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of each input parameters on the output vari-
able.

Modellers conduct sensitivity analysis for a num-
ber of reasons including the needs to determine:

(a) which input parameters contribute the most to
output variability and, possibly, require addi-
tional research to strengthen the knowledge base,
thereby reducing output uncertainty;

(b) which parameters are insignificant and can be
eliminated from the final model;

(c) if and which (group of) parameters interact with
each other;

(d) if all observed effects can be physically explained,
when error may be present in a model;

(e) the optimal regions within the parameters space
for use in a subsequent calibration study.

There are many different ways to perform sensi-
tivity analyses in answering these questions but they
may not yield identical results. In this paper we will
be concentrating on item (a) above.

Many authors, when referring to the degree to
which an input parameter affects the model output,
use the terms ‘sensitive’, ‘important’, ‘most influen-
tial’, etc. The methods that will be discussed and
used to perform SA in this paper are called ‘Variance-
based methods’, in that the variability, or uncertainty,
associated with an important input parameter is prop-
agated through the model resulting in a large contri-
bution to the overall output variability.

Methods such as “importance measure” (Iman and
Hora 1990, Saltelli et al. 1993, Homma and Saltelli
1996), or “correlation ratio” (Krzykacz 1990, McKay
1996), are capable of estimating the “main effect”
contribution of each parameter to the output vari-
ance. However, whether a parameter is influential
or not depends also on the interactions and influ-
ences of all the parameters. Derived from quite a
ABSTRACT

This paper is intended to review a number of variance-
based methods used in Sensitivity Analysis (SA) to
ascertain how much a model (numerical or otherwise)
depends on each or some of its input parameters. A
class of variance-based methods (correlation ratio or
importance measure) that is capable of measuring
only the main effect contribution of each input pa-
rameter on the output variance are described briefly.
In addition, two methods (Sobol’ and FAST) that
are capable of computing the so-called “Total Sensi-
tivity Indices” (TSI), which measures a parameter’s
main effect and all the interactions (of any order) in-
volving that parameter, are described in details. An
illustrated example demonstrates that the incorpora-
tion of total effect indices is the only way to perform
a rigorous quantitative sensitivity analysis.

1 INTRODUCTION

Mathematical models are developed to approximate
engineering, physical, environmental, social, and eco-
nomic phenomena of various complexity. Model de-
velopment consists of several logical steps, one of whic-
h should be the determination of parameters which
are most influential on model output. A ‘sensitivity
analysis’ of the input parameters can serve as a guide
to any further use of the model.

In general, SA is conducted by:

(i) defining the model and its input parameters and
output variable(s),

(ii) assigning probability density functions to each
input parameter,

(iii) generating an input matrix through an appro-
priate random sampling method, evaluating the
output, and

(iv) assessing the influences or relative importance
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Figure 1: Graphical Representation of (a) Sensitivity
Indices for the Three Parameters Case and (b) Total
Sensitivity Indices of Parameter A

different setting (see later), Fourier Amplitude Sen-
sitivity Test (FAST) (Cukier et al. 1973, Saltelli and
Bolado 1997, Saltelli et al. 1997) and Sobol’ methods
(1990a, 1993) not only can measure the “main effect”
(or the so-called first order term) they can also com-
pute the so-called “Total Sensitivity Indices” (TSI).
The Total Sensitivity Index of parameter i, denoted
by ST (i), is defined as the sum of all the sensitivity
indices (including all the interaction effects) involv-
ing parameter i (Sobol’ 1990a, Homma and Saltelli
1996). For example, suppose that we only have three
input parameters (A, B and C) in our model. Figure
1 illustrates diagrammatically that the total effect of
parameter A, for instance, on the output is,

TS(A) = S(A) + S(AB) + S(AC) + S(ABC),

where S(A) denotes the so-called first order sensitiv-
ity index for parameter A, S(Aj) denotes the second
order sensitivity index for the parameters A and j
(for j 6= A), i.e. the interaction between parameters
A and j (6= A), and so on.

