
SELECTING THE BEST SYSTEM: A DECISION-THEORETIC APPROACH

Stephen E. Chick

Department of Industrial and Operations Engineering
The University of Michigan

1205 Beal Avenue
Ann Arbor, Michigan 48109-2117, U.S.A.
ABSTRACT

The problem of selecting the best system from a fi-
nite set of alternatives is considered from a Bayesian
decision-theoretic perspective. The framework pre-
sented is quite general, and permits selection from
two or more systems, with replications that use ei-
ther independent or common random numbers, with
unknown mean and covariance for the output, and
permits Gaussian or non-Gaussian simulation out-
put. For the case of unknown means and variance
with common random numbers, the framework pro-
vides a probability of correct selection that does not
suffer from problems associated with the Bonferroni
inequality. We indicate some criteria for which the
Bayesian approach and other approaches are in gen-
eral agreement, or disagreement. The probability of
correct selection can be calculated either by quadra-
ture or by Monte Carlo simulation from the posterior
distribution of the parameters of the statistical distri-
bution of the simulation output. We also comment on
expected-value decision-making versus optimization
criteria based on other functionals of the distribution
of the output.

1 MOTIVATION

One important application for stochastic simulation is
the selection of the best system from a set of alterna-
tives (Law and Kelton, 1991). Goldsman and Nelson
(1994) provide a comprehensive literature review of
ranking, selection, and comparison techniques for se-
lecting the best system and related problems (screen-
ing a large number of systems, comparing all systems
to a standard system and comparing all systems to a
default).

Two features of many of the techniques are (1) es-
timations of means (or means of differences) of per-
formance measures for the systems and (2) a measure
of the evidence that the correct decision was made,
expressed in terms of P-values of hypothesis tests.
(Multiple comparison procedures do not fall into this
category and are discussed in Section 6.)

When the mean and variance are unknown and
common random numbers are employed, the mea-
sure of evidence is usually based on P-values of multi-
ple comparisons and the Bonferroni inequality. This
inequality can significantly misstate the overall con-
fidence of a selection. More generally, the use of
P-values as a measure of evidence had been called
into question by a number of researchers (see Ap-
pendix A). The present work provides an alternate
probabilistic measure of evidence that extends a re-
cently proposed Bayesian framework for analyzing the
simulation output of a single system (Chick, 1997).
The relevant assumptions required from that paper
are given in Section 2.

The selection problem for independent simulation
replications is covered in Section 3. An extension to
handle dependencies such as common random num-
bers is given in Section 4. Arbitrary correlation be-
tween the output of each system is permitted, and
no assumptions are made regarding the values of the
mean and variance, other than that they are unknown
quantities. Approximations that indicate a relation
with frequentist techniques is given. An example of
selecting the best system with CRN is given in Sec-
tion 5. The relevance of BEM for estimating the prob-
ability of correct selection is discussed in Section 6.
Selection criteria using functionals of the output dis-
tribution other than the mean are discussed in Sec-
tion 7. Section 8 concludes with some comments on
the approach, particularly with respect to decision
theory.

Rather than speaking of mean values of output, as
is typical in a simulation context, this paper speaks
of expected utility as the output of interest in order
to remain consistent with the decision theory termi-
nology.
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2 ASSUMPTIONS

Suppose there are K different simulated systems, and
the objective is to select the system with the maxi-
mum expected utility. We make the following addi-
tional assumptions for the case of independent repli-
cations. Modified assumptions for dependent replica-
tions are given in Section 4.

1. The simulation output Ok,r for system k, repli-
cation r (k = 1, . . . , K; r = 1, . . . , Rk), is inde-
pendent from replication to replication.

2. The distribution of Ok,r has density

pOk |θk (ok,r) = fOk |θk(ok,r)dok

with continuous (possibly multidimensional) pa-
rameters θk, k = 1, . . .K.

3. The θk are initially unknown, with prior proba-
bility pΘ1,...,ΘK (θ1, . . . , θK) =

∏K
k=1 pΘk (θk).

4. A real-valued utility function u measures the
utility u(k, ok) of an outcome ok for system k.

5. The parameters for the input distributions to the
simulation are fixed.

Assumption 5 simplifies the presentation by ne-
glecting uncertainty about the distributions that de-
scribe randomness in the system behavior.

