
MINIMUM COST ADAPTIVE SYNCHRONIZATION: EXPERIMENTS WITH THE ParaSol

SYSTEM

Edward Mascarenhas

Silicon Graphics Computer Systems
2011 N. Shoreline Blvd. MS 510

Mountain View, CA 94043
U.S.A.

Felipe Knop

IBM Corporation
522 South Road, MS P963
Poughkeepsie, NY 12601

U.S.A.

Vernon Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907
U.S.A.
ABSTRACT

We present a novel adaptive synchronization algo-
rithm, called the minimum average cost (MAC) al-
gorithm, in the context of the ParaSol parallel sim-
ulation system. ParaSol is a multithreaded system
for parallel simulation on shared- and distributed-
memory environments, designed to support domain-
specific Simulation Object Libraries. The proposed
MAC algorithm is based on minimizing the cost
of synchronization delay and rollback at a process,
whenever its simulation driver must decide whether
to either proceed optimistically or to delay process-
ing. In the former case the risk is rollback cost, in the
event of a straggler’s arrival. In the latter case the risk
is unnecessary delay, in the event a late-comer is not
a straggler. In addition to the MAC algorithm and
an optimal delay computation model, we report on
some early experiments comparing the performance
of MAC-based adaptive synchronization to optimistic
synchronization.

1 INTRODUCTION

The problem of parallelizing discrete event simula-
tions is known to be a challenging one. The challenge
lies in moving a multiprocessor simulation forward to
completion as quickly as possible in real time, while
satisfying event-related synchronization constraints
in simulation time. The work described in this pa-
per is motivated by the need for a tool that will en-
able low-effort and practical parallel simulation. If a
physical system of interest is viewed as a system of
interacting physical processes, a simulator for such a
system consists of interacting logical processes (LPs).
Each LP progresses from one event to the next in sim-
ulation time (also called local virtual time or LVT),
where such time is tracked by a clock that is local to
the LP.

In a physical system, dynamic entities move be-
tween physical processes. In the logical system, these
entities are represented by active-transactions: user-
level threads (Mascarenhas and Rego 1996) which
may move between LPs. By binding simulation time-
stamps – which indicate occurrence-times of simula-
tion events – to transactions, a flow of transactions
between LPs enables LPs to communicate and thus to
synchronize with one another. By synchronzing LPs,
a parallel simulator can eliminate invalid simulation
trajectories generated by causality errors. A causality
error occurs at an LP if this LP finds itself in viola-
tion of the fundamental simulation rule: events must
be processed in order of non-decreasing time. The
idea is to either prevent causality errors from ever
occurring (i.e., conservative synchronization), or to
allow their occurrence but recover from error-related
effects when such errors are detected (i.e., optimistic
synchronization). The major focus of parallel simu-
lation research, in recent years, has centered around
assessment of these two synchronization methods.

In the conservative approach (Chandy and Misra
1979), events are executed strictly in order of their oc-
currence in simulation time. This approach prevents
causality errors from occurring, but may lead to dead-
lock; an LP may wait for events that never arrive.
LPs that have no messages to send to other LPs may
use special “informant” messages, called Null mes-
sages, to prevent deadlocks (Chandy and Misra 1979).
In the optimistic (Time Warp) (Jefferson 1985) al-
gorithm, an LP processes events as event messages
arrive from other LPs until a causality error is de-
tected: a message arrives with a time-stamp less than
the LP’s LVT. Such a message – called a straggler –
renders all simulation processing done by the LP as
potentially invalid, starting from the time-stamp of
the straggler. When this occurs, the computation is
rolled back and restarted from an appropriate, pre-
viously saved and error-free state. State-saving and
rollback mechanisms enable implicit LP synchroniza-
tion. The minimum of the LVTs of all LPs and time-
stamps of event messages in transit is said to define
the global virtual time (GVT), so that that rollbacks

390 Mascarenhas, Knop, and Rego
to states prior to the GVT are impossible. Repeated
parallel computation of the GVT allows memory to
be reclaimed (e.g., saved state associated with a time
that is less than the GVT is no longer required), in
a procedure known as fossil collection. I/O opera-
tions with time-stamps less than the GVT may be
committed.