A set of input parameters can be grouped accord-
ing to their TSI values, for example, parameters with
TSI greater than 0.8 can be regarded as ‘very impor-
tant’, between 0.5 and 0.8 ‘important’, between 0.5
and 0.3 ‘unimportant’, and less than 0.3 ‘irrelevant’.
Figure 2 shows a graphical representation of grouping
a set of parameters. The effectiveness of Sobol’ and
FAST methods is that TSI can be computed with
just one Monte Carlo integral and one set of frequen-
cies, respectively, per parameter.
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Figure 2: Graphical Representation of Grouping a
Set of Input Parameters with the Total Sensitivity
Indices

A brief review of “importance measure” or “cor-
relation ratio”, Sobol’ and FAST methods is given in
Section 3. Then, in Section 5 we present an example
to illustrate the methods described in Section 3 and
in the final section we summarize our conclusions.

2 MODEL AND NOTATION

A mathematical model f(.) is a construction by which
an output or prediction y is determined from a set of
n input parameters, namely y = f(x). Throughout
this chapter we assume a single output is observed
but in a practical problem, multiple outputs could
be encountered via a set of transfer functions, for in-
stance a set of differential equations. Let us assume
also that the vector of input parameters, denoted by
x, is a random vector, characterized by a joint prob-
ability density function p(x) = p(x1, x2, . . . , xn), as-
sumed to be known, even if the xi’s are not actually
random variables. In practice, the parameters are af-
fected by several kinds of heterogeneous uncertainties
which reflect our imperfect knowledge of the system.
In these cases it may be convenient for the purpose
of sensitivity analysis to treat them as random vari-
ables with assumed probability distributions. This
implies that the output Y is also a random variable,
as it is a function of the random vector X, with its
own probability density function (p.d.f.). (Here we
use the convention, except where it is stated other-
wise, that capital letters denote random variables and
small letters correspond to the realizations.)
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Summary statistics of the output, Y , can be com-
puted from the rth moment which is given by

E (Y r) =

∫
Kn

fr(x1, x2, . . . , xn)p(x1, x2, . . . , xn)dx,

(1)
where Kn is the n-dimensional space of the input
parameters. The integral in (1) provides the basis of
computing sensitivity measures of various kind. Note
that the computation of (1) involves the evaluation
of multidimensional integrals.

3 METHODS

The following sub-section gives a brief review of a
class of variance-based methods which is capable of
measuring only the main effect contribution of each
input parameter on the output variance. Then, in the
next two sub-sections, the Sobol’ and FAST methods
which are capable of computing sensitivity measure of
a parameter, which takes into account the interaction
between the parameter and the others parameters,
are described.

3.1 Correlation Ratios or Importance Mea-
sures

In this section we briefly describe a class of variance-
based methods that is based on the estimation of the
following quantity

V arX [E (Y | X)]

V ar(Y )
,  (2)

where Y denotes the output variable, X denotes an
input variable, E (Y | X) denotes the expectation of
Y conditional on a fixed value of X, and the vari-
ance is taken over all possible values of X. McKay
(1995) called the numerator of (2) Variance Con-
ditional Expectation (V CE) and the ratio Correla-
tion Ratio which is derived from the decomposition
of V ar(Y ), namely

V ar(Y ) = V arX [E (Y |x)] +EX (V ar [Y |x]) , (3)

where
V arX [E (Y |x)] =

∫
[E(Y |x)− E(Y )]

2
px(x)dx, EX

(V ar [Y |x]) =
∫ ∫

[y − E(Y |x)]
2
pY |x(y)dypx(x)dx,

and E (Y |x) =
∫
ypY |x(y)dy.

Kendall and Stuart (1979) described the use of (2)
in the nonlinear relationship setting as a parallel to
that of the usual correlation coefficient ρ for linear
relationships between the output and the input pa-
rameters. The same method is described by Krzykacz
(1990) who uses the correlation ratio without an ex-
plicit form for the conditional mean and called the
estimate, “empirical correlation ratio”. By assuming
the input parameters are independent of each other,
Hora and Iman (1989) obtained the following relation

V ar(Y )− E [V ar(Y |xi)] = Ui − [E(Y )]
2

(4)

where

Ui =

∫
[E(Y |xi)]