Define ~υ(θ) = (υ1(θ1), . . . , υK(θK)) to be the ex-
pected conditional utilities of each system, given θ,
where υk(θk) = E[u(k, Ok) | θk]. Because θk is un-
known, the expected conditional utility is a random
variable whose distribution depends on the distribu-
tion of θk. Write upper case Υk = E[u(k, Ok) | Θk]
for the random variable, and lower case υk for its out-
come. As more replications are run, more is learned
about the distribution of Θk, and therefore about the
unconditional expected utility.

The distribution of ~Υ = (Υ1, . . . ,ΥK) is used to se-
lect the best system and provide a probabilistic mea-
sure of evidence of correct selection.

3 INDEPENDENT REPLICATIONS

An important case of selecting the best of K sys-
tems arises when all replications for all systems are
run with independent random variables. Suppose
Rk independent replications are run for system k,
k = 1, . . .K. The assumptions in Section 2 lead to
the following.
The expected utility υk of a system is unknown,
whose distribution can be determined from the like-
lihood fOk |θk(ok), the prior distribution pΘk (θk) and
Bayes’ rule.

pΘk |D (θk) = Ak(D)pΘk (θk)

Rk∏
r=1

fOk|θk(ok,r), (1)

where D = {ok,r | all k, r} is the output from the sim-
ulation replications, and Ak(D) does not depend on
θk. The posterior predictive distribution for a future
value ok,Rk+1 of output is

pOk |D
(
ok,Rk+1

)
=

∫
θk

f(ok,Rk+1 | θk)pΘk |D (θk)

Finally, the posterior marginal distribution for the
expected utility of system k is found by:

pΥk|D (υk) =

∫
o|U(k,o)=υk

pO|D (o) (2)

The integral takes a particularly simple form if the
utility is the output (i.e., pΥ|D (υ) = pO|D (o)).

One is now in a position to describe which system is
best with which probability from the posterior distri-
butions for each of the systems. By the independence
assumption and Equation (2), system i is better than
system k (the event {υi ≥ υk}) with probability

pΥi,Υk |D (υi ≥ υk) =

∫∫
υi≥υk

pΥi|D (υi) pΥk |D (υk).

The probability that system i is best is then

p (i best | D) = p~Υ|D (υi ≥ υk, for all k 6= i)

=

∫
Ai

p~Υ|D (~υ), (3)

where the domain of integration Ai = {~u | ~ui ≥
~uk for all k 6= i} is the set of points where the util-
ity of system i is at least as great as the utility of the
other systems. Note that in general p (i best | D) 6=∏
k|k 6=i pΥi,Υk |D (υi ≥ υk), in spite of the indepen-

dence of the Υk.

3.1 Approximations

Suppose the output is the univariate utility,
u(k, ok,r) = ok,r. Approximate the distribution of the
output of each system with a Gaussian distribution
with unknown mean υk and variance σ2

k = τ−1
k . Fur-

ther suppose that τk has a gamma prior distribution
Ga (αk, βk), and that υk, given σ2

k = τ−1
k , has Gaus-

sian conditional distribution N1

(
µ0k, σ

2
k/n0k

)
. This
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generalizes the work of Andrews and Schriber (1983)
and Andradóttir and Bier (1997), where the variance
is assumed known.

Then the posterior distribution of the expected
(conditional) utility has Student distribution

pΥk|D (υk) ∼ St1

(
µRk ,

ζRk
βRk

, 2α+ Rk

)
(4)

where

µRk =
n0kµ0k + Rōk

n0k +Rk

ζRk = (n0k + Rk)(αk +
Rk

2
)

βRk = β +
sk

2
+
n0kRk(µ0k − ōk)2

2(n0k + Rk)

ōk =
Rk∑
r=1

ok,r/Rk

sk =

Rk∑
r=1

(ok,r − ōk)2.

The Student distribution with similar parameters
plays a role in a standard frequentist confidence in-
terval for the mean (Chick, 1997). Thus, inferences
based on approximating the output with a normal dis-
tribution, together with the conjugate normal-gamma
prior, can be related to classical inferences.

