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optimization problem which takes the following form.

min
θ∈Θ

J(θ) = E[L(θ, ω)], (2)

where J(θ) is the average performance measure of in-
terest, L(θ, ω) is the sample performance and ω rep-
resents the stochastic effects of the system.

It should be noted that solving (2) is much more
difficult than solving (1) as in most cases, an analyti-
cal expression relating the performance function J(θ)
to a solution θ ∈ Θ does not exist. Often, one has
to use real-time observations or to resort to simula-
tion in order to evaluate the objective function. In
this paper, we will address both of these optimiza-
tion problems in a unified framework. In particular,
we will use discrete event simulation techniques for
solving the stochastic problem.

Solving large-scale combinatorial problems is, as
we stated above, a very difficult problem. The emer-
gence of parallel processing capabilities opens up an
intriguing possibility for the development of new par-
allel search techniques. Several applications of par-
allel computing have already been successfully devel-
oped in the field of combinatorial optimization (Fer-
reira and Pardalos 1996). Unfortunately, the theory
of computational complexity has established several
important problems, such as the traveling salesman
problem and quadratic assignment problem, to be in-
trinsically difficult in the sense that the problem of
finding an ε-approximate solution for these problems
remains NP-hard (Sahni and Gonzalea 1976; Parda-
los and Wolkowicz 1996). It is, therefore, widely be-
lieved that neither sequential nor parallel determin-
istic algorithms can be used to efficiently solve these
problems.

The last decade has witnessed a rapid growth in
the area of randomized algorithms. In particular,
many Markov chain based methods have been pro-
posed in recent years. Earlier methods include the
Metropolis method (Hastings 1970), and Simulated
Annealing (Kirkpatrick, Gelatt, and Vecchi 1983). Re-
cent methods include those proposed by Ho and Lar-
ABSTRACT

In recent articles we presented a general methodology
for finite optimization. The new method, the Nested
Partitions (NP) method, combines partitioning, ran-
dom sampling, a selection of a promising index, and
backtracking to create a Markov chain that converges
to a global optimum. In this paper we demonstrate,
through examples, how the NP method can be ap-
plied to solve both deterministic and stochastic finite
optimization problems in a unified framework.

1 INTRODUCTION

Constructing efficient algorithms for solving either
NP-hard deterministic or finite stochastic optimiza-
tion problems is perhaps one of the most challenging
tasks facing the computer science, control theory, and
operations research communities. It is not surprising
that the first of these problems is listed in the Grand
Challenges of the Federal High-Performance Comput-
ing and Communication (HPCC) program. Beyond
toy problems, computational complexity is an obsta-
cle faced by even the most elegant and effective ap-
proaches. In the case of stochastic systems, the situa-
tion is complicated even further by the added element
of uncertainty.

The need to solve such problems arises in a wide
variety of system design and control applications. Ex-
amples include optimal design of air- and spacecraft
for low cost and/or high efficiency, optimal resource
allocation, optimal job scheduling on parallel proces-
sors, and modeling and simulation of large molecular
systems.

In general, the optimization problem considered in
this paper is as follows. Given a finite feasible region
Θ, and a performance measure f : Θ→ R, solve

min
θ∈Θ

f(θ). (1)

The problem above is therefore a combinatorial opti-
mization problem. We also consider a finite stochastic
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son (1995), Ho, Sreenivas and Vakili (1992), Yan and
Mukai (1992), Andradóttir (1995), and the Nested
Partitions (NP) method (Shi and Ólafsson 1996a).
The Metropolis method and simulated annealing are
often used to solve combinatorial optimization prob-
lems. On the other hand, the methods proposed
by Yan and Mukai, and Andradóttir, aim at solving
discrete stochastic optimization problems. Our pro-
posed NP method can be applied to both optimiza-
tion problems. A notable feature of the NP method is
that it combines global and local search in a natural
way. It is also highly suitable for parallel computer
structures.