We present a novel adaptive synchronization al-
gorithm, called the minimum average cost (MAC) al-
gorithm, in the context of the ParaSol parallel sim-
ulation system. ParaSol is a multithreaded system
for parallel simulation on shared- and distributed-
memory environments, designed to support domain-
specific Simulation Object Libraries. A brief overview
of the ParaSol system appears in Mascarenhas et al.
(1997). Additional details on the ParaSol sys-
tem can be found in Knop (1996) and Mascarenhas
(1996). The proposed MAC algorithm is based on
minimizing the cost of synchronization delay and roll-
back at a process, whenever its simulation driver must
decide whether to either proceed optimistically or to
delay processing. In the former case the risk is roll-
back cost, in the event of a straggler’s arrival. In the
latter case the risk is unnecessary delay, in the event a
late-comer is not a straggler. In addition to the MAC
algorithm and an optimal delay computation model,
we report on some early experiments comparing the
performance of MAC-based adaptive synchronization
to optimistic synchronization.

2 RELATED WORK

Adaptive protocols can limit the uncontrolled execu-
tion of incorrect events, or limit the optimism of the
optimistic protocol. Protocols that limit optimism
have been classified as: window based, space based,
penalty based, knowledge based, probabilistic, and
state based (Srinivasan and Reynolds 1995).

Proposals for adaptive synchronization, based ei-
ther on local channel-state information or on global
information, have recently begun to appear. In the
Local Adaptive Protocol (LAP), LPs compute a real-
time blocking window (RTBW) based on the average
event-arrival rates in real and virtual time (Hamnes
and Tripathi 1994). An LP blocks if it finds an empty
channel for which the increment in virtual time be-
tween the last event processed and the next candidate
event is larger than the average virtual inter-arrival
time. Adaptive control is achieved via a channel spe-
cific constant c, enabling various “degrees” of opti-
mism. The constant c is chosen in a way that maxi-
mizes the rate of simulation time advance. In experi-
mental work, this protocol has been shown to exhibit
good performance (Hamnes and Tripathi 1994).

Ferscha and Chiola (1994) propose a probabilis-
tic control of optimism, based on the determination
of a local virtual time window. Events within the
window are executed with a given probability, com-
puted using the virtual time-stamps of arriving mes-
sages. Yet another proposed approach is to predict
the time-stamp of the next message arrival on a given
channel, using message-arrival history. Only available
events with time-stamps smaller than the predicted
time-stamp are processed (Ferscha 1995). A confi-
dence level assigned to each estimate enables the ex-
ecution of each event with a certain probability. Sev-
eral different methods of predicting the time-stamp of
the next arrival have been proposed. These include
estimates based on the arithmetic mean, median,
exponentially smoothed average, and computation-
ally intensive auto-regressive and integrated moving-
average forecasting methods. Some success was re-
ported with these methods (Ferscha 1995, Ferscha
and Chiola 1994).

Another proposed strategy for limiting optimism
is based on memory management (Das and Fujimoto
1994). Here, optimism is limited in an indirect man-
ner, by controlling the amount of memory provided
to an LP. The adaptive protocol attempts to provide
each LP with only as much memory as necessary for
optimal performance. The idea is that giving an LP
unchecked access to memory each time such mem-
ory is requested, subject to machine limitations, may
hamper progress at other LPs.