4 DEPENDENT REPLICATIONS

Techniques which induce dependent output from sys-
tem to system between replications, such as common
random numbers (CRN), can lead to significant sav-
ings of computational effort for system analysis. It is
therefore desirable to extend the techniques of Sec-
tion 3 to account for such dependencies.

If two systems see similar stochastic inputs (e.g.
services times, inter-arrival times) it is plausible that
a large realization of utility for system i, may increase
the probability that the realized utility for system k
will be large. For example, particular sequences of
customer arrival times and service times may lead
to a large utility for both an M/M/1 system and an
M/M/2 system (where utility might be the negative
of the waiting time).

4.1 General Theory

Assume that replications for each system can be
paired, set R to be the number of replications of each
system, set ~or = (o1,r , . . . , oK,r) to be the vector of
outputs from the r-th replication of each system. Fur-
ther assume that the vectors ~or, ~or′ are independent
when r 6= r′, but that the components o1,r, . . . , oK,r
are not necessarily independent for a given r. This
assumption permits CRN to be analyzed.

Set ~θ = (θ1, . . . , θK , θK+1) to be the vector of pa-
rameters for the output distributions, where θK+1 de-
termines dependencies between output from different
systems. When K > 2, θK+1 will generally be mul-
tivariate. When output is correlated, the expected
conditional utilities ~υ = (υ1, . . . , υK) are correlated.

Let p~Θ

(
~θ
)

be the prior distribution for ~θ. Then the

posterior distribution for ~Θ is

p~Θ|D′

(
~θ
)
∝ p~Θ

(
~θ
) R∏
r=1

f~Or |~θ(~or), (5)

where D′ is the correlated output from the simulation
replications, and f~Or |~θ(~or) is the conditional proba-

bility of seeing the given outputs for a given set of
parameters for the output distribution.

By analogy with the independent replication case,
output from future replications can be predicted with

p~O|D′ (~oR+1) =

∫
~θ

f~O|~θ(~oR+1)p~Θ|D′
(
~θ
)

The induced posterior distribution for the expected
utility ~υ of all systems is found by:

p~Υ|D′ (~υ) =

∫
~θ|~Υ(~θ)=~υ

p~Θ|D′

(
~θ
)

The probability that system i is the best system is
then calculated from the joint distribution of ~υ as

p (system i is best) =

∫
Ai

p~Υ|D′ (~υ) (6)

where the domain of integration Ai = {~u | ~ui ≥
~uk for all k 6= i} is the set of points where the util-
ity of system i is at least as great as the utility of the
other systems.

The definition of Ai may be modified to allow for
more general statements such as ‘system i has an ex-
pected utility which is not less than 1 below the max-
imum utility’, {~u | ~ui ≥ ~uk − 1 for all k 6= i}. Thus
the present theory can be modified to handle a more
general definition of ‘best’.

4.2 Approximations and Asymptotic Results

The selection result of Section 4.1 requires a large
number of parameters to be estimated simultane-
ously, and imposes difficult numerical integration
problems before the best system can be selected. This
section examines simplifications and approximations.



Selecting the Best System: A Decision-Theoretic Approach 329
Appendix B contains reference information regarding
the probability distributions used in this section.

First assume that the simulation output is the util-
ity, ~U = ~O. Second, assume that the distribution of
~U is joint Gaussian with unknown parameter (~υ,Σ).
This is often a reasonable assumption, as in cases
where the utility satisfies a functional central limit
theorem. Third, assume the appropriate multivariate
generalization of the approximation in Section 3.1, a
conjugate normal-Wishart distribution for (~υ,Σ),

p~Ur|~υ,Σ (~ur) ∼ NK (~υ,Σ)

π (τ) ∼ WK (α0, β0)

π (~υ | Σ) = NK (µ0,Σ/n0)

where ~ur is the correlated output from simulation
replication r from each system, (~υ,Σ) are the un-
known parameters of the Gaussian output distribu-
tion, and whose values are to be inferred through
simulation analysis, and τ = Σ−1 is the inverse of the
unknown covariance matrix. Prior information on τ is
represented with a Wishart distribution WK (α0, β0),
for some α0, β0 specified by the analyst, and prior
information on ~υ given τ = Σ−1 is represented by
a Gaussian distribution with parameters µ0,Σ/n0,
where µ0, n0 are specified by the analyst.