This paper is organized as follows. Section 2 pro-
vides a generic NP algorithm for both deterministic
and stochastic optimization. Section 3 discusses the
implementation of the NP method to a well-known
combinatorial problem, namely the Traveling Sales-
man Problem. Section 4 presents an application of
the NP algorithm to a stochastic discrete optimiza-
tion problem. Some conclusions are drawn in the final
section.

2 THE NESTED PARTITIONS METHOD

Given a finite solution space Θ, and a performance
function denoted by either f(θ) or J(θ), the Nested
Partitions (NP) method can be briefly described as
follows. In each iteration of the algorithm we assume
that we have a region, i.e., a subset of Θ, that is con-
sidered the most promising. We then partition this
most promising region into M subregions and aggre-
gate the entire surrounding region into one region.
At each iteration, we therefore look at M + 1 dis-
joint subsets of the feasible region Θ. Each of these
M + 1 regions is sampled using some random sam-
pling scheme, and for each region a promising index
is calculated. These promising indices are then com-
pared to determine which region is the most promis-
ing in the next iteration. If one of the subregions is
found to be best, this subregion becomes the most
promising region. However, if the surrounding region
is found to be best, the algorithm backtracks and a
larger region containing the current most promising
region becomes the new most promising region. The
new most promising region is then partitioned and
sampled in a similar fashion.

In the first iteration we normally use the entire
feasible region Θ as the most promising region. Since
the surrounding region is empty, we sample only from
M regions in the first iteration, or in any iteration
where Θ is considered the most promising region. It
is clear that since Θ is finite, the partitioning can be
continued until eventually all the regions are single-
tons and cannot be partitioned further. These regions
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Figure 1: Partitioning Generated by the NP Method

are called regions of maximum depth, and more gen-
erally, we talk about the depth of any region. This
is defined iteratively in the obvious manner, with Θ
having depth 0 and so forth.

2.1 Simple Example

As an example, consider a feasible region which con-
sists of 8 points σ0 = Θ = {1, 2, 3, 4, 5, 6, 7, 8}. In
each iteration the current most promising region is
partitioned into two disjoint sets, that is, M = 2
(see Figure 1). At the first iteration, σ0 is the most
promising region and its subregions σ1 = {1, 2, 3, 4}
and σ2 = {5, 6, 7, 8} are sampled. Assume that the
promising index for σ1 is better than for σ2. We then
select σ1 as the most promising region in the second
iteration and further partition it to obtain σ3 = {1, 2}
and σ4 = {3, 4}. In the second iteration, σ3, σ4, and
the surrounding region, Θ \ σ1 = σ2, are sampled. If
the promising index of σ3 is best, we then select σ3

to be the most promising region in the third iteration
and partition it further into another two subregions
σ7 = {1} and σ8 = {2}. On the other hand, if the
promising index of the surrounding region, σ2, is best,
we backtrack and select σ0 as the most promising re-
gion in the third iteration. Now assume that σ3 is
the most promising region. In the third iteration, σ7,
σ8, and the surrounding region, σ0 \ σ3, are sampled.
If the promising index of σ7 is best, we select σ7 as
the most promising region. If the promising index of
the surrounding region is the best, we select σ1 as
the most promising region. This proceeds until some
stopping criterion is satisfied.

As the algorithm evolves, a sequence of the most
promising regions {σ(k)}∞k=0 is generated. Here σ(k)
is the most promising region in the k-th iteration.
In Shi and Ólafsson (1996a, 1996b), we have shown
that {σ(k)}∞k=0 is a Markov chain which converges
to a global optimum with probability one. In par-
ticular, we have shown that in the deterministic case
{σ(k)}∞k=0 is a Markov chain with all global optima
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as absorbing states, and {σ(k)}∞k=0 is ergodic in the
stochastic case.

2.2 The Nested Partitions Algorithm

The general procedure of the NP algorithm is as fol-
lows.

1. Partitioning.

Partition the most promising region σ(k), into
Mσ(k) subregions σ1(k), ..., σMσ(k)

(k), and ag-
gregate the surrounding region Θ \ σ(k) into
one region, denoted σMσ(k)+1(k).

