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ABSTRACT

Given a stationary simulation process with unknown
mean µ , interest frequently lies in, and various methods
exist for, developing estimates and confidence intervals
for µ .  Typically, the sample mean is used as the point
estimate for µ .   It is also useful to estimate the variance
parameter, σ 2,  a measure of sample mean’s precision.
While there are many methods for estimating the
variance parameter for such processes, they usually
assume that the process has reached steady state before
data collection begins.  If this is not the case, then
transient behavior can have a significant impact on the
estimates of µ  and σ 2.

We present empirical evidence which suggests that
transient behavior distorts some variance estimators
much more than others.  Specifically we consider batch-
means estimators and standardized time series based Lp-
norm estimators; and we show that the batch-means
estimators appear to be significantly less robust to bias.

1 INTRODUCTION

Common issues in simulation output data analysis
include estimation of steady-state parameters such as the
mean, construction of confidence intervals for these
parameters, and selection among various alternative
systems.  Given stationary simulation output
Y Y Yn1 2, , ,K , with unknown mean µ , the first step in
output data analysis is to compute the sample mean,

Y n Yn kk

n
≡ −

=∑1

1
,

as an unbiased point estimator for µ .  Additionally, as
interest frequently lies in obtaining confidence intervals
for µ , an estimate is usually required of the variance
parameter,

σ 2 ≡ →∞lim ( ).n nnVar Y

Unfortunately, while there are many methods for
estimating the variance of such processes (Alexopoulos
and Seila 1996, Law and Kelton 1991, Pawlikowski
1990, Wilson 1984, Law 1983, or most simulation texts),
they all assume that the process has reached steady state
before data collection begins (i.e., that Y Y Yn1 2, , ,K  is
stationary).  If this is not the case, then transient behavior
can have a significant impact on estimates of σ 2.   As it
is not a trivial problem to ascertain whether or not a
process is stationary, a number of formal initialization
bias tests have been developed that try to determine if a
process contains an initial transient.  This paper
discusses the impact of initialization bias on variance
estimation, and how initialization bias tests can be used
prior to variance estimation to help avoid obtaining bad
estimates.

Section 2 provides a brief introduction to the two
types of variance estimators that we studied (batch-
means and standardized time series Lp-norm estimators),
while Section 3 gives some motivational background on
initialization bias tests.  Section 4 presents experimental
results from Monte Carlo simulations for several
stochastic processes and bias functions which suggest
that batch-means variance estimators are less robust to
initialization bias (i.e., they produce potentially highly
biased variance estimates in the presence of initialization
bias) than are Lp-norm variance estimators.  Section 5
expounds upon these issues and provides conclusions
and recommendations for future research.

2 BACKGROUND

We evaluate and compare the impact of initialization
bias on batch-means and Lp-norm variance estimators.
As batch-means estimation is probably the most
commonly used variance estimation technique, and is
described in most simulation texts, we provide limited
background on this technique.  On the other hand, Lp-
norm variance estimators, as developed in Tokol, et al.
(1997), are relatively new and so we give a more
comprehensive review.

When defining both of these estimators, we assume
that the simulation output Y Y Yn1 2, , ,K  has been divided
into b adjacent, nonoverlapping batches, each of length
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m (we also assume that n mb= ); thus, batch i (1 ≤ ≤i b )
consists of the observations ( )Y Yi m im− +1 1 , ,K .  We
introduce the notation

Y l Yl kk

l
≡ −

=∑1

1
,

and

( )Y j Yi j i m kk

j

, ≡ −
− +=∑1

11
,

for 1 ≤ ≤l n , 1 ≤ ≤i b , and 1 ≤ ≤j m .  Note that Yi m,  is

the ith batch mean.

2.1 Batch-Means Variance Estimators

The batch-means estimator, as described almost
everywhere, is defined as

( )
( )

V m

m Y Y

bBM b

n i m
i

b

,

,

=
−

−
=
∑ 2

1

1
.

For a fixed b ≥ 2 , as m → ∞ , it is known that

( )V m
bBM b

b

,   
2
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−

−D σ χ 1
2

1
,

where “ →
D

” denotes convergence in distribution (see
Billingsley 1968) and χb−1

2  represents a random variable
having a χ 2- distribution  with b-1 degrees of freedom.
Hence, under uniform integrability (see Chung 1974),

( )[ ]E V mBM b, ,→  2σ  and one can use ( )V mBM b,  to
estimate σ 2.