Construct sample statistics from R simulation
replications, the sampleK-variant mean ō and a sam-
ple K ×K covariance S, where

ō =
R∑
r=1

or

R

S =
R∑
r=1

(or − ō)(or − ō)
t. (7)

The posterior distribution for τ, ~υ is (Bernardo and
Smith, 1994)

p (τ | ō, S) ∼ WK (α0 + R/2,W1(ō, S))

p (~υ | Σ, ō, S) ∼ NK

(
n0µ0 +Rō

n0 +R
,

Σ

n0 + R

)
where

W1(ō, S)−1 = β0 +
1

2
S +

n0R(ō − µ0)(ō− µ0)t

2(n0 +R)
.

The posterior marginal distribution for the ex-
pected utilities can be shown to be a multivariate
Student distribution (Bernardo and Smith, 1994),

p (~υ | D′) ∼ StK

(
n0µ0 + Rō

n0 +R
, λp, 2α0 + R−K + 1

)
,

(8)
where

λp = (n0 +R)

(
α0 +

R−K + 1

2

)
W1(ō, S).

Several comments can be made about Equation (8).
First, the correlation of the utilities for different sys-
tems due to a given common-random number scheme
is inferred from the simulation output, and no as-
sumptions regarding the precise values of the cor-
relation were required. Second, the expected value
n0µ0+Rō
n0+R of the unknown expected utility approaches

the sample mean ō asymptotically. Third, the mul-
tivariate Student distribution is shown to play a role
for the Bayesian framework of selecting the best sys-
tem when a Gaussian approximation for the output
and a normal-Wishart distribution for the prior are
taken. Nelson and Matejcik (1995) anticipated this
for the special case of unknown means and a known
covariance.

5 EXAMPLE

A well-known example (Law and Kelton, 1991) of us-
ing common random numbers to compare two sys-
tems is the Zippytel (one expensive automated teller)
versus Klunkytel (two automated tellers that are half
as expensive and half as fast) problem. Zippytel (sys-
tem 1) is an M/M/1 queue, and Klunkytel (system
2) is an M/M/2 queue. Mean inter-arrival time is
assumed to be 1, and both have the same utiliza-
tion, ρ = 0.9. Utility ~u in this case is taken to be
the negative of average delay in queue of the first
100 customers. Analytical results (Kelton and Law,
1985) indicate that the theoretical expected utilities
are υ1 = −4.13 and υ2 = −3.70.

We simulate to evaluate the performance of the re-
sults in Section 4.2 in determining that the Klunky-
tel has better performance, p (υ2 ≥ υ1 | D), based on
simulation output D. R = 100 replications of each
system with independent and synchronized CRN were
performed. Sample means and standard errors (Ta-
ble 1) are consistent with those published in (Law and
Kelton, 1991).

Posterior distributions were taken from Equa-
tion (4) for independent replications, and from Equa-
tion (8) with CRN. Prior distributions assumed µ0 =
(4, 4), n0 = 1, α = 2.5, β = diag(2, 2). This results
in a prior mean for ~υ near half the steady-state mean
for Speedy, an expected mean for the covariance ma-
trix of diag(2, 2), and a variance in the mean which
is diag(50, 50). The assumptions are rather conserva-
tive, and the results of the analysis are somewhat
insensitive to the prior distribution selected. The
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Table 1: Analysis of Average Waiting Time, R = 100

System Theory ō SE
Speedytel 4.13 3.80 .304
Klunkytel(Ind) 3.7 3.49 .318
Klunkytel(CRN) 3.7 3.40 .299

Table 2: Posterior Probability Klunkytel is Better
and P-value for H0 : Same Performance

Variates p (υ2 ≥ υ1 | D) P-value for H0

Indep. .71 .59
CRN 1− 1× 10−30 1.5× 10−34

Bayesian results are compared with frequentist P-
values for the hypothesis H0 : Klunkytel and Speedy-
tel have the same performance.

The correlation of the output for the two systems
is extremely high, with S in Equation (7) calculated
as

S =

[
917.0 898.3
898.3 884.2

]
The posterior distribution p (υ | D) has Student dis-
tribution with mean and variance given by:

E[υ | D] = (−3.800,−3.404)t

Var[υ | D] =

[
0.0891 0.0872
0.0872 0.0860

]
This is relatively similar to frequentist intuition: a
standard error of 0.3 (see Table 1) corresponds to
a variance of 0.09, and both systems have marginal
variances of about 0.09.