2 pi(xi)dxi. (5)

and used Ii =
√
Ui − [E(Y )]2 as the importance mea-

sures. The right hand side of (4) is simply V CE, as
defined earlier. This measure was used in the analysis
of fault trees assuming a linear polynomial approx-
imation for the conditional expectation of Y . For
numerical robustness reasons, Iman and Hora (1990)
proposed the following as a measure of the impor-
tance of xi, V arXi [E (logY |Xi)] /V ar [logY ], where
V arXi denotes variance over all possible values of Xi
and E[log(Y )|Xi] is estimated using linear regression.
Saltelli et al. (1993) discussed a modified version of
the Hora and Iman (1989)’ approach which relates
to Krzykacz (1990). The idea of the correlation ra-
tio can be extended to the partial correlation ratio,
paralleling the partial correlation coefficient in linear
models (see McKay 1995 for further details). Rank
transformed versions of the correlation ratio or impor-
tance measures are discussed in McKay and Beckman
(1994) and Homma and Saltelli (1996), respectively.

3.2 Sobol’ Indices

The main idea behind Sobol’ approach for the com-
putation of sensitivity indices is the decomposition
of the function f(x) into summands of increasing di-
mensionality, namely

f (x1, . . . , xn) = f0 +
n∑
i=1

fi(xi) +

n∑
i=1

n∑
j=i+1

fij (xi, xj) + . . .+

f1,2,...,n (x1, . . . , xn) (6)

For (6) to hold f0 must be a constant, and the inte-
grals of every summand over any of its own variables
must be zero, i.e.∫ 1

0

fi1,...,is (xi1 , . . . , xis) dxik = 0, if 1 ≤ k ≤ s (7)

A consequence of (6) and (7) is that all the sum-
mands in (6) are orthogonal, i.e. if (i1, . . . , is) 6=
(j1, . . . , jl), then∫

Kn

fi1,...,isfj1,...,jldx = 0.  (8)
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Since at least one of the indices will not be repeated,
the corresponding integral will vanish due to (7). An-
other consequence is that f0 =

∫
Kn f(x)dx. Sobol’

(1990a) showed that the decomposition (6) is unique
and that all the terms in (6) can be evaluated via
multidimensional integrals, namely fi(xi) = −f0 +∫ 1

0
. . .
∫ 1

0
f(x)dx∼i and fij (xi, xj) = −f0 − fi(xi) −

fj(xj)+
∫ 1

0
. . .
∫ 1

0
f(x)dx∼{ij} with the convention that∫

Kn dx∼i and
∫
Kn dx∼{ij} denote integration over all

parameters except xi, and xi and xj, respectively.
Here, ”∼” means ”complementary of”. Analogous
formulae can be obtained for the higher order terms.

The variance based sensitivity indices follow very
naturally by this scheme; the total varianceD of f(x)
is defined to be

D =

∫
Kn

f2(x)dx− f2
0 (9)

while partial variances are computed from each of the
terms in (6) namely

Di1,...,is =

∫ 1

0

. . .

∫ 1

0

f2
i1,...,is

(x1, . . . , xs) dxi1 . . . dxis

(10)
where 1 ≤ i1 < · · · < is ≤ n and s = 1, · · · , n. By
squaring and integrating (6) over Kn, and by (8) we
have

D =
n∑
i=1

Di +
n∑
i=1

n∑
j=i+1

Dij + . . .+D1,2,...,n. (11)

Hence, a sensitivity measure S(i1, . . . , is) is defined
as

S(i1, . . . , is) =
Di1,...,is
D

(12)

with the useful property that all the sensitive indices
sum to 1, namely

n∑
i=1

S(i) +
n∑
i=1

n∑
j=i+1

S(i, j) + . . .+ S(1, 2, . . . , n) = 1.

(13)
One attractive feature of Sobol’ indices is that the
integrals in (9) and in (10) can be computed with
the same kind of Monte Carlo (MC) integral. Hence,
the MC estimates of f0, D and Di are given by the
following formulae

f̂0 =
1

N

N∑
m=1

f(xm); (14)

D̂ =
1

N

N∑
m=1

f2(xm)− f̂2
0 ; (15)

D̂i =
1

N

N∑
m=1

f(x
(1)
∼im, x

(1)
im)f(x

(2)
∼im, x

(1)
im) − f̂2

0 . (16)
In equations (14) - (16), N is the number of sam-
ples generated to obtain the MC estimates, xm is a
sampled point in Kn, and x∼im = (x1m, . . . , x(i−1)m,
x(i+1)m, . . . , xnm).