3 ADAPTIVE SYNCHRONIZATION

Both conservative as well as optimistic synchroniza-
tion protocols have their advantages and disadvan-
tages (Fujimoto 1990). Which protocol is better de-
pends on the characteristics of a given application
(number of simulation objects, density of messages,
etc.), input data, and the run-time environment (pro-
cessor speeds, communication latency, etc.). There is
a need for synchronization schemes that work well in
an application-independent way. Adaptive synchro-
nization methods, in particular, provide a framework
for tailoring synchronization to the peculiarities of a
given application. Based on decisions made with run-
time data, such methods offer a dynamic combination
of optimistic and conservative synchronization, and
have been reported to exhibit poor to reasonable per-
formance in previous studies (Das and Fujimoto 1994,
Ferscha 1995, Hamnes and Tripathi 1994, Srinivasan
and Reynolds 1995). Of particular importance is the
fact that extreme forms of optimistic progress and
conservative blocking can be avoided.

In this section, we present a new and dynamic
method for adaptive synchronization. While past ex-
perimental work has generally involved specialized ex-

Minimum Cost Adaptive Synchronization: Experiments with the ParaSol System 391
perimental setups for answering specific questions on
synchronization schemes, we present an experimental
study in the context of the ParaSol system. In-
deed, the system was designed for practical use and
for experimentation. The proposed method is based,
in part, on some ideas presented in Ball and Hoyt
(1990). In essence, the proposal is to minimize loss
in either waiting for late transactions or in undoing
work. Before processing a transaction, an LP ex-
amines its input channels and computes an optimal
delay interval. Transaction processing is then sus-
pended for a period based on this interval. In this
way, the LP attempts to minimize the average cost of
rollback and delay. During this period, certain other
simulation activities may proceed: message process-
ing, state-saving, and fossil-collection. If the delay
interval computed turns out to be too small, the LP
may simply spin in a busy loop.

We present a model based on a rollback cost and
delay analysis, similar to that presented in Ball and
Hoyt (1990), and Ferscha and Luthi (1995). Our
work differs from theirs in some respects, such as in
how expected cost is computed. We estimate transac-
tion interarrival distributions (both virtual time and
real time) on input channels and use these, along
with other costs, to estimate rollback probability and
cost. In Ferscha and Luthi’s approach (1995), roll-
back probability is estimated by tracking rollback fre-
quency over a discrete real-time/virtual-time plane.
Though we cannot argue that virtual and real interar-
rival times of transactions at an LP are independent,
we have some empirical evidence which shows a weak
correlation in situations that we tested. When it is
not reasonable to assume independence, an approx-
imate rollback probability based on estimation of a
joint distribution is warranted. Otherwise, marginal
distributions – which are easier to estimate – may be
used.

3.1 The Minimum Average Cost (MAC)
Model

In a ParaSol simulation, each LP runs as a thread
– distinct from threads which implement transactions
– within a (Unix) process. A single process may host
many LPs. Transactions move between LPs, access-
ing simulation objects and possibly modifying their
state. Transactions are selected for processing based
on their time-stamps. Each process runs a simula-
tion driver which examines all LPs internal to the
process, to select the LP holding the event (related
to a transaction) with the smallest time-stamp. If one
is found, this LP is given the CPU, and LP processing
proceeds. After an LP has processed its transaction,
control returns to the driver and the procedure is re-
c
i,k

c
j,k

y j,M-1

c k,k
LP k

w = ?

y
i,N

< y i,N

Figure 1: LP k has two input channels, of which chan-
nel cj,k is empty. The last transaction executed at LP
k from channel cj,k had a time-stamp yj,M−1 < yi,N .
The LP is considering whether to execute a transac-
tion from channel ci,k at time yi,N immediately or
wait for real time w.

peated.

3.1.1 Conservative Synchronization

In a conservative simulation, a process’s driver does
not examine an LP unless the LP has determined,
without potential for a causality error, its own mini-
mum time-stamp transaction. If there is no potential
for a causality error at an LP, execution in a process
will also be causality-error free. For example, con-
sider an LP k which may receive transactions from
at most two other (source) LPs, say LP i and LP j.
To source i it assigns an input channel ci,k, and to
source j it assigns an input channel cj,k, as shown in
Figure 1. In a conservative simulation, time-stamps
on transactions arriving on any given channel are or-
dered in (increasing) time. LP k may also generate
its own transactions, process them and send them on
to other LPs. To ensure causality, a process’s driver
cannot obtain time-stamp information from LP k to
process the next transaction unless this LP has at
least one pending transaction on each of its input
channels.