If we reconsider the example in Section 2.1, we
could, for example, have σ(k) = σ4, so σ1(k) =
σ9, σ2(k) = σ10 and σ3(k) = σ0 \ σ4 = σ3 ∪ σ2.

It should be noted that the partitioning scheme
determines the state space of the Markov chain
and should be fixed during implementation of
the method. This means that if a region is se-
lected repeatedly as the most promising region,
then the same partitioning rule should be ap-
plied to the region each time.

2. Sampling.

Randomly sample Nj points from each of the
regions σj(k), j = 1, 2, ...,Mσ(k) + 1,

θj1, θj2, ..., θjNj, j = 1, 2, ...,Mσ(k) + 1,

and calculate the corresponding performance val-
ues f(θ) (or L(θ, ω) in the stochastic case).

f(θj1), f(θj2), ..., f(θjNj), j = 1, 2, ...,Mσ(k)+1.

There is a great deal of flexibility in selecting a
sampling strategy. In fact the only restriction is
that each point in the sample region must have
a positive probability of being selected.

3. Calculating the Promising Index.

For each region σj, j = 1, 2, ...,M+ 1, define a
promising index function, I(σj), and calculate
the promising index. For example, define I(σj)
as the best performance value in the region

I(σj) = min
θ∈σj

f(θ), j = 1, 2, ...,Mσ(k) + 1 (3)
and estimate I(σj) using

Î(σj) =  min
i=1,2,...,Nj

f(θji), j = 1, 2, ...,Mσ(k)+1.

(4)

We refer to this promising index as the ordinal
promising index. Many other options exist, and
we refer the reader to Shi and Ólafsson (1996a,
1996b) for details.

4. Backtracking.

Determine the most promising region σjk.

jk ∈ arg min
j=1,...,Mσ(k)+1

Î(σj). (5)

If more than one region is equally promising,
the tie can be broken arbitrarily. If the index
corresponds to a subregion of σ(k), then let this
subregion be the most promising region in the
next iteration. Otherwise, if the index corre-
sponds to the surrounding region, backtrack to
the region which is the parent of the current
most promising region. The depth of the parent
region is one less than the depth of the current
most promising region.

It should be noted that the NP algorithm can
be applied to both deterministic and stochastic op-
timization problems. If the performance function can
be evaluated accurately then we have a deterministic
optimization problem, otherwise we have a stochastic
optimization problem.

From Figure 1, it is clear why the algorithm is
termed the nested partitions method. The feasible
region is partitioned iteratively so that each partition
is nested within the last. Hence the basic idea of the
algorithm is to shift the focus from points in the fea-
sible region to a sequence of subsets of the feasible
region. Due to this shift in focus, and the fact that
the promising index is defined on these sets, we can
incorporate any effective heuristic method into the
algorithm by using it to define the promising index.
This is possible because the only restriction for select-
ing an appropriate promising index is that a promis-
ing index function should agree with the performance
measure on regions of maximum depth, i.e., on single-
tons. Therefore, finding the optimal solution for the
original optimization problem is equivalent to finding
the maximum depth region with the best promising
index value.

Another important consequence of shifting the fo-
cus to subsets of the feasible region is that it makes
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the NP method highly compatible with parallel com-
puter structures. Each subregion can be treated inde-
pendently and in parallel. Therefore, the algorithm
can take maximum advantage of the available parallel
resources. As high performance computing facilities
become more available, this feature will become in-
creasingly important.

The method described so far can be considered
a generic algorithm capable of supporting different
partitioning techniques, sampling methods, promis-
ing indices, and backtracking rules. In the follow-
ing we demonstrate through examples how the NP
method can be applied to combinatorial and finite
stochastic optimization problems.