2.2 Lp-norm Variance Estimators

Lp-norm variance estimators are based upon standardized
time series (STS) techniques.  The STS from batch i is
defined as

   
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where  ⋅  is the floor function.  Under any of several
possible sets of relatively mild conditions (see Glynn and
Iglehart 1990 or Schruben 1983),

( )( ) ( )( )m Y T W Bi m i m, ,, ,− →µ σ σ σ  
D

1 ,

where ( )W t  [ ( )B t ] is a standard Brownian motion
[bridge] process (cf. Billingsley 1968).
The Lp-norm variance estimates are based on certain
functionals of the STS and the convergence of these
functionals to those of a Brownian bridge process.  Let

( )L m T t T t dtp k i i m
k
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for p > 0 and k = 0,1 be the Lp norms of the time series
from batch i, where
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(Note that when p = ∞ ,  this reduces to the square of the
common sup-norm functional.)  Since

σ σT Bi m,   →
D

,

the continuous mapping theorem (see Theorem 5.1 of
Billingsley 1968) with mapping

( ) ( )h x x x dtk p p
= ∫ sgn ,

0

1
2

can be applied to { }σ Ti m,  to show that
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Let us define

( ) ( )L m
b
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If we assume that the Lp k i, , ’s are independent and that
( ){ }h Ti mσ ,  are uniformly integrable, then we have that

as m → ∞ ,

( )[ ] [ ]E L m E L cp k b p k p k, , , ,  → ≡ σ 2 ,

where the cp k,  values, as generated in Tokol, et al.
(1997), are provided in Table 1.  Thus,

( ) ( )V m L m cp k b p k b p k, , , , ,≡

is an asymptotically unbiased estimate of the variance
parameter of the original time series.  The performance
of (and a much more detailed background on) Lp-norm
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estimators for certain (p,k) pairs is studied in Goldsman,
et al. (1997).  In particular, the (p,k) = (1,1) case
corresponds to Schruben’s (1983) area estimator, and the
(p,k) = (2,0) case is the Cramér-von Mises estimator of
Goldsman, Kang, and Seila (1997).

Table 1:  Lp-Norm cp,k Values

p cp,0 cp,1

1 0.11667 0.08333
2 0.16667 0.1432
3 0.2084 0.1912
5 0.2754 0.2645

10 0.3848 0.3799
80 0.6807 0.6805
∞ 0.82247

3 INITIALIZATION BIAS TESTS

When constructing either of the variance estimators
discussed in Section 2, one assumes that the simulation
output does not contain a “significant” initial transient.
Although transient behavior is not always easy to detect
in simulation output, it can seriously impact the center
and the length (and hence the validity) of confidence
intervals for µ  and σ 2.   Most of the methods for dealing
with this dilemma (Ockerman and Goldsman 1996,
Goldsman, Schruben, and Swain 1994, Chance 1993,
Wilson and Pritsker 1978) involve either specifying
initial conditions, providing truncation rules, and/or
testing for initialization bias.

In some cases, enough is understood about a system to
be able to start the simulation in a condition that is
representative of steady state.  If possible, this is the
desired approach.  Otherwise, the simulation is usually
started in an arbitrary condition and the output data from
an initial time period are discarded (i.e., not used in the
output analysis process).  This initial time period should
extend until the simulation has reached a condition that is
representative of steady state; but it is not always
obvious how long a simulation must run before it reaches
steady state.  Rules for determining what portion of the
initial data to throw out are called truncation rules
(Glynn and Inglehart 1987, Snell and Schruben 1985,
Heidelberger and Welch 1983, Kelton and Law 1983).

After we believe that the transient portion of the data
has been removed, and the remaining process is deemed
stationary, then an initialization bias test can be
performed to determine if, statistically, this is indeed the
case.  These initialization bias tests are typically
hypothesis tests with null hypothesis, H0 : no
initialization bias present, and alternative hypothesis,
H1 : initialization bias present (Ockerman and Goldsman
1996, Goldsman, Schruben, and Swain 1994,
Vassilacopoulos 1989, Schruben, Singh, and Tierney
1983, Schruben 1982).

Certain initialization bias tests are much more
powerful at detecting bias than others; unfortunately they
also tend to have an increased false alarm rate.  It is not
clear which test should be applied in any given situation
(Cash, et al. 1992).  We show in Section 4 that the choice
of which initialization bias test to use in a given context
should perhaps be linked to the choice of the estimator
that will subsequently be used to estimate the variance.

4 MONTE CARLO EXPERIMENTS

How concerned do we have to be about detecting
initialization bias?  Just how skewed are the various
variance estimators by initialization bias?  We present
results for the batch-means estimator and for the two
“extreme” members of the class of Lp-norm estimators
(i.e., ( )V mb1 1, ,  and ( )V mb∞ , ,0 ).