3.1.2 Optimistic Synchronization

In an optimistic simulation, each LP will be exam-
ined by a process’s driver even though one or more
of the LP’s input channels is empty. For example,
assume that a process hosting a single LP, say LP k,
examines the LP and finds channel cj,k empty. Even
though next-event information from LP j is currently
unavailable, LP k will be scheduled to run, to process
its minimum time-stamped transaction. This trans-
action is either an internal transaction, or one from
channel ci,k. If channel cj,k yields a transaction with
a smaller time stamp (i.e., a straggler) after the first
transaction has been accepted for processing, then

392 Mascarenhas, Knop, and Rego
upon completion of transaction processing the system
detects a causality error. The effects of the error are
undone: the system sends out ‘terminator’ transac-
tions (anti-transactions) to locate and destroy invalid
emigrants, rolls back to a valid state and redoes some
transaction processing (called ‘coast-forwarding’) be-
fore accommodating the straggler. After the causal-
ity error has been corrected, new emigrants may be
generated.

3.1.3 Adaptive Synchronization

The optimistic approach outlined above has two
drawbacks. First, it is difficult to justify optimistic
progress based on arbitrary transaction availability
or even to relate it directly to progress in simula-
tion time. Stragglers cause rollbacks, and rollback
costs can be high; terminator generation, rollback
and coast-forward phases may further hinder sim-
ulation progress by delaying processing of new in-
coming transactions. Second, it can be argued that
the approach ignores available data, such as rollback
and coast-forward costs, and probability of straggler
arrival, potentially ignoring strategies for enhancing
the average rate at which the parallel simulation pro-
gresses.

In the example described above, the driver has
an alternative to scheduling LP k’s processing opti-
mistically. Based on local and repeatedly updated
data, the driver may suspend processing at the LP
for a given window of time w. An appropriately cho-
sen value of w will minimize the local costs associ-
ated with processing delay or rollback at LP k. With
w = 0, this strategy is equivalent to purely optimistic
processing. If w is sufficiently large to guarantee a
zero probability of straggler arrival, the strategy is
equivalent to conservative processing. The intent is
to minimize the amount of time a process spends in
either waiting for a late transaction that is not a
straggler, or in undoing work caused by premature
transaction processing. In the following, we propose
an adaptive synchronization model based on the Min-
imum Average Cost (MAC) of delay and rollback pro-
cessing. We also give some empirical justification for
such a model.

3.1.4 MAC Adaptive Synchronization: The
Two Source Case

Assume that at virtual time t, the driver examines
LP k and finds channel cj,k empty, and channel ci,k
offering a transaction. Further, assume that the lat-
ter transaction is the only available transaction at LP
k, and that it contains the N -th (virtual) time-stamp
yi,N arriving on ci,k. Operating with an optimistic
protocol, LP k is allowed to process the transaction
on ci,k without delay. A rollback will ensue only if a
straggler arrives from LP j during or after processing
of LP i’s transaction. Suppose that the next transac-
tion to arrive on cj,k is its M -th transaction, and this
arrival occurs after time t. Then this arriving trans-
action is a straggler if and only if the transaction with
time-stamp yi,N has started or completed processing,
and the new arrival has a time-stamp yj,M < yi,N .

Transactions arriving at LP k from each source
LP j arrive in sequence. For each input channel cj,k,
let the sequence of transaction (random) arrival times
be denoted by {Xj,n;n ≥ 0}, and let the sequence of
(random) time-stamps on these transactions be de-

noted by {Yj,n;n ≥ 0}. Define Rj,n
∆
= Xj,n −Xj,n−1

and Tj,n
∆
= Yj,n − Yj,n−1 to be random variables de-

noting the interarrival time and time-stamp of the
n-th transaction coming in on cj,k, respectively, for
any j, and n ≥ 1. We assume that {Rj,n;n ≥ 1}
and {Tj,n;n ≥ 1} are stationary sequences (Law and
Kelton 1982).

