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lation efficiency have been called variance reduction
techniques. Reviews of such techniques can be found
in Glynn, Iglehart (1988) and in Bratley, Fox, Schrage
(1987). However, as a rule, these methods demand
significant a priori information about the investigated
system, for example, specification of Markov chain
transition probabilities in analytical form or analyt-
ical computation of characteristics of random values
(expectation and variance) which are strongly corre-
lated with the system parameters of interest. If we
have only an algorithmic description of the system
then such information is usually inaccessible.

A quite universal technique, free of the disadvan-
tage indicated above, was proposed by von Neumann
under the name “splitting and Russian roulette tech-
nique,” see Kahn (1956). The basis of this technique
is parallel simulation of several paths of a random pro-
cess. A procedure for splitting and a procedure for
roulette is applied to each of these paths. These pro-
cedures are chosen depending on the significance of
the information on the system parameters contained
in the path. The efficiency of this technique depends
on the algorithm for selecting the number of paths
to which the current path is split, and on the algo-
rithm for computing the cancellation probability for
the current path. For particular cases the problem of
optimal choice of such an algorithm was investigated
by Glasserman et al. (1996).

A mathematical statement of the problem, based
on the introduction of a probability measure which
governs the processes of splitting and roulette, had
been proposed and investigated in Melas (1993, 1994)
and Ermakov, Melas (1995). The approach, corre-
sponding to the problem statement, has been called
the branching technique. This technique permits us
to develop a mathematical theory, which has some
similarity to the classical theory of regression experi-
mental design. (The basis for this theory was estab-
lished in Kiefer and Wolfowitz, 1959). Selecting the
probability measure can be considered as part of the
design of the simulation experiment. This approach
ABSTRACT

The paper is devoted to a brief review of a mathemat-
ical theory for the branching variance-reduction tech-
nique. The branching technique is an extension of von
Neumann’s splitting and Russian roulette approach.
The efficiency increase is attained by parallel sim-
ulation of several independent paths of the random
process under consideration, the number of which
is regulated by procedures of splitting and roulette.
These procedures are governed by a probability mea-
sure whose optimal choice is the main problem of the
corresponding mathematical theory. The relation be-
tween splitting and roulette approach and sensitivity
analysis is discussed in the introduction.

1 INTRODUCTION

Sensitivity analysis is a relatively new but substan-
tially important approach. Its purpose consists of the
estimation of simulation results uncertainty caused by
various sources. These are (see, for example, Cheng,
Holland, 1995) errors due to the stochastic nature of
simulation, uncertainty of a given data used for the
simulation model building, uncertainty of input infor-
mation as well as simplifying assumptions about dis-
tributions of values included in the simulation model
under consideration. However sensitivity analysis can
be directed not only to the study of ready made mod-
els but also to the comparison of underlying simula-
tion techniques from the point of view of uncertainty
of results. Thus we can consider variance reduction
techniques as a part of sensitivity analysis.

Stochastic simulation of complex systems of differ-
ent kinds is based on computer reproduction of paths
of the random process which describes the dynamic
behavior of the system under consideration. However,
direct-path simulation often is not efficient, because it
demands too large a number of paths to attain suffi-
cient precision, especially when evaluating rare-event
probabilities. Techniques to increase computer simu-
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permits us to find the experimental design that mini-
mizes the sum of the number of steps for all the paths
that are simulated, under the condition that a speci-
fied accuracy for the estimates is attained. These de-
signs can be developed on the basis of current results
of the simulation, and their efficiency can be investi-
gated analytically or on the basis of simulation.

Note that the mathematical theory of the branch-
ing technique is investigated for the case of Markov-
chain simulation. However, this case seems to be of
great importance since many real problems can usu-
ally be reduced to Markov-chain simulation (see, f.e.,
Sigman, 1988).

In the present paper a review of mathematical re-
sults, obtained in Melas (1993, 1994) and Ermakov,
Melas (1995), is given. It is a developed and re-
vised version of author’s work (Melas, 1995). It is
also shown here that the computation required by
the branching method can be significantly less than
the computation required by the direct simulation.