3 THE NP METHOD FOR COMBINATO-
RIAL OPTIMIZATION

In this section we describe how the NP algorithm can
be applied to a well-known combinatorial problem,
namely the Traveling Salesman Problem (TSP). The
TSP is one of the most prominent members in the rich
set of combinatorial optimization problems (Lawler,
Lenstra, Rinnooy, and Shmoys 1985; Reinelt 1992).
Originally formulated as the problem of finding the
shortest route for a traveling salesman to visit all
of his customers, the problem has found many im-
portant applications such as routing robots through
automatic warehouses, sending couriers to automatic
teller machines, and drilling holes through printed cir-
cuit boards. The list of applications continues, mak-
ing the TSP one of the most important combinatorial
optimization problems.

3.1 The Traveling Salesman Problem

As stated above, the TSP is the task of finding a route
with the shortest possible length through a given set
of cities. Formally, the problem consists of a number
of cities, represented by vertices in a graph, and a
number of connections, or edges, between the cities.
Each edge is associated with a cost, which represents
the cost of traveling between the two cities connected
by the edge. The objective is to find the tour that
passes through each city exactly once and returns to
the starting point, such that the overall cost of trav-
eling is minimized. Therefore, given a cost matrix
C = (cij)i,j=0,1,...,n, where cij is the cost of going
from city i to city j, the TSP problem can be stated
mathematically as follows

min
θ∈Θ

f(θ) ≡ min
θ∈Θ

(ci0i1 + ci1i2 + ...+ cini1), (6)

where θ = (i0, i1, ..., in) is a permutation of {0, 1, ..., n}
and Θ is the set of all such permutations.
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Figure 2: Generic Partitioning for the TSP

We assume the TSP is symmetric. This implies
that cij = cji, that is, the cost of traveling from city
i to city j is exactly the same as that from city j to
city i for all cities i and j.

3.2 Partitioning

To apply the NP algorithm to the TSP problem, we
first consider how to partition the solution space into
subregions. This must be done in such a way that
they can be partitioned further until each subregion
is a singleton. Although there are no further restric-
tions on the partitioning strategy, it determines the
efficiency of the algorithm. If the partitioning is such
that good solutions are clustered together, the NP
algorithm quickly identifies a set of near optimal so-
lutions. In this paper, we introduce one partitioning
technique, namely generic partitioning. Other parti-
tioning approaches can be found in Shi, Ólafsson, and
Sun (1997).

We present a generic way to partition the solu-
tion space. By this we mean a partitioning of the
solution space that does not consider the objective
function. Given n + 1 cities, suppose we choose city
0 as the starting point and other cities are labeled as
1, 2, ...., n. The whole solution space becomes all per-
mutations of {1, 2, ..., n}. First, divide the solution
space into n equal parts by fixing the first city on the
tour to be one of 1, 2, ..., or n (note that Mσ(0) = n).
Then further partition each such subregion into n−1
parts by fixing the second city as any of the remain-
ing n − 1 cities on the tour. This procedure can be
repeated until all the cities on the tour are fixed. At
this point the subregions are all singletons and the
maximum depth is hence reached. Figure 2a illus-
trates this approach.

It should be noted that there exist many such
partitions. For example, after choosing city 0 as the
starting point, instead of fixing the first city on the
tour, we could fix any i-th city on the tour to be one
of cities 1, 2, ..., n (see Figure 2b). This provides a
completely different set of subregions.
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The advantage of generic partitioning is that the
search tree is completely predictable in general and
is highly regular in terms of branching degrees and
searching depths. Therefore, this type of partitions
is ideal for parallel algorithms.

3.3 Random Sampling

Assume that generic partitioning is used (see Figure
2), and the current most promising region is of depth
k. This means that the first k edges in the tour have
been determined. Obtaining a sample from this re-
gion entails finding the n − k remaining edges. One
approach would be simply to pick the edges consec-
utively, such that each feasible edge has equal prob-
ability of being picked. This corresponds to uniform
sampling. However, this approach may not always
give good results in practice. The intuitive reason
is that uniform sampling considers only the solution
space itself. To incorporate the objective function
into the sampling, we present the following weighted
sampling scheme.

Assume a current most promising region defined
by the first k cities being fixed, that is, a sequence
of vertices v1, v2, ..., vk has been selected. The follow-
ing algorithm then determines the remaining n − k
vertices.