The superscripts (1) and (2) in (16) indicate that
we are using two sampling data matrices for x. Both
matrices have dimension (N, n). Hence (16) says that
in computing D̂i we multiply values of f correspond-
ing to x from matrix (1) by values of f computed
using a different matrix (2), but with the ith column
taken from matrix (1). Formulae similar to (16) can
be derived for the partial variances of higher order
(see Homma and Saltelli 1996). A drawback of the
method is that a separate MC integral is needed to
compute each term in (11), be it the first or higher or-
der. Counting also the set of model evaluations that
is needed to obtain f̂0, a total of 2n MC integrals are
needed, far too many unless n is low.

Homma and Saltelli (1996) adapted the ‘freezing
unessential variables’ approach (Sobol’ 1993) to in-
vestigate the total influence of individual parameters.
This is achieved by partitioning x into x∼i and xi,
where xi is the parameter of interests. The Total
Sensitivity Index for parameter xi is given by

ST (i) = S(i) + S(i,∼ i) = 1− S(∼ i),  (17)

where S(∼ i) is the sum of all the S(i1, . . . , is) terms
which do not include the index i, i.e. the total frac-
tional variance complementary to parameter xi. The
integral that is needed for the computation of S(∼ i)
is estimated by MC integral

D̂∼i + f̂2
0 =

1

N

N∑
m=1

f(x
(1)
∼im, x

(1)
im)f(x

(1)
∼im, x

(2)
im),

where the superscripts (1) and (2) are defined as above.
Hence,

ŜT (i) = 1− D̂∼i/D̂

which is the estimated total contribution of param-
eter i to the total output variation. The number of
Monte Carlo integrals needed is equal to the number
of parameters plus one (for f̂0). A rank transfor-
mation of this method is given in Saltelli and Sobol’
(1995).

3.3 FAST Indices

The Fourier amplitude sensitivity test (FAST) is a
procedure that has been developed for uncertainty
and sensitivity analysis (Cukier et al. 1973; Shaibly
and Shuler 1973; Cukier et al. 1975; Cukier et al.
1978). This procedure provides a way to estimate the
expected value and variance of the output variable
and the contribution of individual input parameters
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to this variance. An advantage of FAST is that the
evaluation of sensitivity estimates can be carried out
independently for each parameter using just one sim-
ulation because all the terms in a Fourier expansion
are mutually orthogonal.

The main idea of the FAST method is to convert
the n-dimensional integral in (1) into one-dimensional
integral in s by using the transformation xi = Gi(Sin
(ωis)) for i = 1, . . . , n. For properly chosen ωi and
Gi, the expectation of Y can be approximated by

E(Y )
.
=

1

2π

∫ π

−π
f(s)ds. (18)

where f(s) = f(G1(Sin(ω1s)), . . . , Gk(Sin(ωks))).
Further, by using properties of Fourier series (see
Saltelli et al. 1997), an approximation of the variance
of Y is given by

V ar(Y )
.
=

1

2π

∫ π

−π
f2(s)ds− [E (Y )]

2

≈
∞∑

j=−∞

(
A2
j +B2

j

)
−
(
A2

0 + B2
0

)
≈ 2

∞∑
j=1

(
A2
j + B2

j

)
, (19)

where Aj and Bj are the Fourier coefficients and are
defined as follows

Aj =
1

2π

∫ π

−π
f(s)Cos(js)ds (20)

and

Bj =
1

2π

∫ π

−π
f(s)Sin(js)ds. (21)

The expressions in (18) and (19) provide a mean to
estimate the expected value and variance associated
with Y .

Further, provided the ωi are integers and by eval-
uating the Aj and Bj for the fundamental frequency
ωi and its higher harmonics — a periodic function
with period 2π/ω0 has non-zero spectral components
at the fundamental frequency ω0 and at all its higher
harmonics 2ω0, 3ω0, . . .— denoted by pωi, the contri-
bution to total variance by Xi can be approximated
by

V̂ arωi(Y ) = 2
∞∑
j=1

(
A2
jωi +B2

jωi

)
. (22)

Thus, the ratios V̂ arωi(Y )/V ar(Y ), denoted by S′(i),
provide a mean to rank individual variable impor-
tance on the basis of contribution to the variance of
Y . Saltelli and Bolado (1997) showed that S′(i) is
equivalent to the Sobol’ sensitivity indices of the first
order, S(i).