A summary of some of the results is presented
in Table 2. Not surprisingly, neither the Bayesian
nor frequentist approach presented strong evidence
that Klunkytel was better than Speedytel, based on
the replications with independent variates. When
common random numbers were used, the Bayes ap-
proach made it quite clear that Klunkytel outper-
forms Speedytel. The frequentist P-value, together
with the sample means, indicate that Klunkytel is
the clear winner as well.

Note that the P-value does not at all correspond to
the probability p (υ2 = υ1 | D). The latter probability
is 0 in the Bayesian framework proposed here. On the
other hand, because of the properties of the Student
distribution, one will observe that the 1− P-value/2
and p (υ2 ≥ υ1 | D) will be close when: (1) the prior
distribution is uninformative in some sense, or the
number of replications is large, (2) the Gaussian ap-
proximations for the output are assumed, and (3) the
estimated mean for system 2 is better than for sys-
tem 1 (the factor of 2 is because the t-test is two-
sided. The result holds because the difference of two
t-distributions with the same degrees of freedom (the
posteriors from the paired independent replications)
is a t-distribution (analogous to frequentist estima-
tion of the mean of differences). Under these con-
ditions, the P-value provides a measure of evidence
which is roughly parallel to a Bayesian posterior dis-
tribution.

If these three conditions are not satisfied, or if the
point hypothesis testing framework of Berger and Sel-
lke (1987) were used, the P-value would not be an ap-
propriate measure of evidence for the reasons detailed
in Berger and Sellke (1987) and briefly summarized
in Appendix A.

6 COMMENTS ON THE BEM

Alternate selection processes exist in the literature.
One is the BEM multinomial selection procedure de-
scribed by Bechhofer, Elmaghraby, and Morse (1959).
Miller, Nelson and Reilly (1996) describe an extension
of BEM, the All Vector Comparison (AVC), along
with analysis, simulations, and conjectures.

The BEM can be used to estimate the probability
that a given system is best in cases when the posterior
for the expected utility Equation (6) or Equation (8)
is too difficult to handle analytically or by quadra-
ture.

Sample random variables from the posterior distri-
bution for the expected utility, from Equation (8) for
example (and not from the original simulations of the
K systems). Sampling from the original simulated
systems would give incorrect results, as observed util-
ities, not expected utilities would be sampled. (For
instance, if system 1 always outputs 10, and system
B outputs 9 with probability .9 and 20 with prob-
ability .1, then system A would be declared better
with probability .9 if output was sampled, but B has
a better expected value.)

The BEM approach has a natural Bayesian repre-
sentation. Let ~p = (p1, . . . pK) be the multinomial pa-
rameters for the BEM selection problem. Any proper
prior is possible for ~p, but if the conjugate Dirichlet
prior

π (~p) ∼ DiK−1 (α1, . . . , αK)

is chosen, then the posterior distribution is tractable
analytically. Specifically, if (n1, . . . , nK) is a vector
representing that system k had the highest sampled
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expected value nk times, the posterior distribution is

p (~p | D) ∼ DiK−1 (α1 + n1, . . . , αK + nK)

The maximum a posteriori probability p̃ (Bayesian
analog of MLE) is then given by

p̃k =
αk + nk − 1∑K
i=1 αi + ni − 1

.

for k = 1, . . . , K − 1, and p̃K = 1−
∑K−1
i=1 p̃i. These

estimates can be used as a measure of belief that a
given system is best.

7 FUNCTIONALS OF DISTRIBUTIONS

It is sometimes of interest to evaluate functionals of
the output distributions of the various systems other
than expected utility. For instance, a comparison
of quantiles of the systems can provide insight for
a decision-maker. This section discusses the selection
of the ‘best’ system when best is defined by optimiz-
ing a functional of the output distributions other than
expected utility.

A Bayesian analysis for output distributions is com-
patible with either expected-utility or functional opti-
mization decision making. The analysis is quite sim-
ilar to the analysis for expected utility decision mak-
ing. The primary difference is that the functional Lk
of interest is no longer E[Uk], but takes a more gen-
eral form that maps a probability distribution p (·)
into a figure of merit `k.