2 STATEMENT OF THE PROBLEM

We will consider the estimation of one or several lin-
ear functionals of the stationary distribution of a gen-
eral homogeneous Markov chain, and, in particular,
finite Markov chains, by means of computer simula-
tion. In the present section we will state the assump-
tions which are necessary for the strict mathematical
statement of the problem, and will present a descrip-
tion of the branching technique.

2.1 Assumptions

To begin, let us consider general Markov chains. Let
{Xn} be a Markov chain with state space Ω, with
transition probability function P (x, dx) and with sta-
tionary distribution π(dx). Let random variablesXn,
n = 0, 1, . . . be defined on the same probability space.
Let us denote by X the set of possible values of these
variables and by A a σ–algebra of its subsets. Let the
σ–algebra A be countably generated and let hi(x),
i = 1, 2, . . . , l be measurable functions on (X,A). Let
µ be a (nonnegative) measure on (X,A).

Suppose, that

(a) P (x, B) is a probability measure on (X,A) for
a fixed x, and a measurable function of x for a
fixed B, ∫

P (x,X)µ(dx) = 1

(b) The chain {Xn} is µ–nonreducible, i.e., there
exists a function s(x) on X and a probability
measure ν(B) such that

P (x, B) ≥ s(x) ν(B)
for any x ∈ X, B ∈ A,∫
X

s(x)µ(dx) > 0

(c) hi(x) ≥ 0,∫
X
hi(x)π(dx) <∞,∫
hi(x)E

{∑τ(B)
n=1 h(Xn) | X0 = x

}
π(dx) <∞,

for i = 1, 2, . . . , l, B ∈ A where τ(B) = min{n :
Xn ∈ B}.

Without loss of generality s(x) can be considered (see
Nummelin, 1984) as an indicator of a set S, i.e.,

s(x) =

{
1, x ∈ S
0, otherwise

For the case when {Xn} is a homogeneous
Markov chain with a finite number of states, Ω =
{0, 1, . . . , m}, denote the transition matrix by P , and
the stationary probability vector by π = (π0, . . . , πm).

Let us suppose, that

(d) ∃ n such that (P n)ij > 0,
where (P n)ij > 0 is an element with subscripts
i, j of the matrix P n, i, j = 0, 1, . . . , m;

(e) hi(x) < ∞, for x ∈ Ω, i = 1, 2, . . . , l, and
hi(x) ≥ 0.

Condition (d) means that the chain is an aperiodic
and positive recurrent chain.

2.2 Simulation Problem

It is required to estimate one or several functionals of
the form

Ji =

∫
X

hi(x)π(dx), i = 1, 2, . . . , l

with respect to simulation results.
In case of chains with finite state space these func-

tionals have the form

Ji =
m∑
x=0

hi(x)πx, i = 1, 2, . . . , l.

2.3 Branching Technique

Let {Xn} be a Markov chain of the general form de-
scribed in §1.1. Let us introduce independent ran-
dom variables Zn, n = 0, 1, . . ., where P{Zn = 1} =
s(Xn), P{Zn = 0} = 1− s(Xn).

Let ηn chains {Xn, Zn}, de-

noted {X
(γ)
n , Z

(γ)
n ; γ = 1, 2, . . . , ηn}, be simulated
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at the n–th step. A procedure for regulating ηn can
be introduced in the following way.

Definition. A measurable function β(x) on
(X,A) with the following properties:

1) β(x) = constψ x ∈ S,

2) β(x) ≥ 0, x ∈ Ω,

3)
∫
B
β(x)π(dx) > 0, if π(B) > 0

is called a branching density.
For finite Markov chains satisfying condition (d),

conditions 2) and 3) are replaced by β(x) > 0, x ∈ Ω.
Introduce the random variable

r(x, y) = bβ(y)/β(x)c,

with probability 1− β(y)/β(x)

and
r(x, y) = bβ(y)/β(x)c + 1,

with probability β(y)/β(x),

where bac, with a = β(y)/β(x), means the integer
part of a and a means the whole part of a.