Application of the FAST method involves
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Figure 3: Plot of the Transformation given in Equa-
tion (23) with ωi = 11 and ϕi = 0

(i) defining the ωi and Gi,

(ii) evaluating the original model at a sufficient num-
ber of points to allow numerical evaluation of
the integrals in (20) and (21), and approxima-
tion of the sums in (19) and (22).

Discussions on the choice of ωi and item (ii) above
are given in Saltelli et al. (1997). Here we will de-
scribe briefly a transformation,Gi, proposed by Saltelli
et al. (1997), namely a curve defined by a set of para-
metric equations

xi =
1

2
+

1

π
arcsin(sin(ωis+ ϕi)), (23)

where s is a scalar variable varied over the range
−∞ < s < +∞, ωi are a set of different (angular)
frequencies associated with each parameter, and ϕi is
a random phase shift chosen in [0, 2π).

The curve specified by the transformation given
in (23) is in fact a set of straight lines, oscillating
over the range of s (see Figure 3). As s varies, all the
parameters change simultaneously according to the
transformation specified in (23), and systematically
explore their range of uncertainty. The curve drives
arbitrarily close to any point x of the input domain
if and only if a set of incommensurate frequencies is
used. (A set of frequencies is said to be incommen-
surate if none of them may be obtained as a linear
combination of the other frequencies with integer co-
efficients.) If this is the case then we say that the
curve is space-filling (see Figure 4 for example).

The computation of the ST (i)’s is obtained by
assigning different numerical values to the set of fre-
quencies ωi for i = 1, 2, . . . , n. For instance, a certain
value is assigned to the frequency ωi for parameter
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Figure 4: Scatter Plot of Sampling Points in a Two
Parameters Case Based on the Straight Line Trans-
formation given in Equation (23) with {ω1, ω2} =
{11, 21}

i and a different set of values is assigned to all the
other frequencies, ω∼i, for the remaining parameters.
Thus, by evaluating the spectrum at the frequencies
ω∼i and the related higher harmonics pω∼i we can
estimate the partial variance D∼i. Furthermore, by
summing all the spectral components we can estimate
the total variance D. Then, it is easy to get ST (i)
by (17). Usually, a high value is assigned to ωi and a
low one to all the ω∼i, for instance ω∼i’s = 1. In this
way the frequencies corresponding to Di and D∼i are
far from overlapping and D∼i can easily be estimated
from the first few spectral components. A different
set of model evaluations will be needed for the es-
timation of each ST (i), ∀i = 1, . . . , n. This is the
price to pay in order to capture the total interaction
terms. Yet, with the same set of model evaluations
(i.e. at no extra computational cost) the analyst can
compute both ST (i) and S(i) for each variable xi.
Further details and discussion of the new method,
choice of frequencies, and optimization of the sam-
pling procedure can be found in Saltelli et al. (1997)
and Tarantola et al. (1997).

4 COMPUTATIONAL ISSUES

The variance-based methods are classed as global SA
in the sense that sensitivity assessment on the out-
put to each input parameter is carried out by con-
sidering the combined variability of all the parame-
ters simultaneously. A large array of randomly se-
lected input parameter values, through some random
sampling methods, such as simple random sampling,
Monte Carlo, Latin Hypercube Sampling (LHS), LPτ
sequences, etc., provides a mean for determining pa-
rameter sensitivity through a variety of procedures.

The random data matrix of the Sobol’ method
is usually generated using quasi-random numbers for
computing the MC integrals. Quasi-random num-
bers are characterized by an enhanced convergence
(Sobol’ 1990b). Note that other sampling strategies
such as the LHS (McKay et al. 1979), can be used to
compute sensitivity indices but Homma and Saltelli
(1995) found that LPτ sequences performed better
than the others (see Homma and Saltelli 1995 for
further details). As seen in Section 3.3, the FAST
method has its own sampling scheme in that sampling
points are generated from a search curve which filled
the input parameters space. Estimation of the corre-
lation ratio has been associated with LHS (McKay
1995, 1996). For the importance measure, a Monte
Carlo technique is used to evaluate the integral in
(5) if there is no analytical solution available. But
this is computationally too expensive and imprac-
tical. Saltelli et al. (1993) adapted a computation
scheme suggested by Ishigami and Homma (1989)
to estimate (5) and if the random sample is that of
LPτ then the resulting estimates are the same as the
Sobol’ first order sensitivity estimates.

