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ABSTRACT

Descriptive Sampling (DS), a Monte Carlo sampling
technique based on a deterministic selection of the input
values and their random permutation, represents a deep
conceptual change on how to carry out a Monte Carlo
application. Abandoning the paradigm that a random
selection of sample values would be necessary in order
to describe random behavior, DS is a rather polemical
idea. An interesting issue related to DS are the
similarities between it and Latin Hypercube Sampling
(LHS) to be discussed in this paper. After a brief
description of both methods, it is shown how close DS
and LHS are. As such, DS can be seen as a limiting case
of LHS and also as an  improvement over it. An
experiment and a set of empirical results illustrating the
relationship between DS and LHS are also presented.

1 INTRODUCTION

Proposed as an alternative approach to Monte Carlo
simulation, Descriptive Sampling - DS - (Saliby,1980
and 1990) is based on a fully deterministic selection of
the input sample values and their random permutation.
As such, DS avoids set variability of the input values and
leads to more precise simulation estimates. However,
since DS is based on a non-random selection of input
sample values, it also represents an important conceptual
change on how to sample in any Monte Carlo
application. The DS proposal questions the paradigm
that a random selection of sample values would be
necessary in order to describe random behavior, stating
that a fully deterministic selection of such values would
be more appropriate. The usefulness of DS was
confirmed by several comparisons already carried out
(Saliby, 1989 and 1990), showing that the estimates it
produces are, in principle, unbiased and with lower
variance than the classical use of Simple Random
Sampling.

DS is justified by the fact that in any Monte Carlo
application, the sampled distribution must be assumed
known in advance. As such, the sampling context is not
inferential, where one wants to acquire information about
a population but descriptive, where the purpose is just to
describe an information already known (the assumed
probability distribution).

In spite of some theoretical results already available,
DS still lacks an adequate theoretical development. One
way towards this goal is to back this development over
the theory already available for Latin Hypercube
Sampling (LHS) which, as will be shown here, is rather
similar to DS and, as such, presents the same kind of
challenges for the supporting theory. Like DS, LHS is
based on a highly controlled selection of the input values
and their random permutation. The unique difference
between both methods is that, unlike DS, LHS still
preserves a minimum random variability on the sample
values selection, which is completely eliminated with
DS.

2 DESCRIPTIVE SAMPLING

This section presents a basic introduction to the idea of
DS. A more extensive description is given in papers by
Saliby (1990) and Saliby and Paul (1993). Descriptive
sampling was proposed in order to avoid the set
variability in simulation studies (Saliby, 1980). When
using the standard Simple Random Sampling (SRS) or
Monte Carlo approach, two kinds of variation are present
in a randomly generated sample - one related to the set of
values and the other to their sequence. But, of these two
kinds of variability, only the sequence variability is
really inevitable, while the set variability is, according to
the author, in fact unnecessary. Symbolically, the two
sampling methods can be represented as

Simple random sampling
=

random set x random sequence,
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whilst

Descriptive sampling
=

deterministic set x random sequence.

The only additional requirement to use DS instead of
SRS is to know, in advance, the input sample size,
which, as stressed in Saliby and Paul (1993), must be
related to a full simulation run. Once the sample size is
known, at least approximately, the set values are defined
for each input random variable Xj, j=1,..,k, using the
inverse transform method, so that

xdj,i = F-1[(i-0.5)/nj)], i=1,.., nj, j=1,..,k    (1)

where
F-1(R) , R ∈ (0,1)

is the inverse transform for the particular input
distribution.

Although in some applications the sample size may be
the same for all input variables, there are cases where
different nj applies for different inputs.

Also, when the inverse distribution is not available,
numerical or functional approximations can be used,
like, for example, the Ramberg and Schmeiser (1972)
approximation for the inverse Normal distribution.

Completing the DS generation process, each of the k
sets of input values is used in a random sequence in each
simulation run. Now, unlike with SRS, set values are the
same for all replicated runs in a simulation experiment.
This random shuffling process is easily accomplished by
sampling without replacement the descriptive set of
values (Saliby,1990).