At step zero, set η0 = 1. At each following step
(n + 1 = 1, 2, . . .) if Zγn+1 = 1, then the simulation
of path γ discontinues. If Zγn+1 = 0 and Xγ

n = x,
Xγ
n+1 = y, then when β(y)/β(x) < 1 the simulation

of path γ discontinues with probability 1−β(y)/β(x).
When β(y)/β(x) ≥ 1 we simulate r(x, y) − 1 addi-
tional paths, beginning from point x, where k-steps
of these chains will be denoted by index n+ k.

It can be shown (see Theorem 1 below), that the
number N = {n : ηk > 0, k < n, ηn = 0} is finite

with probability 1, and moreover Tβ =
∑N
n=0 ηn <

∞ with probability equal to 1. Thus the simulation
terminates with probability 1. This process will be
called a loop.

Let us simulate k loops: {Xγ
n(i); γψ =

1, 2, . . ., ηn(i)}, i = 1, 2, . . . , k. Let us determine
estimators of the functionals Jj (j = 1, 2, . . . , l) by
the formula

Ĵk,β(j) =
1

k

k∑
i=1

Yβ(i, j)

/
k∑
i=1

Ỹβ(i, j) ,

where

Yβ(i, j) =

N(i)∑
n=0

ηn∑
γ=1

hj (Xγ
n(i)) /β (Xγ

n(i)) ,

Ỹβ(i, j) = Yβ(i, j) with hi(x) ≡ 1.

Note that when β(x) ≡ 1 the process reduces to di-
rect simulation of the chain {Xn}, and the estimators
Ĵi,β become the known ratio estimators of the regen-
eration method (see Crane, Iglehart, 1974).

In the next section we will show that these es-
timators are asymptotically unbiased estimators and
we will introduce a representation for the variance-
covariance matrix.

3 EXPRESSION FOR COVARIANCES

Set

D(β) =

(
lim
k→∞

kCov
(
Ĵk,β(i), Ĵk,β(j)

))l
i,j=1

,

T (β) = lim
k→∞

k∑
i=1

Ti,β/k.

By virtue of Law of Large Numbers, T (β) is the
expectation of the number of steps for all chains in
one loop.

Set

ĥj(x) = Ĵk,β(j), j = 1, 2, . . . , l,

under the condition that all paths begin at x (X1
0 (i) =

x,ψ i = 1, . . . , k).
Theorem 1. When conditions (a)–(c) are valid

for general Markov chains, estimators Ĵk,β(i) are
asymptotically unbiased and

D(β) =

(∫
β−1(x)π(dx) (dij(x) + rβ)

)l
i,j=1

,

T (β) =

∫
β(x)π(dx),

where dij(x) = Eĥi(x) ĥj(x) − Eĥi(x)Eĥj(x), E is
the expectation operator, and rβ is a remainder term.

This theorem is an obvious modification of The-
orem 3 in Melas (1993). There it can be found the
form of the remainder term as well as arguments for
its ignoring.

Note that the value of dij(x) can be estimated
with respect to current data of simulation in the stan-
dard way on the basis of the formula from Theorem
1.

A similar result is valid for finite Markov chains.
Theorem 1 permits us to introduce optimality cri-

teria for the choice of the branching measure. To
simplify the notation let us consider that π(dx) =
π(x) dx. Set

τ(x) = π(x)β(x)

/∫
β(x)π(x) dxψ (1)

τx = πxβx

/∑
x

βxπx (finite chains).ψ (2)
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Then T (τ) = 1 for any β. Dropping the remainder
term, we obtain the matrix

D(τ) =

(∫
τ−1(x) dij(x)π

2(x) dx

)
,

D(τ) =

(
m∑
x=0

τ−1
x π2

x dij(x)

)
(finite chains).