`k = Lk(pOk |θk (·)) (9)

Here, the notation pOk|θk (·) is used to emphasize that
Lk is a function of the entire probability distribution
of the output, rather than the distributions density at
a specific value of the output. As with the expected
utility case, pOk|θk (ok) depends on an unknown pa-
rameter θk, and therefore `k is a random variable
whose distribution is determined by the posterior dis-
tribution of θk from Equation (1) or Equation (5).

The selection of the ‘best’ system then follows ex-
actly as above for selecting the system with the max-
imal utility, except that `k takes the place of υk.

Selecting the best system by optimizing a func-
tional other than expected utility is non-optimal from
a decision-theoretic viewpoint, unless one or more of
the axioms of decision theory has been rejected. See
for example deGroot (1970), or Bernardo and Smith
(1994) for axioms for decision making.
8 CONCLUSIONS

A unified framework for the problem of selecting the
best simulated system was presented from a Bayesian
perspective. The framework assumes that simulation
output is described by a parametric statistical distri-
bution. The parameters are inferred from the output
of the simulation. Uncertainty in the parameters in-
duces a distribution on the conditional mean value
of the output, conditional on the parameter of the
output distribution. The classical approach of as-
suming Gaussian output and Student distributions
for the mean value of the output was shown to have
similar asymptotic properties to a special case of the
Bayesian framework: namely, Gaussian output with
a normal-Wishart prior.

Benefits of this Bayesian framework are selection
from two or more systems, with either independent or
common random numbers, with unknown (or known)
means and/or covariances for the output, and Gaus-
sian or non-Gaussian simulation output. For the case
of unknown mean and variance with common ran-
dom numbers, the framework provides a probability
of correct selection that does not suffer from problems
associated with the Bonferroni inequality.

We indicated some criteria for which the Bayesian
approach and other approaches are in general agree-
ment, or disagreement, in Section 5.

The framework can be adapted for selecting the
best system, comparing systems to a standard, sub-
set selection, and indifference zone techniques merely
by changing a domain of integration of the posterior
probability given in Equation (3), Equation (6), or
Equation (8). Should these integrals resist evaluation
by quadrature, the BEM multivariate selection crite-
ria and Monte Carlo techniques can be applied to ap-
proximate the probability that a given system is the
best. We also comment on expected-value decision-
making versus optimization criteria based on other
functionals of the distribution of the output.

The current paper did not discuss the determina-
tion of the number of replications required to achieve
a specific probability P ∗ of correct selection. This
constitutes an important area for further research.
Another interesting application for further research
is simulation output analysis when some replications
are correlated, but not all replications can be paired
(e.g., the missing data problem).

Although the focus has been on decision-theoretic
perspective of Bayesian statistics and expected util-
ity, other uses are possible. For instance, it is possi-
ble to use Bayesian statistics with expected values of
other simulation outputs, or with other functionals of
the output distribution. Relatively little research has
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been focused in this domain of research, in contrast
with the relatively large amount of frequentist-based
work on estimation of means and other functionals,
notably quantiles.
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APPENDIX A: EVIDENCE

The P-value has been a standard measure of evidence
in hypothesis testing for determining the best sys-
tem. On the other hand, there has been considerable
discussion in the statistical literature regarding the
potential pragmatic pitfalls of using a P-value as a
measure of belief that a decision based on confidence
intervals is correct.

Berger and Sellke (1987) describe a series of ex-
periments each of which could be analyzed using a
hypothesis test of H0 : θi = 0 versus H1 : θi 6= 0,
where each hypothesis seemed to be equally likely
based on past experience. They pose two questions:
Among experiments for which the P-value is around
0.05, what portion correspond to a true H0? In other
words, what is the posterior probability pH|x (H0)
that H0 is true, given that data x has been observed?
What is the same result for a P-value of 0.01? Such
low P-values are typically used to indicate that H0

is almost certain to be wrong. Suppose a Bayesian
analysis were applied, and that each hypothesis has
a prior probability of 1/2. They provide surprising
lower bounds to those questions: 0.24 for the first
question, and 0.07 for the second, regardless of the
prior distribution pΘi|H1 true (θi) chosen. The rela-
tion between posterior probability and P-value of a
hypothesis can take on different forms for different
tests (Casella and Berger, 1987).