Undoubtedly, the main issue concerning DS is the fact
that it follows from the assertion that, in any Monte
Carlo application, instead of being draw at random,
sample values should be carefully chosen in order to
achieve the closest possible fit with the represented
distribution. This follows from another assertion: that
randomness in Monte Carlo sampling is essentially a
sequence feature, thus not being improved by a random
selection of the input sample values. Although surprising
at first sight, the idea of controlling the input values is
being widely used nowadays, almost to the same extent
as imposed with DS. This is the case of Latin Hypercube
Sampling, which turns out to be a very close idea to DS.

3 LATIN HYPERCUBE SAMPLING

A contemporary development to DS, Latin Hypercube
Sampling (McKay et al. 1979) was suggested as a
Variance Reduction Technique, but also seen as a
screening technique, in which the selection of sample
values is highly controlled, although still letting them to
vary. The basis of LHS is a full stratification of the
sampled distribution with a random selection inside each
stratum. Like with DS, sample values are randomly
shuffled among different variables.

Using LHS, an input sample will be also generated
based on the inverse transform method, and given by

xhj,i = F-1[(i-1+Ri)/nj)], i=1,..,nj, j=1,..,k ,      (2)

where Ri stands for an independent random uniform on
[0,1] , i=1,.., nj , and, like with DS,     F-1(R) , R ∈ (0,1)
is the inverse transform for the particular input
distribution.

After the original paper (McKay et al. 1979) where it
was proposed, LHS has been widely used both in
engineering in what some authors call deterministic
simulation for computer experimentation as well as in
risk analysis. Both situations can be seen as terminating
simulations in which a set of k input variables generates
a set of r output variables. Among the main theoretical
results about LHS, one is that LHS estimates are
unbiased (McKay et al. 1979) and another that the
estimates variance is asymptotically lower than with
simple random sampling (Stein, 1987). Further
developments were also presented by Iman and Conover
(1980 and 1982), Owen (1992), Iman and Helton (1991)
and Loh (1996).

4 CLOSENESS BETWEEN DS AND LHS

Since both DS and LHS are based on a random
permutation of the input values, the only difference
between both methods relies on how those values are
selected inside each of the n stratum. As seen from (1)
and (2) above, with both DS and LHS, a random
sequence or permutation is defined for the input values.
Assuming for simplicity that nj = n,  j=1,.., k, this
permutation can be defined as

P = (P1 , P2 , … , Pk)

where Pj = (pj1, pj2, … , pjn)  defines a random
permutation of (1, 2, … , n) for variable Xj, j=1,.., k.

Geometrically, P defines a particular choice of n k-
dimensional minicubes of size n-k in the unitary k-
hypercube in which each input value stratum appears
once and only once, thus leading to a sort of latin design.
Given P and using DS, the centre of each of the n
minicubes is deterministically chosen, while, when using
LHS for the same P, a point is still randomly draw inside
each of the same set of n minicubes.

Being Y a general simulation estimate, YD a DS
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estimate and YL a LHS estimate, conditioning Y on the
(n!)k equally likely sequences for the k input values, it
follows that

Var(Y) = VarSEQ{E[Y/SEQ]} + ESEQ{Var(Y/SEQ)},

or, simply,

Var(Y) =  σ2
SEQ  +  σ2

R ,

where the first term (σ2
SEQ) accounts for the variance

component of Y due to the sequence variability, while
the second term (σ2

R) reflects the remaining variance
component of Y due the set variability conditioned on
the (n!)k sequences.

