-defined
performance targets (Wild and Pignatiello 1994).

According to Wild and Pignatiello (1994)’s theory, the
steps of the Reverse-Simulation method can be described
as follows:

Step 1: Input the system objectives along with target
values or ranges of values for performance
measures.

Step 2: Run the Reverse-Simulation until the model
reaches the system configuration where the
model produces satisfying target values.

Step 3: Obtain feasible values for the stable system
configuration through a combining procedure.

Step 4: Begin with the feasible values of the system
configuration in subsequent simulation
experiments to find an optimal or best system
configuration.

In a nutshell, the initial system configurations in
Reverse-Simulation must be provided to satisfy the end-
users’ required target values. The Reverse-Simulation
method is classified into single objective and multiple
objectives. The decision variables are either discrete or
continuous. In this paper, we consider the case of
discrete decision variables under a single objective or
multiple objectives. The classification of Reverse-
Simulation is shown in Figure 1.

It is not a simple task to check whether the simulation
results satisfy the system’s target values while Reverse-
Simulation undergoes an optimization process.  Wild and
Pignatiello connected the simulation with expert systems
for on-line checking purpose for the first time. The
Reverse-Simulation method employs a simulation
program to build a bridge with Expert systems. For
illustration, the Reverse-Simulation model used in this
paper is shown in Figure 2.
  Expert Systems                       Simulation Program

          User

Figure 2: Association of Expert Systems and
Simulation Program

A taxonomy to integrate a simulation program and
expert systems is discussed by O’Keefe (1986). Expert
systems that execute and use the results from simulations
(Figure 2) are of increasing interest to knowledge
engineers.  Rather than testing an expert system on a
user in a real environment, simulation modeling is
usually employed.

The expert system considered in this paper is slightly
different from typical expert systems (Wild and
Pignatiello 1994).  The conclusions drawn by an expert
system are not drawn from a direct consultation with
users. They are, instead, drawn from a consultation with
simulation models. That is, the expert system is invoked
by the simulation program while the simulation is
running, and the advice from the expert system is given
to the simulation program dynamically.

We use SLAMSYSTEM to connect the simulation
program to an expert system.  Expert system produc-tion
rules can be easily represented by the “If Then Else”
construct in FORTRAN. This approach is explained in
more detail in the next section using the M/M/s queueing
system.
                                         Single objective
                           1 DV
                                          Multiple objectives
 Discrete or Continuous DV
                                          Single objective per decision variable
                           2 or more DV
                                          Multiple objectives per decision variable
 DV : decision variable

Figure 1: The Classification of the Reverse-Simulation Method
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3 CONNECTION OF EXPERT SYSTEMS AND
THE SIMULATION PROGRAM

Consider the M/M/s queueing model (FIFO discipline)
that is shown in Figure 3.

For our explaining purpose, we assign numerical
values to the parameters.

The arrival rate λ1  is set to 6 and λ2  is set to 12; the
service rate µ1  is set to 30 and µ2  is set to 2. The
number of servers at station 1 is set to 2. We suppose
that the buffer space is infinite. Then, we want to know
the optimal number of servers at station 2 for the given
objective function. We also suppose that no time is
needed for moving from the first service line to the
second service line.  In this example, we assume that the
time spent in the second service line must be less than 10
minutes. This M/M/s queueing model is shown in Figure
4 using the SLAMSYSTEM network model.

Areas [1] and [2] of Figure 4 show where the expert
system checks the constraint. Area [3] is where the
stopping conditions are checked. The expert system rules
of area [3] are shown in Table 1. The expert system rules
of area [2] that a part exits the system are similar to those
given in Table 1. Only RULE 2 differs from Table 1.
The rule set for RULE 2 is shown in Table 2.

µ1 µ2

λ1

λ2

Figure 3: M/M/s Tandem Queueing Model

[1]

[2] [3]

Figure 4: SLAMSYSTEM Network Model
Table 1: The Rule Set of the Expert System

Table 2: The End Rule Sets of Expert System

4  PROBLEM OF THE REVERSE-SIMULATION
METHOD

In sections 2 and 3, we discussed the concept of
Reverse-Simulation and introduced modeling proce-
dures and methods of the M/M/s queueing model. We
made  an experiment with  this model with the initial

IF There is an idle server
associated with queue 2, and
the average waiting time in
queue 2 is less than 0,

THEN Remove a part from queue 2
to begin processing with
resource 2.