Given a constant p ∈ [0, 1].
for i = k + 1 : n do

remark Given vi−1 determine vi
let u be generated from U(0, 1).
if u < p,

let the next edge (vi−1, vi) be the lowest
cost edge.

else,
let (vi−1, vi) be a random edge according

to a uniform distribution.
end

end

It should be noted that the case p = 1 corresponds
to a nearest neighbor search and the case p = 0 cor-
responds to uniform sampling. For 0 < p < 1 it is a
non-uniform sampling scheme that picks each feasible
tour with a positive probability. Hence it is a valid
sampling scheme for the NP method.

We call readers’ attention to the fact that the
weighted sampling scheme provides a new construc-
tion heuristic for the TSP, which as far as we know
has not been previously reported in the literature.

3.4 Calculating the Promising Index

After using the weighted sampling scheme to select
Nj points from each subregion, we need to define the
promising index, I(σj), that will be used to determine
the most promising region. There exist many poten-
tial candidates for the function (Shi, Ólafsson, and
Sun 1997). In this paper, we consider a promising
index defined as follows.

Since the promising index function is defined on
the set Σ, which is a collection of subsets, it is pos-
sible to incorporate many effective heuristic methods
into the NP algorithm when the current subregion is
not of maximum depth. That is, we can take the Nj
sampling points as initial points and for each of these
sampling points, perform a fixed number of improve-
ments based on a given heuristic method. We define
the promising index function as in (3) and estimate
it as follows. Let H : Θ × Σ → Θ be a function
that transforms a point θ0 ∈ σ into another point
θ1 = H(θ0, σ) ∈ σ, by applying one or more itera-
tions of some heuristic search method. The starting
point of the search is θ0 ∈ σ, and the search is con-
strained to stay within σ ∈ Σ. Given this function,
the estimated promising index may be defined as fol-
lows.

Î(σj) =  min
i=1,2,...,Nj

f(H(θji, σj)). (7)

To make this concrete, we can for example define
H as m iterations of the well known 2-opt exchange
heuristic (Reinelt 1992). Note that m = 0 implies
that no heuristic improvements are made andm→∞
implies an exhaustive heuristic search.

3.5 Backtracking

The NP method provides great flexibility in select-
ing a backtracking rule. Perhaps the simplest rule
is to always move to the immediate superregion of
the current most promising region. However many
other alternatives exist. For example, we could back-
track all the way to the entire feasible region, or to
any region that is between the superregion and the
entire feasible region. We can also consider the su-
perregion of the best tour found in this iteration in
the surrounding region.

To provide a systematic way for backtracking, we
adopt the following approach in this paper. If the
depth of current region is less than the maximum
depth, then the algorithm backtracks to a superregion
of the best solution found during this iteration. This
superregion is determined such that it has less depth
than the current region. For example, if the current
most promising region is (i∗0, i

∗
1, ..., i

∗
k, x, x, ..., x) and

the best solution, (j∗0 , j
∗
1 , ..., j

∗
n), is found in the sur-

rounding region, then the next most promising region
is determined to be (j∗0 , j

∗
1 , ..., j

∗
k−h, x, x, ..., x). If the

current region is at maximum depth, then the algo-
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rithm backtracks to a superregion of the best solution
found in the current iteration. The superregion is de-
termined by a predetermined depth h > 0 as before.
For example, if the current region is at the maximum
depth and the best solution, (j∗0 , j

∗
1 , ..., j

∗
n), is found in

the surrounding region, then the next most promising
region is determined to be (j∗0 , j

∗
1 , ..., j

∗
n−h, x, x, ..., x).

The advantage of the abovementioned backtrack-
ing rule is that if the ancestor of a better solution has
a higher probability of containing the optimal tour
than the current promising region, the algorithm will
quickly identify the subregion which contains the op-
timal solution.

