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ABSTRACT

For complex systems, traditional methods of experience-
based design are ineffective: the design task must be
supported by simulations.  Conceptual design and
system-level detailed design based on numerical
simulation models is limited because of the difficulty in
integrating disparate subsystem models to predict overall
system behavior.  A metamodel-based integration
strategy allows simulation results from multiple
submodels to be combined into a system-level
simulation.  The development of a metamodel-based
integration strategy for system-level design depends on
effective experiment design strategies for fitting and
updating subsystem metamodels.

1  INTRODUCTION

Complex numerical and/or discrete-event simulation
models of proposed or existing real systems are often
used to estimate the effects on system performance due to
changes to the system design.  For complex systems, it is
often the case that no single system-level model exists.
Instead, different subsystems (or different aspects of
performance) are represented by separate simulation
models.

Conceptual design and system-level detailed design
based on existing simulation models is difficult because
of the need to integrate the inputs and outputs of the
disparate subsystem models to predict overall system
behavior.  This raises important challenges for
researchers in this area:  to integrate disparate
disciplinary models and to define a design selection
algorithm for the multiple objective/multiple decision
maker setting, and to do this in a computationally
efficient way.
Present integration technology is based on
application-specific large scale software involving
iterative runs of the disciplinary subroutines linked by
special executive programs and databases.  The approach
is time consuming, costly, computationally expensive,
and application specific.  As a consequence, integrated
system simulators have been developed only for high-
value applications, such as aircraft structural design
(Neill et al. 1990).

An alternate strategy is to build metamodels for each
subsystem simulator using a common form, and integrate
the metamodels rather that the original simulation codes.
Metamodels are mathematical approximations to the
discipline-specific product and process models used in
engineering design.  This use of the term metamodel,
which follows that of Kleijnen (1975), is different from
Tomiyama et al. (1989), who use the term to refer to a
model of the design process.

A metamodel-based integration technology permits a
greater portion of the code development to be application
independent, and the speed of execution for the
metamodel-based integrated system permits a greater
variety of design/optimization algorithms to be applied.
There are three key research issues that must be
addressed to make metamodel-based system-level design
practical:

i) integration architecture for subsystem models,
ii) design of experiments for fitting subsystem

metamodels, and
iii) measures of metamodel fidelity.
This paper presents a discussion of the second issue:

designing experiments for fitting subsystem metamodels.
The next section provides a description of the problem
and shows an example of conventional system
integration.  Next, a brief description of a metamodel-
based integration strategy is presented.  A proposal for a
general subsystem metamodel experiment design strategy
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is then followed by a simple example to illustrate the
advantage of this semi-sequential design strategy.  The
last section provides a summary of research issues.

2  PROBLEM STATEMENT

The system-level design depends on numerical measures
of system performance, yk, k = 1, ..., p.  These, in turn,
are mathematical functions that depend on each other and
on a set of design parameters, xj, j = 1, ..., d.  That is,

__yk = fk (x, y), k = 1, ..., p.

Note that each y may depend on any xj or yk but need
not depend on all other y’s nor on all of the design
parameter elements in x.  The system-level design task is
to determine values for the components of x that result in
a desirable performance vector y.  Typically, the
functions are not computed independently, but rather in
subsets corresponding to specific simulation/analysis
programs which can be viewed as vector-valued
functions, say gm, m = 1, ..., r.

For example, in modeling a product and its
manufacturing system, y1 might be the tensile strength of
a critical part, y2 the material cost per unit, y3 the average
manufacturing flow time, y4 the average value of work in
process, y5 the capital equipment cost, and y6 the overall
cost of production per unit.  Typically, the calculation of
these functions requires two or more separate software
programs.  In our example, the first two quantities might
be calculated from product design parameters using
CAD/CAE software (g1).  The third and fourth might be
calculated using a discrete-event simulation model of the
manufacturing operation (g2), and the fifth and sixth
using simple accounting models (g3 and g4).