In the example of Section 5, 1 − P-value/2 and
p (υ2 ≥ υ1 | D) were close. More generally, for K = 2
systems, the P-value and the probability of correct
selection (using the framework above) are off by a
linear transformation. This is because a two-sided
test is being used for a one-sided question.

The use of P-values as a measure of evidence, there-
fore, may be misleading. In general, the P-value for
a classical test that examines test statistics T (X) for
observed data X = x is p (T (X) ≥ T (x) | H0), where
H0 specifies the true parameter. Simulations to de-
termine coverage probabilities for approximations to
confidence intervals similarly assume the null hypoth-
esis. On the other hand, the posterior probability of a
hypothesis given data x is p (H0 | x), a very different
quantity - the probability that the hypothesis is true,
given the data. The P-value refers to the probability
of getting extreme test statistics for a given, known
value of a parameter. In other words, the P-value
conditions on events that never happen. p (H0 | x)
refers to the probability of a proposition given cer-
tain data. Although this is generally clear to statis-
ticians, it is a subtle point that is often overlooked in
practice, where P-values are often misinterpreted as
probabilities that a hypothesis is true. Further, in-
troductory simulation and statistical text books tend
not to cover this issue.

APPENDIX B: DISTRIBUTIONS

Densities for the multivariate distributions used in
this paper are presented here for convenience. Addi-
tional information is available in Bernardo and Smith
(1994) and Robert (1994).

Dirichlet distribution: A (K−1)×1 vector X is
said to have a DiK−1 (α1, . . . , αK) distribution when

Xi ≥ 0,
∑K−1
i=1 Xi ≤ 1, and the density function f(x |

α1, . . . , αK) is

f(x | α1, . . . , αK) = c

(
1−

K−1∑
i=1

xi

)αK−1 K−1∏
i=1

xαi−1
i

where c = Γ(
∑K
i=1 αi)/

∏K
i=1 Γ(αi), and αi > 0.

E[X] = (α1, . . . , αK)/
∑K
i=1 αi.

Gamma distribution: A real-valued random
variable X is said to have a Ga (α, β) distribution
when the density function f(x | α, β) is

f(x | α, β) =
βα

Γ(α)
xα−1e−βx.

E[X] = αβ−1 and Var[X] = αβ−2.
Multivariate Gaussian distribution: A K-

dimensional vector random variable X is said to have
a NK (µ,Σ) distribution when the density function
f(x | µ,Σ) is

f(x | µ,Σ) =
e−

(x−µ)tΣ−1(x−µ)
2

(2π)K/2|Σ|1/2

where µ is the K-dimensional mean, |Σ| is the de-
terminant of Σ, and and Σ is the covariance matrix.
E[X] = µ and Var[X] = Σ.

Multivariate Student distribution: A K-
dimensional vector random variable X is said to have
a StK (µ, λ, α) distribution when the density function
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f(x | µ, λ, α) is

f(x | µ, λ, α) = c

[
1 +

(x− µ)tλ(x − µ)

α

]−α+K
2

where µ is the K-dimensional mean, λ is a sym-
metric, positive-definite K × K matrix, α > 0

is the degrees of freedom, and c = |λ|1/2Γ((α +
K)/2)/

(
Γ(α/2)(απ)K/2

)
is a normalizing constant.

E[X] = µ and Var[X] = λ−1α/(α− 2).
Wishart distribution: The Wishart distribution

is an appropriate generalization for the χ2 distribu-
tion to multiple dimensions. A symmetric, positive-
definite K×K matrix X is said to have a WK (α, β)
distribution when the density function f(x | α, β) is

f(x | α, β) = c|x|
α−(K+1)

2 e−tr(βx)

where α > (K − 1)/2 is real-valued, β is a sym-
metric, non-singular K × K matrix, |A| is the de-
terminant of A, and tr (A) is the trace of A, and

c = |β|α/
(
πK(K−1)/4

∏K
k=1 Γ((2α+ 1− k)/2)

)
is a

normalizing constant. When K = 1 the Gamma dis-
tribution is recovered.
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