Tables 2-4 are based on 10,000 Monte Carlo runs and
provide a quantitative feel for the magnitude of the
sensitivity of the batch-means and Lp-norm estimators to
slight nonstationarities.  The tables give estimates of the
expected values of the three variance parameter
estimators for three stochastic processes, five run lengths
(from 64 to 16384), and three batching schemes (4, 8,
and 16 batches).

The three stationary processes considered are:

A step process [STEP], Y jj , , , .. . , = 1 2  where the
Yj ’s are independent and identically distributed
(i.i.d.) ±1, each with probability 0.5.  For this process
σ 2  = 1.

A first-order autoregressive process [AR(1)],
Y Y Z jj j j+ += + =1 1 1 2φ , , , ... ,  where the Z j ’s are
i.i.d. ( )N 0 1 2, − φ  with − < <1 1φ . (We consider φ  =
0.9, in which case σ 2  = 19.)

A first-order moving average process [MA(1)],
Y Z Z jj j j+ += + =1 1 1 2φ , , , ... ,  where the Z j ’s are
i.i.d. ( )N 0 1, . (We consider φ  = -0.9, so that σ 2  =
0.01.)

For each of the stochastic processes, we consider both
a stationary and a nonstationary version.  The stationary
version is generated by initializing the process from the
steady-state distribution.  The nonstationary version is
formed by adding a slight transient-mean function similar
to that in Figure 1 to the stationary process on a point-by-
point basis, i.e., yi = xi + ei where { }xi  is the stationary
stochastic process and { }ei  is the bias function, where

( )e e ni i+ = −1 1 10  and e1 is chosen in such a way that we
can compare results among the three stochastic
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processes.  Specifically, to standardize the amount of
added bias (in order to regulate the bias levels), we use
the artificial measure

( )
k

e e

nn
i

i

n

=
−
−=

∑
2

1 1
,

where e  is the mean of the bias terms and e1  is adjusted
so that kn is a fixed multiple of the process variance.
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Figure 1:  Sample Transient Mean Function

The top entries in each of the tables represent the
estimated expected values of the variance estimates
based on the nonstationary processes, while the bottom
entries (in parentheses) represent the expected values of
the variance estimates obtained from the stationary ones.
Any significant differences between the top and bottom
entries in the tables represent the impact of the initial
transient.

Table 2: Impact of Initialization Bias on Variance
Estimates for a STEP Process*

b Estimator Type n=64 n =256 n =1024 n =4096 n =16384
Lp-Norm (p,k)=(1,1) 1.00 1.01 1.06 1.25 1.98

(0.99) (0.99) (0.99) (1.00) (1.00)
4 Lp-Norm (p=∞) 0.75 0.88 0.96 1.06 1.31

(0.75) (0.88) (0.93) (0.97) (0.98)
Batch Means 1.02 1.03 1.14 1.54 3.15

(1.01) (1.00) (1.00) (1.01) (0.99)

Lp-Norm (p,k)=(1,1) 0.99 1.00 1.01 1.04 1.18
(0.99) (1.00) (1.00) (1.00) (1.00)

8 Lp-Norm (p=∞) 0.63 0.83 0.92 0.97 1.04
(0.63) (0.83) (0.91) (0.96) (0.98)

Batch Means 1.01 1.02 1.08 1.34 2.32
(1.01) (1.00) (1.00) (1.00) (1.00)

Lp-Norm (p,k)=(1,1) 0.94 1.00 1.00 1.01 1.03
(0.94) (1.00) (1.00) (1.00) (1.00)

16 Lp-Norm (p=∞) 0.48 0.75 0.88 0.94 0.98
(0.48) (0.75) (0.88) (0.94) (0.97)

Batch Means 1.01 1.01 1.04 1.17 1.69
(1.01) (1.00) (1.00) (1.00) (1.00)

* Top (bottom) entries for each estimator represent the sample mean of
the variance estimates for a nonstationary (stationary) STEP process.
The true variance for the STEP process is 1.0.  Significant deviations
in the top entries represent the effects of bias.
Table 3: Impact of Initialization Bias on Variance
Estimates for an AR(1) Process*

b Estimator Type n=64 n =256 n =1024 n =4096 n =16384
Lp-Norm (p,k)=(1,1) 3.3 12.8 23.1 43.5 118.0

(2.8) (11.3) (16.9) (18.3) (18.8)
4 Lp-Norm (p=∞) 1.2 5.9 13.2 22.7 44.8

(1.0) (5.5) (11.4) (15.1) (17.0)
Batch Means 8.5 18.9 32.1 72.6 234.0

(7.6) (15.6) (18.4) (18.6) (19.0)

Lp-Norm (p,k)=(1,1) 1.1 6.9 16.0 22.7 37.4
(1.0) (6.6) (14.8) (18.1) (18.6)