As an estimation accuracy criterion let us take quan-
tities

trAD(τ),ψ (3)

detD(τ) (4)

where A is an arbitrary nonnegative-definite matrix.
Note that when A = I (where I is identity matrix)
and l = 1, trAD(τ) is just the variance of the esti-

mator Ĵ1. The statistical meaning of criterion (4) is
well known from the theory of regression experimen-
tal design (see Kiefer, 1974).

The probability measure τ(x) is called a design of
the simulation experiment.

4 OPTIMAL EXPERIMENTAL DESIGNS

Consider the minimization problem for criteria (3)
and (4) in the class of probability measures τ induced
by branching densities. The optimal design for crite-
rion (3) can be found with the help of the Schwarz
inequality. The direct application of this inequality
brings the following result.

Theorem 2. Let the hypothesis of Theorem 1 be
satisfied. Then the experimental design minimizing
the value of trAD(τ) is given by formula (1), where

β(x) =
√
trAD(τ).

Let us formulate the results for criterion (4) for fi-
nite Markov chains and the case of hi(x) = δix, where
δix is the Kronecker delta, i = 1, 2, . . ., m. The gen-
eral case can be formulated in the same way.

Theorem 3. For finite Markov chains satisfying
the conditions (d) and (e), and functions hi(x) of the
form hi(x) = δix, i = 1, . . . , m, there exists an exper-
iment design minimizing the value of (4). This design
is unique and satisfies the relation

τ(x) =
(
trBxB

−1(τ∗)
)1/2

πx

/√
m,

where

Bx = (pxyδyz − pxypxz)
m
y,z=1 ,

xψ = 0, 1, . . . , m,

B(τ) =
m∑
x=0

(
π2
x/τx

)
Bx.
The following iterative method can be used to find
the optimal design.

Set

τ0(y) = πy, y = 0, . . . , m,

τk+1(y, α) = (1− α) τk(y) + ατ(x)(y),

k = 0, 1, 2, . . .

where
τ(x)(y) = δxy

x = arg max
x

π2
x

τ2
k (x)

tr BxB
−1(τk).

Set

αk = arg min
α∈[0,1]

detB ({τk+1(y, α)}) ,

τk+1(y) = τk+1(y, αk), y = 0, 1, . . . , m.

Theorem 4. Under the hypothesis of Theorem 3
for k→∞

detD(τk)→ detD(τ∗),

where detD(τ∗) = mindetD(τ).
When applying the branching method in practice,

statistical estimators of πx with respect to simulation
results are to be used instead of the quantities πx in
the present algorithm. Proofs of theorems 2-4 can be
found in Ermakov, Melas (1995).

5 BRANCHING EFFICIENCY

Let us study the efficiency of the branching technique
for the case of finite Markov chains and the random
walk processes.

5.1 Finite Markov Chains

Let us investigate the efficiency of the branching
method using optimally chosen design τ , with respect
to direct simulation, which corresponds to the exper-
iment design τ = π. The relative efficiency is defined
by the formula

R =
detD(τ∗)

detD(π)
.

This value depends on the transition matrix P , so we
write R = R(P ).

It is not difficult to verify that R = 1 in the case
when π = (1/(m+ 1), . . . , 1/(m+ 1)), and in the case
when the Markov chain turns into a sequence of inde-
pendent random variables. However, these cases are
of no practical interest. The following result demon-
strates that the relative efficiency can be arbitrarily
large.
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Theorem 5. Under the hypothesis of Theorem 3
when m = 1

sup
P :πP=π

R(P ) = min

{
1

1 + 2
√
π0π1

,max(π0, π1)

}
,

when m > 1
sup
P
R(P ) =∞.

The proof of Theorem 5 can be found in Ermakov,
Melas (1995). The branching technique’s efficiency
for the special class of chains for which pii+l = 0,
l > 1 is investigated in Melas (1994). And a gener-
alization of the formula for supP :πP=π R(P ) with an
arbitrary given π and arbitrary m was developed in
Melas, Fomina (1997).