Given some history {xj,n;n < M} of transaction
arrival times, and also some history {yj,n;n < M}
of transaction time-stamps, we would like to esti-
mate the probability that the next (i.e., M -th) ar-
rival on cj,k, arriving after time t, is a straggler. We
do this by estimating the distribution of random vari-
able Tj,M at time t, using either the complete history
or some subset of the history of the time-stamp se-
quence. Given that cj,k is empty at time t, define
Sj(t) to be a Bernoulli random variable which is 1 if,
at time t, the anticipated late-comer from LP j is a
straggler, and 0 otherwise. The probability

P{Sj(t) = 1} = P{Tj,M < yi,N − yj,M−1

|Yi,N = yi,N , Xj,M > t} (1)

where yi,N , yj,M−1 are known, and the probability
involving Tj,M is estimated at time t.

Given only that cj,k is empty at time t, then under
our assumption of stationarity, the conditional proba-
bility that the late-comer will arrive after time (t+w)
and turn out to be a straggler, is given by

P{Sj(t+ w) = 1} = P{Tj,M < yi,N − yj,M−1,

Rj,M > t+w − xj,M−1|

Rj,M > t− xj,M−1} (2)

where Rj,M = Xj,M − xj,M−1.
If we assume that transaction time-stamps and

transaction arrival times on each channel are inde-
pendent, we may simplify the computation, to obtain

Minimum Cost Adaptive Synchronization: Experiments with the ParaSol System 393
P{Sj(t+w) = 1} = (P{Tj,M < yi,N − yj,M−1} ∗

P{Rj,M > t+w − xj,M−1})/

P{Rj,M > t− xj,M−1} (3)

For a fixed value of t, P{Rj > w + ε} < P{Rj >
w} for any ε > 0. Under independence, because the
first probability in the product shown in Equation 3
is unaffected by w, the random variable Sj(t + w)
is stochastically decreasing in w. If the cost of roll-
back Bt+w incurred by premature processing of LP
i’s transaction at time (t+w) is known, then the ac-
tual cost C(t, w) of delaying LP k’s processing from
time t to time (t +w) can be expressed as

C(t, w) = I{Sj (t+w)=0} ∗ w

+I{Sj (t+w)=1} ∗ (w + Bt+w)

= w + I{Sj(t+w)=1} ∗Bt+w (4)

where I is an indicator function for the specified
event. The expected cost E[C(t, w)] is thus

E[C(t, w)] = w + P{Sj(t+ w) = 1} ∗ b̄t (5)

where b̄t, an estimate of E[Bt], is used to approximate
E[Bt+w].

When the driver finds channel cj,k at LP k empty
at time t, it resorts to the following strategy. Using
run-time data to make estimates of probabilities and
rollback cost , it determines the value of w that min-
imizes E[C(t, w)]. Transaction processing at LP k is
suspended between time t and time (t+w) – though
other tasks, such as fossil collection, state saving, etc.,
may proceed – since this action minimizes the ex-
pected cost associated with delay and premature exe-
cution of transactions. Processing at LP k is resumed
at time (t+w), regardless of whether the late-comer
does or does not arrive on cj,k by this time. If the
late-comer does arrive by this time, uncertainty is re-
moved, and the right transaction can be processed at
time (t + w). If not, the expected cost of delay and
rollback is smallest at time (t+ w).

If channel cj,k at LP k remains empty while ci,k
continues to generate transactions, the expected roll-
back cost component in Equation 5 increases. Sup-
pose, for example, that the driver finds cj,k still
empty at some time t′ > t. If a delay interval is
to be computed at time t′, the value of w mini-
mizing E[C(t′, w)] is used. Given that cj,k remains
empty in [t, t′], Sj(u + w) is stochastically increas-
ing in u, u ∈ [t, t′], and Bt′ > Bt. As a result,
C(t′, w) > C(t, w). To compensate for this effect, the
delay w at LP k tends to increase, making LPs re-
luctant to race ahead optimistically, minimizing risk
and cost of rollback. The net result is that the LVTs
of different LPs tend to remain closer to one another
than in optimistic executions.