5 AN ILLUSTRATION

In this section we present an example to illustrate and
to make a comparison amongst the variance-based
techniques. An analytical function is used in this ex-
ample, namely the Legendre polynomials of order d,
is denoted by Ld(x) (see McKay 1996).

The model has two input parameters, x is a uni-
formly distributed random variable taking values over
the range [−1,+1] and d is a discrete uniformly dis-
tributed random variable, assumed to take values from
1 to 5. The Legendre polynomials are orthogonal and
integrate to zero over the interval [−1,+1]. This im-
plies that the influence of d on the output is nil. The
analytical values of the partial variances due to the
variables d and x (Dd and Dx) are given in Table 3
of McKay (1996). These analytical values are given
as conditional expectations and variances, namely

V ar [E (Y | input)] = Dinput.

And from (3), we have E (V ar [Y | input]) = D∼input

+Dinput,∼input and V ar [Y ] = D.
The corresponding analytical values of the sensi-

tivity indices of the two input parameters are pre-
sented in a pie diagram (Figure 5). McKay (1996)
commented that the variance-based measures of im-
portance — which use the variance of the conditional
expectation of the output, V arX [E (Y |X = x)] —
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Figure 5: Graphical Representation of Sensitivity In-
dices of x, of d, and of x and d

may not always be effective as indicators of impor-
tance, and hinted that additional notions of impor-
tance might be necessary for assessing uncertainty
importance. As shown in Figure 5 the Total Sensi-
tivity Indices offer such additional notions. Although
on their own, both parameters d and x appear to be
irrelevant to the output variable (the first order sen-
sitivity indices being S(d) = 0 and S(x) = 0.2), the
TSI for parameters d and x are 0.8 and 1.0, respec-
tively. These values represent the total effect of the
parameters d and x on the output variable, which
account for 80% and 100%, respectively, of the to-
tal output variance. The reason for this behavior is
that there is a large interaction between d and x.
The effect of this interaction between d and x on the
output is measured by S(d, x) = 1 − S(d) − S(x) =
1−0.0−0.2 = 0.8. Hence, this leads to the conclusion
that both parameters influence the output variable,
even though neither d nor x alone can explain the
output variation. This example demonstrates the im-
portance contribution that the TSI can make when
a complete Sensitivity Analysis is required, and con-
firms the identity of McKay’s correlation ratio with
Sobol’/FAST first order indices.

In a simulation study carried out by Saltelli et al.
(1997) to assess the robustness of Sobol’ and FAST
methods in estimating TSI, estimates of TSI were
computed at six different sample sizes. They found
that, on average, FAST yields better estimates than
Sobol’. Also, in terms of robustness, FAST is better.
The FAST estimates converge more rapidly to the
analytical values, even at low sample sizes.
6 CONCLUSIONS

Non-linear, non-monotonic problems are often encoun-
tered in everyday model building. These problems
call for a non-linear SA which is independent from
assumptions about the model structure. Both FAST
and Sobol’ sensitivity measures can cope with non-
linear and non-monotonic models. They can be con-
sidered as truly quantitative for global SA for numer-
ical experiments. The word ‘quantitative’ here means
that the parameters can be ranked in order of their
relative importance in the model.

All the alternative global methods, variance-based
or not, can offer, at best, a qualitative picture of
the model sensitivity. The variance-based methods
such as correlation-ratio or importance measures are
model independent and can evaluate main effect con-
tributions. FAST and Sobol’ are completely auto-
mated and are able to compute the total effect indices
which allows us to rank quantitatively the parameters
in order of their influence (be it additive, non-linear
or with interactions) on the output. As demonstrated
in the example, TSI’s together with the first order
indices should always be computed in order to in-
vestigate the predominance of lower or higher order
terms, which is the only way to perform a rigorous
quantitative sensitivity analysis.
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