RULE 1

ELSE Go to Rule 2.
IF There is not an available

server, and the average
waiting time in queue is
greater than 10,

THEN Server S=S+1 and continue
the simulation.

RULE 2

ELSE Go to Rule 3.
IF There are 2 or more servers

and the average waiting time
in queue 2 is less than 0,

THEN Server S=S-1 and continue
the simulation.

RULE 3

ELSE Go to Rule 4.
IF Average waiting time in

queue 2 is greater than or
equal to 0 and less than or
equal to 10,

THEN Stop the simulation and
report output file.

RULE 4

ELSE Inform the user about
problems.

IF There is not an idle server,
and the average waiting time
in queue 2 is greater than 10,
and the number of parts in
queue 2 is greater than 1,

THEN Server S=S+1 and continue
the simulation.

RULE 2

ELSE Go to Rule 3.
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Tim e

The trend of resource

The continuous trend of variable value

Convergence
interval

The selected point of current
detection algorithms

The selected point of resource
in steady state

Invalid data

Figure 5: Variable and Resource in Steady-State
number of servers as 1 which is chosen arbitrary. The
theoretical number of servers from Little’s formula
(1961) that guarantees that the average waiting time in
queue(2) is less than or equal to 10 is 11. Also the
theoretical average waiting time in queue(2) is 6.45705.
To satisfy the given constraint, therefore, the number of
servers has to be at least greater than or equal to 11.
Table 3 gives the experimental results for the M/M/s
queueing model without using improved algorithms.

Table 3: The Results of Reverse-Simulation

AWTQ(2): Obtained average waiting times in
queue(2)

Value in ( ): Values from experiment
Utilization: observed values of servers

Table 3 contains the observed values when the M/M/s
system satisfies the given constraint; i.e., the average
waiting time in queue(2) is less than or equal to 10
minutes. The obtained number of servers is scattered and
none of the values satisfies the theoretical value. If we
replicate n times, in the worst case, the number of
decision variable values is n. Therefore, there is room for
improving the efficiency of the Reverse-Simulation
method.

Replication # AWTQ(2) Utilization
1 3.080 3(2.4526)
2 0.477 4(3.0584)
3 0.366 2(1.6179)
4 0.727 3(2.1643)
5 0.218 1(0.9036)
6 0.544 3(2.5796)
7 2.227 3(2.0762)
8 0.328 3(2.6860)
9 0.260 2(1.5827)

10 0.351 3(2.1654)
5 ALGORITHM

Before describing the algorithm, we must know the
different usage of steady-state between the Reverse-
Simulation and the conventional simulation methods.
The conventional simulation method eliminates data that
include noise and analyzes the system with modular
data. The Reverse-Simulation method uses steady-state
to search for the number of servers that satisfies the
given constraint. Consequently, we can use "hard logic"
for detecting steady-state in Reverse-Simulation to
eliminate noisy data. Also, "soft logic" can be used to
deal with the data containing a trace of noise properties.
Conventional steady-state detection methods usually
process the gathered data until convergence is reached to
a fixed area or a constant value. Figure 5 is an example
illustrating the need for steady-state detection.

The observed values from Reverse-Simulation are
integer number of resources, e.g., server, facility, and
parts that satisfy objective values or intervals. In Figure
5, since the number of resources is changed with +1, 0,
and -1, the data still includes some noises in the same
resource value. The proposed algorithm in this paper has
the following property to capture the changes in integer
level. The conditions of algorithm at the starting point
are weak. If the conditions of steady-state and optimal
state are not satisfied, we modify the conditions.

5.1 Detection Algorithm of Steady-State and
Optimal State

We need two different algorithms for detecting steady-
state and optimal state. The first one is to detect the
steady-state. A detection algorithm for steady-state in
DES usually deals with stochastic factors. It should
provide  more  accurate values despite the presence of
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very large random noise. The second one is to find the
optimal state after the steady-state has been reached.  We
call this algorithm an “Optimal algorithm.” So a specific
mechanism in designing an optimal algorithm is needed.
Here, the “Stopping rule,” which plays an important role
in the design of optimal algorithms, is analyzed for
possible use. In general all the stopping rules can be
divided into three categories as shown below:

In problems in which gradients ∆f can be obtained, the
following stopping rule is used: |∆f| < ε.