If a process’s driver finds only internal channel
ck,k empty at LP k, transaction processing proceeds
at the LP without delay. This is because LP k can-
not generate transactions that will effect its own past.
Similarly, if no channels are found empty, transaction
processing proceeds without delay, since the mini-
mum time-stamp event can be determined. In Fig-
ures 2(a) and (b) are shown typical behaviors of the
expected cost E[C(t, w)] computed at some fixed time
instant t at which the driver seeks a delay interval.
The expected cost is graphed as a function of w. At
time t, the driver estimates b̄t and the virtual time
component of the probability product in Equation 3.
Once this is done, an estimate of the probability in-
volving real time, in the same equation, is computed
for select values of w. Note that the latter probabil-
ity decreases with increasing w, to ultimately reach
0; this defines an upper bound on delay. The virtual
time probability obtained for Figure 2(a) is higher
than that obtained for Figure 2(b), because of which
Figure 2(a) yields a larger minimum cost delay inter-
val than the latter.

3.1.5 MAC Adaptive Synchronization: The
General Case

In general, LP k may be fed transactions from sev-
eral sources, and on examining this LP, the driver
may find r of its channels empty, where r ≥ 1. As-
sume that channel ci,k is found to have the minimum
time-stamp transaction, and that input channels from
LPs in the set E = {j1, j2, j3, . . . , jr} are all found
empty. The driver must determine an optimal delay
interval that accounts for potential stragglers from
all LPs in E. One strategy is to first compute an
optimal delay interval wi,j` , by pairing ci,k and cj`,k
and applying the two-source analysis described above,
for each ` ∈ E. That is, wi,j` is the delay interval
obtained given that cj`,k is the only empty channel,
and ci,k offers a transaction with the smallest time-
stamp. Then, LP k can be made to delay processing
for time w = max`∈E wi,j` (this scheme was followed
in Hamnes and Tripathi (1994)). This strategy will
not give a correct value for the delay – a delay that
will minimize the cost – and the computational ex-
pense is too large. An exact expected cost function
that simultaneously accounts for all empty channels
can be developed. Assume, as done above, that ci,k
offers the minimum time-stamp transaction. Define
Si,E(t) to be a Bernoulli random variable which is 1

394 Mascarenhas, Knop, and Rego
0.0 0.2 0.4 0.6 0.8
Wait Time in secs

0.0

0.2

0.4

0.6

0.8

C
o

st
 in

 s
ec

s

Arb = 0.3395, p(t < V) = 0.9469

 Total Cost

 Rollback Cost

 Wait Time

0.00 0.05 0.10 0.15
Wait Time in secs

0.00

0.05

0.10

0.15

0.20

C
o

st
 in

 s
ec

s

Arb = 0.4785, p(t < V) = 0.2246

 Total Cost

 Rollback Cost

 Wait Time

(a) (b)

Figure 2: The variation in the total costs of waiting and expected rollback, for a closed queuing network is shown.
Arb is the average rollback cost and p(t < V) is the virtual time related probability.
if, at time t, an anticipated late-comer from any LP
in E is a straggler, and 0 otherwise. Then the proba-
bility that a straggler does not arrive at LP k in the
interval [t, w) is given by

P{Si,E(t+ w) = 0} = P{Si,j1(t +w) = 0, . . . ,

Si,jr(t +w) = 0}. (6)

If stragglers at LP k arrive independently, from the
different source LPs in E, then

P{Si,E(t+ w) = 0} =
∏
`∈E

P{Si,j`(t+ w) = 0} (7)

is obtained as a simple product of known probabil-
ities. The probability P{Si,E(t + w) = 1} can now
be used in Equation 5 to obtain the total expected
cost, and finally an optimal delay interval wi,E which
minimizes this cost.