These models share some inputs:  a design variable
specifying the kind of manufacturing equipment (x4) is
an input to the discrete event simulation subsystem
model and the simple accounting subsystem model for
y5.  Also, some subsystem model outputs are required as
inputs to other models.  For example, the calculation of
y6 will require y2 and y5 as inputs.  Figure 1 shows a
network representation of the input and output structure
for this example, based on an illustrative but arbitrary
allocation of six design parameters, x1 - x6.  It is
coincidental that p = d in this example.

2.1  Existing Integration Technology

Typical of the multidisciplinary approach in use today,
ASTROS (Neill et al. 1990) provides multidisciplinary
integration technology via an executive program which
calls separate optimization, modeling, and database
routines.  This general structure is illustrated in Figure 2.
Each subsystem analysis code corresponds to a gm.
Sobieszczanski-Sobieski and Haftka (1996) developed a
similar structure.
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Figure 1:  The Relationship Between Design Parameters,
Subsystem Models, and Performance Measures for a
Simple Example
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Figure 2:  Typical Structure for Existing Multi-
disciplinary Integration Technology

A key feature of this integration strategy is the
definition of database structures for communication
between subsystem analysis codes and the system-level
executive program.  Westfechtel proposed an object-
oriented data structure following Reddy et al. (1993) to
include data and analysis tools for integrating computer-
aided design, computer-aided process planning and NC
code generation.

Problem difficulty depends not just on the nature of
the subsystem response functions, but on the
interconnectedness of the subsystem models.  The easiest
topology results when each g is in a separate component
of the graph.  The most difficult is when the tripartite
graph is complete:  every subsystem depends on every
design parameter and every (other) subsystem output.
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These difficulties affect experiment design strategies for
fitting subsystem metamodels.

Existing system-level design strategies focus on the
integration of existing discipline-specific detailed design
codes.  Further, the emphasis has been on optimization,
yet many system-level design tasks are multidisciplinary
and multiobjective, and cannot be expressed in an
optimization framework.

2.2  The Nature of Multidisciplinary Multiobjective

Design

System-level design involves tradeoffs among multiple
objectives that require different engineering and business
disciplines to calculate and to assess.  The design task
requires multicriteria decision making.  Zionts cites ten
myths of multiple criteria decision making, including the
myth of a single decision maker (2), the myth of an
optimal solution (4), the myth of limiting consideration to
non-dominated (Pareto-optimal) solutions (5), and the
myth of the existence of a utility or value function (6).

Generally, numerical combinations of multiple
objectives are referred to as utility functions, although
many names for such functions appear in the
multidisciplinary optimization literature.  Messac (1996)
created a system-level objective function based on the
sum of interdependent 'preference functions' constructed
for each design objective.  He proposed preference
functions as an alternative to von Neumann-Morgenstern
utility functions (von Neumann and Morgenstern 1953,
Luce and Raiffa 1957) because of the difficulty in
determining the appropriate utility function for an
engineering design problem (Thurston et al. 1994).
Yoshimura and Kondo (1995) developed an objective
combining design performance and manufacturing cost
using utility theory.  The calibration of the utility
function used an estimation of '50% satisfactory' designs
for both performance and manufacturing cost, rather than
the usual lottery equivalence calculation.

While Thurston et al. (1994) recommend the use of
utility functions, Hazelrigg (1996a, 1996b, p.300) points
out that such utility functions do not generally exist for
groups of decision makers (Arrow 1951, Fishburn 1987).
The difficulty described by Hazelrigg relates to myths
(2), (5), and (6) of Zionts and exposes the conflict
between group decision making and optimization.  The
concept of transitivity in design says that if design A is
preferred to design B, and design B is preferred to design
C, then design A is preferred to design C.  This
assumption is at the core of many optimization methods
based on local improvement.  For single-objective
decisions, under the assumption of a single well-defined
value of the objective for each particular set of design
parameters this concept is reasonable, and thus the
success of mathematical programming methods for
single-objective design optimization.