Now, based on several empirical studies and some
theoretical results, we observed that:

• no matter the sampling method (SRS, LHS or DS),
σ2

SEQ is always of order o(n-1), while the second
component (σ2

R) will depend upon the sampling
method;

• for the standard Simple Random Sampling (SRS)
method, σ2

R is also of order o(n-1) and usually the
dominating term;

• using LHS, the residual term σ2
R will be of order

o(n-a), with a > 2. This implies that, for LHS, σ2
R

will decrease faster than the first term, so that there
will be a sample size n after which the first term will
dominate the estimate variance Var(YL). This is
equivalent to say that, for LHS,

σ2
R/Var(YL) Õ 0 , as n increases;

• since there is no set variability left when using DS
(σ2

R = 0),

Var(YD) = VarSEQ{E[YD/SEQ]} = Var{YD(SEQ);

• even for moderate n values,

E[YL/SEQ] ~ YD(SEQ),

so that

VarSEQ{E[YL/SEQ]} ~ Var(YD);

•  finally, as n increases, LHS becomes practically
equivalent to DS.

Some of those properties are illustrated by the
following experiment and results.
5 EXPERIMENT AND RESULTS

Although we could have used any simulation problem to
compare DS with LHS, we preferred to use a simple
problem for such comparison: the study of the response
variable

D = (X2 + Y2)1/2,

where both X and Y are independent standard normal
distributed random variables. Our purpose was to
estimate µD. Incidentally, we have that µD =1.2533 and
that σD = 0.4292.

Now, since both DS and LHS are based on the same
kind of stratification of the input distributions and on the
use of the input values in a random order, we first
sampled a random permutation P = (P1 , P2 , … , Pk) for
scrambling the input values. Then, for each permutation,
we carried out a Descriptive Sampling run and NL LHS
runs, so that all LHS runs were based on the same
permutation P as the DS run. This procedure was
repeated NP times, once for each different random
permutation. As such, we were able to isolate the
sequence generation from the set generation in LHS and
also to have the DS run as a sort of control group.

In this experimental design, each sampled sequence
(permutation P) represented a factor level randomly
sampled, for which NL independent LHS runs were
conducted. As such, we carried out a one factor
(sequence) random effects experiment, from which we
could estimate the variance components (σ2

SEQ and σ2
R)

of YL. Thus, for each value of n in
(10,30,50,100,250,500,1000) a full experiment based on
NP = 1000 random permutations, NL=100 LHS runs and
the corresponding DS control run were carried out for
each of the NP permutations. A summary of the results
for the testing problem is presented in table 1.

Table 1. Summary Results for the Testing Problem

n nVar(YD) n Var(YL) nσ2
R σ2

R/σ2
SEQ

10 0.01110 0.01173 0.06342 5.4072

30 0.01149 0.01175 0.01595 1.3574

50 0.01131 0.01153 0.00853 0.7398

100 0.01162 0.01171 0.00350 0.2989

250 0.01203 0.01211 0.00112 0.0925

500 0.01160 0.01170 0.00046 0.0393

1000 0.01144 0.01149 0.00020 0.0174

From the above results, we notice that:

• Var(YD) always remained very close to Var(YL) =
Var(E(YL/SEQ)) and both were of order o(n-1);
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• As n increases, ratio σ2

R/σ2
SEQ decreases. Thus, with

LHS, the set variability contribution to Var(YL)
decreases with n, so that, as n gets larger, the
sequence variability becomes the dominant variance
component of YL. In other words, LHS turns out to
be equivalent to DS as n  increases!

Finally, in order to check the closeness between DS
and LHS, we computed for each experiment the Pearson
correlation coefficient between YD and the estimated
value of E(YL/SEQ). In this case, even for n values as
low as n = 10, correlation coefficients were above 0.99
(NP=1000 cases), thus confirming that

E(YL/SEQ)  ~  YD(SEQ) .

6 CONCLUSIONS

Although a simple example was used to evaluate the
variance components of LHS estimates, in terms of the
sequence x set decomposition, the same kind of result is
expected for any other simulation problem. Of course,
the benefits from using DS or LHS may vary from
problem to problem, but the gain achieved with DS will
always establish the upper limit for the LHS gain.

As such, DS represents an improvement over LHS,
being more efficient both in statistical terms as well as in
computing terms, since it avoids the unnecessary step of
randomly sample the set values.
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