3.6 Selecting the Initial Most Promising Re-
gion

When describing the generic NP method in Section
2, we assumed that the most promising region in iter-
ation zero is the entire feasible region. This assumes
that at iteration zero there is no knowledge available
about where good solutions might be located. How-
ever, if such knowledge is available, the NP method
can use any other valid region σ(0) ∈ Σ as the initial
most promising region. The information leading to
a specific initial region may for example come from
previous numerical experience, but we can also go
through an initialization phase to find such a region.
In particular, for the TSP, we can use the nearest
neighbor heuristic to quickly get a moderately good
tour. This tour can then be truncated to any specific
length k, and the valid region defined by these first
k edges being fixed can be used as an initial most
promising region.

As we can see, there exist many ways to select
the initial most promising region. The advantage of
using a subregion with k cities fixed on a tour as the
initial most promising region is that such a region has
only n− k subregions. Therefore, the computational
effort will be less in the first iterations then if there
were n subregions in the beginning. Our numerical
experience shows that this approach may be efficient
when a very limited computation budget is available
(Shi, Ólafsson, and Sun 1997).

4 THE NP METHOD FOR STOCHASTIC
FINITE OPTIMIZATION

In this section, we use a machine allocation problem
(Frenk, Labbe, van Vliet, and Zhang 1994) to illus-
trate the NP method for stochastic finite optimization
problems.
4.1 Machine Allocation

A manufacturing system consists of N workstations
and a total of M servers. There are several prod-
uct types produced by the system. Products of each
type arrive at the first workstation according to a
certain distribution, and then follow a deterministic
route through a subset of the workstations. The prob-
lem is to allocate the M servers to workstations in
such a way that the total Work-in-Process (WIP) is
minimized.

Mathematically, this problem can be formulated
as follows.

min
θ∈Θ

J(θ) =
N∑
i=1

E[Lt(θ, ω)] (8)

s.t.
1 ≤ θj ≤M +N − 1, j = 1, ..., N, (9)

N∑
j=1

θj = M, (10)

where Θ is a set of all feasible allocations, J(θ) is the
total average WIP, Lt(θ, ω) is the sample WIP for
the i-th workstation when the t is the length of the
sample path, and ω represents the stochastic effects
of the system.

4.2 Partitioning

We consider two partitioning techniques. The first is
generic and resembles the generic partitioning strat-
egy for the TSP. The second builds on the generic
partitioning approach, but incorporates information
about the performance function. Hence, we refer to
the second partitioning technique as knowledge-based
partitioning.

4.2.1 Generic Partitioning

We first partition the feasible region without consid-
ering its objective function. For the machine allo-
cation problem there is a total of M servers and a
minimum of one server that is allocated to each work-
station. Hence, we can first divide this solution space
into M − N + 1 subregions by fixing the first work-
station to have 1, 2, ..., or M −N + 1 servers. In the
above terminology, this implies that θ1 takes a fixed
value in {1, 2, ...,M−N+1}. We can further partition
each such subregion by fixing the second workstation
to have any number of the remaining servers. This
procedure can be repeated until all the servers are al-
located to the workstations, i.e., the maximum depth
is reached.

Generic partitioning focuses on the solution space
only. Intuitively, it would seem that more efficient
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partitions could be constructed if the objective func-
tion was considered. This is the second approach to
partitioning that we consider.

4.2.2 Knowledge-Based Partitioning

The fact that generic partitioning does not consider
the objective function may lead to difficulties in dis-
tinguishing between regions, and consequently the al-
gorithm may not find any particular region to con-
centrate the computational effort. This has been our
experience with some large combinatorial problems
(Shi, Ólafsson, and Sun 1997). If the NP method is
applied using generic partitioning, it may backtrack
frequently and not settle down in a particular region.
On the other hand, the NP method is likely to per-
form much better if good solutions tend to be clus-
tered together for a given partitioning. To impose
such structure, we provide the following partition-
ing scheme for the machine allocation example. First
identify a bottleneck workstation and then divide the
solution space intoM−N+1 subregions by fixing the
bottleneck workstation to have 1, 2, ..., or M −N + 1
servers. Each subregion can be partitioned further
using the same approach.