Unfortunately, in engineering design there is often
more than one objective, and more than one decision
maker.   The concept of transitivity for group (or even
individual) ranking of choices has many difficulties when
the choice is based on multiple characteristics or
objectives, and so the search for a global optimum design
based on pairwise comparisons (or local improvement)
may not be appropriate (DeLong 1991).  Instead, a
comparison among Pareto optimal designs or design
regions (based on one or more multiobjective functions)
should be provided to decision makers, who may choose
a design using democratic or other procedures.  It is not
necessary that the Pareto-optimal designs will form a
single connected set in design parameter space.  In fact
Pareto-optimal regions of design space may be
disconnected regions that are full-dimensional or lower
dimensional such as segments of curves, or even points.
Thus the phrase multiobjective design optimization may
be an oxymoron; a more appropriate goal might be
multiobjective design selection.

An effective experiment design strategy for
metamodel-based system-level design must recognize
this nature of the multidisciplinary multiobjective design
problem.  In some cases optimization is appropriate.  In
others, tradeoff studies involve the identification and
exploration of local Pareto optimal regions, local
sensitivity analysis and robust design.

3  METAMODEL-BASED SYSTEM DESIGN

Sobieszczanski-Sobieski and Haftka (1996) discuss four
advantages of metamodel approximations for use with
design space search codes:  i) the need for a large number
of response evaluations as part of the design process, ii)
as a tool to integrate software from different disciplines
and perhaps different machines (for example, Tai et al.
1995 and Giunta et al. 1995), iii) to overcome jagged
response surfaces that arise from numerical roundoff or
deliberately incorporated random factors, and iv) to
permit visualizations of the entire design space (Mistree
et al. 1994).  They cite three metamodel approaches for
global approximations:  simplified physical models (with
scale factors calibrated by the full model), polynomial
response surface approximations, and neural networks.

Quadratic response surfaces are the most commonly
used metamodels, although recent developments suggest
other metamodel types could provide better global
approximation (Barton 1992, 1994).  Osyczka and Zajac
(1990) use response surface metamodels fit via face-
centered composite designs for complex optimization
tradeoffs that multicriteria optimization requires.  They
suggest interactive graphical methods for the selection of
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a Pareto-optimal design, and note the accuracy
limitations of the metamodeling approach.

A metamodel-based integration strategy offers an
effective way to address many computational difficulties
in multidisciplinary optimization.   First, a metamodeling
strategy permits a general integration strategy that can be
implemented for all sources and combinations of
disciplinary models.  The metamodeling strategy
simplifies optimization and/or examination of the system
performance over the system design space, and,
depending on the metamodel form, subsystem
metamodels may be combined analytically to form the
system metamodel, perhaps automatically as well.
Second, new approximation methods reduce concerns
about global model fidelity that are an inherent
shortcoming of polynomial approximations.  Third, the
metamodeling approach permits rapid evaluation of
system performance for alternative designs, relieving the
limitation of examining one or a few candidates and
relying on the questionable concept of a single,
algorithm-determined 'optimal' design.

A general metamodel-based multidisciplinary design
integration strategy that links approximation models for
all disciplinary submodels to form an overall system
model is illustrated in Figure 3.
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Model 1

•
•
•

Subsystem
Modelr

Subsystem
Metamodel 1

•
•
•

Subsystem
Metamodelr

System
Metamodel
Integrator

Design
User

Interface
(Optimization,
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Design,
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Tradeoffs)

Metamodel Monitoring and Updating Controller

Metamodel DOE and fitting routines

Two-way data and command exchange

Key:

Figure 3:  Proposed Structure for Metamodel-based
Integration Strategy

Full subsystem disciplinary model analyses and
perhaps optimizations are run for specific sets of design
parameter values to fit the metamodels.  The number of
runs and the design parameter settings for each run are
determined by the DOE/Fitting modules.  The DOE
strategy may differ for different metamodel types.  The
fitting modules calibrate the appropriate metamodel to
the disciplinary run data, and determine the adequacy of
the metamodel fit for each of the output variables.  The
DOE/Fitting module can request additional disciplinary
subsystem runs if necessary.  The integration module
combines the discipline-specific metamodels based on an
integration model, to produce a system metamodel which
has as inputs all design parameters and as output all
performance measures.  The system metamodel is
exercised by a user through a user interface that includes
graphical exploration of the design space, identification
and exploration of the Pareto region, and utility-based
optimization.  The fidelity of the metamodel
representations is maintained by monitoring the design
regions of current interest to the user, assessing the
adequacy of the fit (validity) of the subsystem
metamodels and the system metamodel, and prescribing
additional calibration runs through the individual DOE
modules.  The additional runs may be conducted
automatically, or requested of the user, depending on the
difficulty in interfacing the discipline-specific subsystem
codes to the Updating Controller.

4  EXPERIMENT DESIGN STRATEGY

The validity of model-based design depends on the
validity of the model, which in turn depends on the
validity of the subsystem models.  This is true as well for
metamodel-based design, but subsystem (meta)model
validity also depends on the experiment designs used to
fit the metamodels, the metamodel types, and the
intended use (Sargent 1991).

The traditional emphasis for simulation metamodels
has been simultaneously defined designs such as
fractional factorial or central composite designs, used to
fit polynomial metamodels.  Occasionally the design
process is two-stage:  a screening fractional factorial
design to identify the design parameters having
significant effect on performance, followed by a higher
order model and a more complete design on the
remaining set of parameters (see Donohue et al. 1993 and
Chen et al. 1996).

Since simulations typically compute results for one
design point at a time, sequential designs may provide an
advantage.  There has been little work in this area,
although such a strategy is used by Tu and Barton (1997)
to develop efficient designs for metamodels used for
Monte-Carlo estimates of yield.  A sequential approach
might be used in place of simultaneous designs for steps
1 and 4a in the strategy described below.

4.1  Semi-sequential Design Strategies

A form of sequential design has been applied to
metamodel-based design.  Designs are sometimes
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updated as optimization iterations progress, focusing on
the region of the current optimization iterates.  Each
update may consist of a simultaneous set of runs, rather
than an individual run, and so the method might be called
a semi-sequential strategy.

For example, Toporov (1992) proposed a
metamodeling method based on quadratic polynomial
approximation of the response and constraint functions
(fit by weighted least-squares), followed by a nonlinear
programming optimization applied to the approximating
objective and constraints.  A sequential experiment
design for fitting the approximations was modified after
each optimization cycle, excluding points no longer in
the 'region of interest,' and adding n + 1 new evaluations
for a problem with n design parameters (Toporov et al.
1993).  A move-limit strategy and a new weighting
procedure for the least squares fitting were proposed by
Toporov et al. (1996) to try to improve optimization
performance in conjunction with an adaptive
discretization error strategy for the finite element
calculations.  Toporov’s region of interest will play a role
when the experiment designs are updated based on recent
design iterations.  A too-rapid reduction in the region of
interest size resulted in premature termination of the
optimization process.  The work of Toporov and co-
authors did not address metamodel-based integration: the
authors assumed the existence of a single integrated
numerical code for calculating multidisciplinary
objective and constraint function values.

There is no point in requesting an additional
subsystem analysis whenever a subsystem metamodel
evaluation is needed.  In this case the subsystem models
could be called directly, and the metamodel structure
would provide no benefit.  The metamodel monitoring
and updating function shown in Figure 3 suggests a
different approach, monitoring the adequacy of the
metamodel fit as design iterations progress and
conducting additional experimental runs to improve
metamodel fits only when required.  The controller must
decide when additional runs are needed and where in
design parameter space they should be conducted.