8 Lp-Norm (p=∞) 0.4 2.8 9.0 15.0 21.9
(0.3) (2.7) (8.6) (13.6) (16.2)

Batch Means 5.3 15.0 25.9 51.9 151.0
(4.7) (12.9) (17.5) (18.5) (18.9)

Lp-Norm (p,k)=(1,1) 0.3 2.9 11.5 17.7 21.1
(0.3) (2.8) (11.3) (17.0) (18.4)

16 Lp-Norm (p=∞) 0.1 1.1 5.5 11.6 16.0
(0.1) (1.1) (5.5) (11.4) (15.1)

Batch Means 2.9 10.4 20.4 35.7 87.8
(2.7) (9.3) (16.0) (18.2) (18.7)

* Top (bottom) entries for each estimator represent the sample mean of
the variance estimates for a nonstationary (stationary) AR(1) process.
The true variance for the AR(1) process is 19.0.

The sensitivity of the batch-means estimator is clear.
For example, compare the 16-batch variance estimators
for the AR(1) process with length 16384 from Table 3.
The true variance of this AR(1) process is 19, and ideally
the expected value of each of the three variance
estimators should be reasonably close to this figure.  The
batch-means estimator provides the best estimates when
no initialization bias is present (i.e., the average estimate
from batch means is 18.7, while the other estimators
provide average estimates of 15.1 and 18.4).  However,
when bias is introduced, the batch means average
estimate is skewed to 87.7, far beyond the other averages
of 21.1 and 16.0.

Table 4: Impact of Initialization Bias on Variance
Estimates for an MA(1) Process*

b Estimator Type n=64 n =256 n =1024 n =4096 n =16384
Lp-Norm (p,k)=(1,1) 0.344 0.096 0.037 0.040 0.109

(0.343) (0.094) (0.031) (0.015) (0.011)
4 Lp-Norm (p=∞) 0.467 0.183 0.073 0.042 0.050

(0.467) (0.182) (0.070) (0.031) (0.019)
Batch Means 0.152 0.049 0.032 0.066 0.226

(0.151) (0.045) (0.019) (0.012) (0.011)

Lp-Norm (p,k)=(1,1) 0.673 0.180 0.053 0.025 0.031
(0.673) (0.180) (0.052) (0.021) (0.013)

8 Lp-Norm (p=∞) 0.689 0.297 0.113 0.047 0.030
(0.689) (0.297) (0.112) (0.045) (0.023)

Batch Means 0.261 0.075 0.034 0.047 0.144
(0.261) (0.073) (0.026) (0.014) (0.011)

Lp-Norm (p,k)=(1,1) 1.280 0.345 0.095 0.032 0.018
(1.280) (0.345) (0.094) (0.031) (0.015)

16 Lp-Norm (p=∞) 0.891 0.468 0.183 0.070 0.033
(0.891) (0.468) (0.183) (0.070) (0.031)

Batch Means 0.487 0.132 0.044 0.035 0.081
(0.486) (0.130) (0.040) (0.018) (0.012)

* Top (bottom) entries for each estimator represent the sample mean of
the variance estimates for a nonstationary (stationary) MA(1) process.
The true variance for the MA(1) process is 0.01.
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For the STEP and the MA(1) process, the results are
similar.  Thus, for these types of processes and bias
functions, it would appear that the batch-means variance
estimators, while perhaps more effective for truly
stationary processes (note the convergence rates to the
proper values in the tables), are indeed less robust to
transients than the Lp-norm variance estimators.

5 DISCUSSION AND CONCLUSIONS

For these examples, we see that the batch-means
estimator is more sensitive to bias than are the Lp-norm
estimators.  It would seem that this is true because the
batch-means estimators use information between batches
(where this type of bias tends to manifest itself
dramatically), while the Lp-norm estimators only use
information internal to batches (where the bias is
somewhat hidden).  Clearly, we could construct bias
functions with high frequency components, such that the
bias would be hidden when looking across batches and
significant when looking inside batches.  However, in
most real-world applications, the bias tends to be slow
moving and positively correlated as in our examples.

Thus, in practice, the impact of initialization bias on
variance estimates can be significant.  When removing an
initial transient from simulation output, it is important to
keep in mind the eventual variance estimator that will be
used.  If this variance estimator is less robust to
transients, then one should precede variance estimation
with a fairly powerful initialization bias test.  If one does
not want to be concerned with removing the initial
transient, a more robust variance estimator may be
chosen.

We demonstrated that the notion of robustness of a
variance estimator can, in some sense, be characterized.
Further research will be directed toward formalizing this
process so that estimator robustness can be used as a
criterion for evaluating various variance estimators.
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