For cases where the gradient does not exist or whose
value cannot be obtained, there are two sub-categories.

(a) The difference between two successive objective
function values is used as the stopping rule:    |fn+1 -
fn| < ε.  If we use this stopping rule in the Reverse-
Simulation method, the simulation stops when the
constraints are not satisfied because the difference in
the objective values converges to ε and the
simulation system is not in optimal state. This
stopping rule, therefore, cannot be used in the
Reverse-Simulation method.

(b) The difference between the values of two successive
variables is used as the stopping rule: |Xn+1 - Xn|< ε.

 
In general, three kinds of errors may occur. First, the

algorithm stops earlier than it should before the true
optimal point is found. Second, the target values
fluctuate in the neighborhood of an optimal point forcing
the algorithm to continue according to this stopping rule.
Third, there are no general decision methods for constant
ε.

To remedy the above problems, we propose to use the
Lyapunov exponent of chaos theory and define a
tentative steady-state. We then search for the optimal
state. If the steady-state and optimal state are satisfied
simultaneously, the simulation can be made to stop.
Otherwise, the detection algorithm of the steady-state
and the optimal state is repeated. A more detailed
description of the algorithm is as follows.

The calculation of the stopping value ε can be done
automatically if we use the Lyapunov exponent of chaos
theory (Oh 1996).  The Lyapunov exponent function,
λi , is described by Equation (1).

where xi :  value of i-th output data
       n  :   run length

We define the state to be optimal  when the obtained
data in Equation (1) satisfies the specified tolerance
value while simultaneously the constraints are satisfied.

i = 1, 2, ... , (n-1),         (1)λ i
i

i

x

x
= +l o g  ,2

1   
However, a state that is optimal for the first time does
not guarantee an acceptable efficiency, so we must set a
threshold for an optimal state that satisfies the
constraints. Therefore, the steady-state found when
Equation (1) is satisfied for the first time is regarded as a
tentative steady-state. Under the tentative steady-state
condition, if an obtained objective value or interval does
not satisfy the constraints within a reasonable threshold,
the algorithm continuously narrows down the conditions.
The algorithm that reflects such a situation regarding
steady-state and optimal state is as follows.

Step 0: Set the tolerance of λi , ALL_BET, to
log ( _ )2 1 ± TOLERANCE VALUE  and set the
decision number of steady-state to
SS_NUM←1.
Initialize check variables. ALL_NUM� 0,
POS_NUM←0,
NEG_NUM←0,
OBJ_NUM←0.

Step 1: If ALL_BET is satisfied, ALL=ALL+1.
Otherwise, reinitialize ALL_NUM←0.

Step 2: If ALL_BET is greater than or equal to 0,
update POS_NUM=POS_NUM+1.
Otherwise, reinitialize POS_NUM←0.
If ALL_BET is less than 0, update
NEG_NUM=NEG_NUM+1.
Otherwise, reinitialize NEG_NUM� 0.
If POS_NUM or NEG_NUM is
DEPENDENCE_NUMBER, reinitialize
ALL_NUM←0,
POS_NUM←0,
NEG_NUM←0 and go to Step 1.

Step 3: If ALL_NUM is equal to SS_NUM, declare as
steady-state.

Step 3-1: If a given constraint is not satisfied, reinitialize
OBJ_NUM←0,
SS_NUM=SS_NUM+UPDATE_NUMBER
and go to Step 1.

Step 3-2: If a given constraint is satisfied, update
OBJ_NUM=OBJ_NUM+1.

Step 4: If SS_NUM is LIMIT_NUMBER, stop the
simulation.

Step 5: If OBJ_NUM is SATISFACTION_NUMBER,
declare it as optimal state and stop the
simulation.

       Otherwise, go to Step 1.

5.2 Settings for Experimentation

In this section,  we describe the choice of the variables
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including TOLERANCE_VALUE, DEPENDENCE_
NUMBER, UPDATE_NUMBER, LIMIT_NUMBER,
and SATISFACTION_NUMBER.   To calculate the
tolerance of the Lyapunov exponent, λi , Oh (1996)
tested the use of various experimental designs with an
M/M/s model, inventory model, FMS model, etc. The
results of the experimentation revealed that an
alternative with tolerance of ± 1.5% guarantees
efficiency in many ways; relative bias, estimated relative
half-width, covariance, and run length. We adopt his
result as shown in Figure 6. So, the
TOLERANCE_VALUE is set to 0.015.