Determining when additional runs are needed is really
a validation issue, and so validation research may be
useful in answering this question.  Yesilyurt and Patera
(1993) provide one example of such a strategy.  They use
metamodels for deterministic subproblems that can be
expressed as a functional applied to a field satisfying
initial-boundary-value conditions.  The strategy was
applied to modeling two-dimensional laminar flow and
convective heat transfer as a function of two design
parameters, eddy promoter displacement and radius.  The
paper describes two metamodel types:  piecewise-
constant metamodels based on a Voronoi subdivision
about sampled design points, and a bivariate interpolation
method for scattered data.

The primary contribution of this work is the validation
methodology that the authors propose.  Monte Carlo
samples of the design parameter vector are drawn,
according to a Bayesian importance distribution function,
r.  For each vector, the difference between the metamodel
prediction, y' and the model prediction, y is computed.
The maximum of these differences is used in a
probability statement of the form: "the r-measure of the
set of design parameters where the metamodel error
exceeds Emax is less than ε

1
 with probability greater than

1 - ε
2
."  The validation methodology sets the number of

samples required for a given (ε
1
, ε

2
).  Unfortunately, for

high-dimensional design vectors, a small r-measure may
still produce an unacceptably large region with poor fit.
Yesilyurt and Patera's metamodel-based optimization
procedure redefines r at the end of an optimization cycle
using Monte Carlo validation bound to identify a reduced
search region where the simulation model response is
likely to be better than a pre-defined value.
Unfortunately, in practice they observed that the search
regions were not reduced substantially using this
approach.

Determining where additional runs are needed can be
based on self-assessment of the metamodel.  For
example, prediction intervals can be computed for any
parameter vector for polynomial regression models using
the general linear model assumptions, and new runs can
be specified at points in the current region of interest
with large prediction intervals.  Similar prediction error
estimates can be evaluated for spatial correlation models,
again based on probability model assumptions (Sacks et
al. 1989).  In addition, cross-validation can be used for
self-assessment of many metamodel types, and
bootstrapping may be useful for some experiment design
types.

The general structure of a semi-sequential strategy for
updating subsystem metamodels is shown below.  This
structure helps to clarify areas where further research is
needed.

Step 1. Establish Initial Designs and Fit Each
Subsystem Metamodel:  Initial designs will generally be
determined by the metamodel type and the number of
subsystem design parameters.  Possible designs include
Plackett-Burman, factorial, fractional factorial, central
composite, small composite (Draper 1985), Latin
hypercube and other orthogonal arrays (Owen 1992,
Tang 1993).

Step 2. Determine Current Region of Interest in
Design Parameter Space:  The current region of interest
may be determined in a number of ways.  It may be
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specified by the user, or defined  as the convex hull of a
specified number of most recent iterates, or defined as
the rectangular region bounded by the coordinatewise
maxima and minima for each design parameter over the
specified number of most recent iterates, for example.

Step 3.  Monitor Current Region of Interest:  If the
current region of interest changes, as indicated for
example by i) a specified number of iterates outside the
current region, ii) a specified reduction in the space
spanned by iterates within the current region, or iii) a
signal from the user, then go to Step 4.  Otherwise, return
to Step 2.

Step 4.  Assess Fit of Metamodels on Current Region
of Interest Against Current Fit Criteria:  The fit
criteria may change depending on the stage of the design
process and on the particular submodel.  Fit may be
assessed by validation runs selected according to a
validation run experiment design strategy, or by cross-
validation, or by a metamodel-specific self-measure of
prediction error, or by a combination of these methods.

Step 5a. Update the Metamodel Using a Revised
Experiment Design:  If the current fit criterion is not
satisfied, determine a set of existing and new runs to fit
the metamodel.  Conduct the new set of runs of the
subsystem model.  Use the selected set of new and
existing runs to fit a new subsystem metamodel.  Repeat
Step 4.

Step 5b. Update Estimate of Metamodel Uncertainty
over Current Region of Interest:  If the current fit
criterion is satisfied, update the estimate of the subsystem
metamodel uncertainty and return to Step 2.