Figure 3 illustrates this approach for a simple sys-
tem with N = 4 workstations and M = 10 servers.
Here the bottleneck workstation is workstation three,
so that workstation is fixed in the first iteration. No-
tice, that by fixing this workstation first, there are
more available servers to be allocated, and there is
hence a higher probability of allocating a large num-
ber of servers to this station. Now, say that four
servers have been allocated to the third workstation
and that the first workstation is to be fixed in the
second partitioning level (see Figure 3). Now, work-
station one can get at most four servers, whereas the
third workstation had the potential of getting up to
seven servers. It is clear that the order in which the
workstations are selected affects the probability dis-
tribution of how many servers they are allocated.

4.3 Random Sampling

Recall that the only restriction for a valid random
sampling scheme is that each point in a sampling
region should have a positive probability to be se-
lected. One approach would be to use uniform sam-
pling scheme. Alternatively we can combine the uni-
form sampling with other techniques to generate new
sample points. For example, we could use the follow-
ing sampling scheme.

We first define a probability distribution for how
many of the available servers will be assigned to the
next workstation. Assume that the current num-
1 2 3 4 5 6 7

44 4 41 2 3 4

3 4  3 41 22 1

1 1 7 1

1 1 7 1

* * * *

* * * * * * * * * * * * * * * * * * * * *

* *  * *  * *  * *

Figure 3: Knowledge-Based Partitioning

ber of available servers is Ma, then we can assign
a probability, pi = i/

∑Ma

l=1 l to assigning i servers
to the next workstation. Thus, the workstations se-
lected early will have a higher probability of get-
ting more servers than the workstations selected when
most of the servers may have been used up. In other
words, the sampling distribution is skewed towards
allocating many servers to workstations that are se-
lected to be fixed early. To utilize this we assign
a weight to each workstation. If the arrival rates,
λj , at each workstation j are different, for exam-
ple due to feedback rates, then we could assign a
weight, wj = λj/

∑N
l=k+1 λl to the j-th workstation.

These weights determine the probability with which
each workstation is selected to be next. Therefore,
the workstation with the greatest arrival rate will be
selected with maximum probability and will conse-
quently be the most likely to receive many servers.
This procedure can be repeated until all the worksta-
tions have been assigned resources.

4.4 Calculating the Promising Index

As we have discussed in Section 3.4, there are many
ways to select the promising index. As before, we use
the ordinal promising index.

I(σj) = min
θ∈σj

J(θ), j = 1, 2, ...,M + 1.

Let Ît(σj, ω) be an estimate of I(σj), where t is

the simulation time. Then Ît(σj, ω) can be defined as
follows.

Ît(σj, ω) =  min
i=1,2,...,Nj

Lt(θ
j
i , ω), j = 1, 2, ...,M + 1.

(11)
Note that the estimated promising index function in-
corporates the sample performance Lt(θ

j
i , ω) directly.

This implies that for every sample point, we need
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to have only a single simulation run to estimate the
promising index. Even a very short single simula-
tion run will often suffice for the following reason. In
Shi and Ólafsson (1996b) we show that to guarantee
global convergence of the NP method all we need is
to preserve the rank of the estimation, i.e., all we are
interested is how fast the estimated rank converges to
the true rank. It has recently been shown that, given
certain conditions, the estimated rank converges to
the true rank at an exponential rate (Dai 1996). This
fast convergence rate provides an opportunity to use a
single short simulation run to estimate the promising
index.

We will not discuss the backtracking and selection
of the initial promising region procedures, since they
are similar to the TSP problem.

5 CONCLUSIONS

We have demonstrated how the NP method can be
applied to solve both deterministic and stochastic op-
timization problems. This method uses partitioning
and random sampling to globally search the entire so-
lution space, and can incorporate local search heuris-
tic into a promising index that is used to determine
where to concentrate the search. The method is easy
to implement and is highly matched to parallel com-
puter architectures.

Future work will focus on numerical experiments
with emphasis on stochastic optimization problems
as well as a parallel version of the algorithm.
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Shi, L., and S. Ólafsson. 1996a. Nested partitions
method for global optimization. Submitted to Op-
erations Research.
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