5.2 Random Walk

Consider a random walk process on a line

S1 = 0, Sn+1 = Sn +Xn, k = 1, 2, . . . ,

where Xn, k = 1, 2, . . . are independent random vari-
ables with common density function f(x), and con-
nect it with the waiting process

W1 = 0, Wn+1 = max(0,Wn +Xn), n = 1, 2, . . .

It is known (see Feller, 1970) that the quantities Wn

and
Mn = max{S1, . . . , Sn}

have the same distribution. Under an additional con-
dition on EX1, Mn → M and Wn → W in distribu-
tion, where M and W are random variables.

Set θ = P{W ≥ v} = P{M ≥ v}. This value
cannot be calculated analytically and the problem is
the estimation of θ with the help of simulation. This
problem has a number of applications. It had been in-
vestigated in Siegmund (1976) and Asmussen (1985).

Set π(0) = P{W = 0}, π(x) = W ′(x), W (x) =
P{W < x}, π(x) = 0 for x < 0, Xn = Wn, S = {0},
π(dx) = af(x)dx, a = 1/(1− F (0)), and

1− F (0) =

∫ ∞
0

f(t)dt,

h1(x) = 0, x < v, h1(x) = 1, x ≥ v, l = 1.

Then it is evident that conditions (a), (b) and (c) are
valid. The problem is the estimation of the functional

J = J1 =

∫
h1(x)π(x)dx.

Suppose that f(x) satisfies the condition∫ ∞
−∞

eλ0tf(t)dt = 0
for some positive λ0. Set β0(x) ≡ 0, β∗(t) = eλ0t,
0 < t < v, β∗(t) = eλ0t, t ≥ v. Define the relative
efficiency by the formula

R = Rv =
Tβ∗DĴβ∗

Tβ0DĴβ0

.

It is known (see Feller, 1970) that as v → ∞ θ ∼
e−λ0t → 0.

Theorem 6. Let the conditions formulated above
be satisfied and for some ε > 0∫ ∞

−∞
e2(λ0+ε)tf(t) dt <∞.

Then for v →∞

Rv = O

(
1

θ ln2(1/θ)

)
, θ ∼ e−λ0v.

Thus the relative efficiency converges to∞ as v →
∞. Theorem 6 is a modification of Theorem 5.5 from
Ermakov, Melas (1995), chapter 4.

Since Theorem 6 describes only the asymptotic
behavior of the relative efficiency we give numerical
results in the next section.

6 NUMERICAL EXAMPLE

Let us consider a queueing system of the type
GI/G/1/∞. This system can be described in the fol-
lowing manner. Demands come in moment t1, t2, . . .
and need service time u1, u2, . . ., respectively. De-
mands are served in order of coming. We assume
that {vi = ti+1 − ti} and {ui} are independent ran-
dom variables. In the simulation experiments it is
assumed that vi and ui(i = 1, 2, . . .) have exponential
distribution with parameters a and 1, respectively.
The problem is to estimate the steady-state probabil-
ity θ = limn→∞P{Wn < v}, where Wn is the waiting
time for n–th demand and v is a given magnitude.

To compare the branching technique (BT) and the
usual regeneration technique (RT) we simulated the
corresponding random walk by both methods during
100,000 loops. The magnitude v was chosen so that
θ = 10−2, 10−3, . . . , 10−6, a = 1/2. Denote by I the
magnitude

I = θ2/(ETDθ̂)

where θ is the proper value of the estimated param-
eters, ET is the mean length of the simulated paths
and Dθ̂ is the sample variance.

We have obtained results presented in the follow-
ing table:

ln(1/θ) 2 3 4 5 6
I(RT ) 0, 385 0, 026 0, 000 0, 000 0, 000
I(BT ) 0, 686 0, 298 0, 185 0, 083 0, 041
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The table shows that for θ ≤ 10−3 the relative effi-
ciency is significant.
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