If the system is in steady-state, the change rate of the
Lyapunov exponent must not have any trend because the
characteristic of the system converges to a distribution.
Based on the results from Oh (1996), a case of two times
that of the current output data showed better efficiency
than others.  So, the following equation is used to
calculate the change-rate measure.

Since the value of p is 48 from Equation (2), the

                         Upper bound

         + 1.5%

                          

λi
i

i

x

x
= +log 2

1

         - 1.5%

                         Lower bound

Figure 6:  The Tolerance of λi

x x

p

p
p= +

=

=
+

≅

( . )

log

log( . )

1 0 015

2

2

1 0 015
48

0

(1 + 0.015) p

(2)
Lyapunov exponent, λi , must not be between positive or
negative 48. Thus the DEPENDENCE_NUMBER is
set to 48. The UPDATE_NUMBER and SATISFA-
CTION_ NUMBER are set to 49 each.

During the simulation run, if the constraint is not
satisfied, the simulation is continued. Therefore, we must
provide the stopping time when the satisfaction
conditions can not be met. In such a case, Oh (1996)
tested the steady-state condition of the Lyapunov
exponent. The decision condition for steady-state was
tested using a reasonable number of data sets such as
200, 300, 400, and 500. The results show that the use of
500 sampled data sets guarantees an acceptable
efficiency in relative bias, estimated relative half-width,
covariance, and run length. So, LIMIT_NUMBER is set
to 540.

5.3  Numerical Examples Using Proposed Algorithm

According to the proposed algorithm, we replicate the
Reverse-Simulation for 10 times using the M/M/s
queueing model. The results are shown in Table 4.
During the simulation runs, we used common random
numbers for accurate comparisons. Also we tested the
algorithm with various initial number of servers, 1, 2, 3,
10, and 15, to observe the effects for the performance
measures.

Table 4 shows that if we change the initial number of
servers, no difference is observed and the average
utilization of servers is uniformly changed from 8.1049
to 10.9506. Also, all of the obtained values satisfy the
target objective value. In this example, the selected
numbers of servers are 9, 10, and 11.

If the stochastic properties of the simulation model are
not involved, the selected number of servers converges
to a fixed, unknown value. The experimental results
using the proposed algorithm also indicated the presence
of small noise. The optimal theoretical number
S: The initial number of servers,  #: Replication number
OOV: Obtained Objective Value, OAU: Obtained Average Utilization

1 2 3 10 15     S
# OOV OAU OOV OAU OOV OAU OOV OAU OOV OAU
1 1.611 9.3155 0.823 8.9760 0.761 9.3432 1.414 8.9453 0.101 8.4535
2 1.043 9.3843 3.865 10.601 0.856 10.385 1.078 10.257 0.018 9.5696
3 1.212 8.4143 0.679 9.4279 1.049 10.580 0.516 8.5241 0.124 10.503
4 0.489 10.408 1.416 9.0044 0.572 9.0122 0.545 8.2070 0.027 9.2758
5 0.671 8.4389 0.781 10.143 1.327 9.1698 0.139 10.241 0.019 8.3517
6 1.390 8.1173 1.179 9.0523 1.889 8.7351 1.483 8.2442 0.028 9.8120
7 4.082 8.2988 0.420 9.5094 1.562 10.243 3.029 8.3537 0.009 10.193
8 1.061 8.1369 0.754 8.9360 1.064 8.9680 0.949 8.7845 0.017 8.8433

Table 4: The Results of Reverse-Simulation Optimization for a Single Objective
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of  servers is determined  to be 11 and  the proposed
algorithm is found to be effective in searching for the
number of servers.

6  CONCLUSIONS AND FUTURE RESEARCH

In this paper, we introduce the Reverse-Simulation
method that satisfies a given constraint in a single
simulation run. The problems associated with the method
are also identified. We propose an algorithm to solve the
problem of the Reverse-Simulation method using an
M/M/s queueing model. The proposed method is based
on the Lyapunov exponent of chaos theory. It is
partitioned into two parts with one seeking the steady-
state and the other, the optimal state. The proposed
algorithm shows that the obtained number of servers
corresponds to the theoretical value.
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