The example in the next section implements a very
simple version of this approach.

5  AN EXAMPLE

In this example, the subsystem model has a single design
parameter, a single numerical output, and is
deterministic.  It is the function f(x) = 1/(1+x2) over an
initial region of interest corresponding to the interval [-
5,5].  Runge (1901) shows the failure of polynomial basis
functions to approximate this response function, and this
situation is also described in Schumaker (1981).  A
simple quartic polynomial fitted by least squares will be
used for the metamodel.  The design goal is assumed to
be maximization of the function over the initial region of
interest.

The example is not meant to illustrate a good strategy,
but only to give an instance of the general procedure
described in Section 4.  The example extends through
three iterations of Step 5b.  The resulting fit is compared
at each iteration with a simultaneous design consisting of
101 evenly spaced points (0.1 increment) between -5 and
5.

Step 1:  the initial design consists of 21 evenly spaced
x values between -5 and 5.  The resulting least-squares fit
is shown in the top plot of Figure 4.  This figure shows
three curves:  the true subsystem model response is coded
as 'A,' the 101-run simultaneous design metamodel is
plotted as 'B,' and the 21-run initial semi-sequential
design as 'C.'  The 21-run design produces virtually the
same fit as the simultaneous design in this example, and
so the 'B' and 'C' plot symbols overlap.

Step 2:  Based on the form of the initial metamodel,
the region of interest is arbitrarily reduced to the interval
[–1, 1].

Step 3:  Since the region of interest changed, Step 4 is
executed.

Step 4:  Fit may be assessed in a number of ways.  In
this example, whenever the region of interest changes,
the fit is assumed to be unsatisfactory.

Step 5a:  A design of 21 evenly spaced points in [-1,
1] is used to augment the initial 21-run design.  The
results are shown in the middle plot in Figure 4.  Note
that the error is reduced in comparison with the 'C'
metamodel in the top plot, for the current region of
interest.  (The error is more extensive elsewhere.)

Step 4:  The fit is assumed adequate after an
augmenting design.

Step 5b:  No error estimate is provided in this
example.

Step 2 . . .  Step 5b:  The process repeats, with an
arbitrarily selected region of interest of [-.5, +.5] at this
iteration, and [-.25, +.25] at the third iteration.  The
results of the third iteration are shown in the lower plot.
The fit shows further improvement over the region of
interest [-.25, .25] in comparison with the upper plots.

The advantage of a semi-sequential strategy is
illustrated even by this simple example:  the middle and
lower sequential metamodels based on 42 and 84 runs,
respectively, both show greater fidelity in the region near
the maximum than the 101-run simultaneous design.

6  SUMMARY

Integration strategies for system-level design are
important in an era of concurrent engineering, when
system-level design decisions involve detailed
information about subsystem performance.  Using a
metamodel-based integration strategy permits an
attractive compromise between model fidelity and the
ease of subsystem integration.
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A = True, B = Fitted quartic based on
101-run simultaneous design, C = Fit of
second 42-run semi-sequential design

A = True, B = Fitted quartic based on
101-run simultaneous design, C = Fit of
fourth 84-run semi-sequential design

A = True, B = Fitted quartic based on
101-run simultaneous design, C = Fit of
first 21-run semi-sequential design

Figure 4:  A Comparison of Semi-Sequential Designs
with a 101-Run Simultaneous Design for Fitting y =
1/(1+x2)

Critical to the success of such a strategy is an
effective experiment design methodology.  We have
presented one general structure:  a semi-sequential design
approach.  Key areas for research in developing this
structure include i) how to define a region of interest and
how to determine its current extent, ii) how to asses the
adequacy of metamodel fit over the region, iii) how to
select an experiment design composed of existing and
new runs given a region of interest, a metamodel type,
and an assessment of adequacy of fit, and iv) how to
determine when the region of interest has changed
enough to warrant reassessment.
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