4 PERFORMANCE

The execution environment consisted of a cluster of
SPARCstation 5 workstations connected over an Eth-
ernet. The nodes in this environment are SPARC
processors running at 70MHz, and each workstation
has a memory of 32 MB. For convenience we identify
this execution environment as CLUS.

To test the new methods, we chose three different
examples of closed queuing systems. Queuing net-
works are difficult to simulate in parallel because they
exhibit low computation granularity and high node
interaction. The applications consist of Facilities (a
Facility consists of a server and a queue, from the
queuing domain), each initialized with a given num-
ber of jobs. Upon service completion at a Facility, a
job moves on to some other Facility in the network,
depending on probabilities and paths specified in the
model. In these examples, we assume that the ser-
vice discipline at each Facility is FIFO. Upon leaving
a Facility, a job selects a destination Facility based on
a uniform distribution. The size of the configuration
– the number of Facilities in the model is input from
a file – is a control parameter and is fixed for a run.
The example configurations are:

CQN. This is a closed queuing network configuration,
shown in Mascarenhas et al. (1997).

TORUS. A torus consists of Facilities arranged in a
two dimensional mesh, as shown in Figure 3 (a).
Each Facility has four outgoing and four incoming
channels. The probability of a job leaving a Fa-
cility on a given outgoing channel can be defined
through an input parameter file. Thus, to reduce
the number of channels some outgoing probabil-
ities may be set to zero. Unless mentioned oth-
erwise, we use a branching probability of 0.25 on
each of 4 outgoing channels.

COMP. This defines a completely connected queuing
network, shown in Figure 3 (b) (for the 4 Facility
case). After service each job can be routed to any
one of the Facilities in the system. This applica-
tion is “difficult” for optimistic parallel simulation
because the occurrence of rollback is high.

Besides the application type and network size,
other parameters that can be varied are transac-
tion density, average service time, service distribu-
tion, and run length. The transaction density (de-
noted by TD in figures) is the ratio of the total num-
ber of jobs in the system to the total number of Facil-
ities in the system. Service time distributions can be
changed. In our examples we use a biased exponen-
tial service time distribution, given by service time =
rT + exp((1 − r)(T + factor ∗ lpid)), where T = 10
is the average service time, and r = 0.01. The gran-
ularity factor in the service time expression allows
us to vary the mean service time across LPs. Fa-
cilities hosted by a LP with a larger lpid will have
a larger average service time, if factor is non-zero.

Minimum Cost Adaptive Synchronization: Experiments with the ParaSol System 395
...

...

...

.

.

.

.

.

.

.

.

.

(a) (b)

Figure 3: Torus and Complete Queuing Networks

Unless mentioned otherwise, the value of factor is
set to zero, i.e., average service times are same at all
facilities.

The measurement metric chosen is the execution
time of the simulation, measured by the cost and
statistics module in the ParaSol kernel. Compo-
nents of the total execution time are also used when
appropriate. Each simulation run is terminated when
the GVT exceeds a specified value.

To have some degree of confidence in our results
we repeated experiments on the CLUS environment
at least 10 times. The standard deviations were low.
For example, for the experiments reported next, the
standard deviations in execution time were less than
1% in the CLUS environment.

Models were partitioned equally across processors.
Objects in the model were assigned to processes in a
round robin fashion, moving from left to right across
the queuing network. The number of LPs per process
was set to one, except in the case of CQN, where no
more than one complete row of Facilities in a switch
was assigned to one LP.

We performed experiments comparing our adap-
tive model with the optimistic model in the CLUS en-
vironment. The rollback overhead is high in this envi-
ronment, and the potential for improvement over the
optimistic execution is high. We use rollback costs,
execution time, and adaptive synchronization costs to
compare performance.

Figure 4 shows the comparison between the adap-
tive and optimistic synchronization methods on a
cluster of 4 workstations. It is clear from the figures
that the adaptive methods are successful in reducing
the costs of rollback in all cases. The number of roll-
backs is also reduced. The reduction in rollback cost
is about 25% in most cases. When rollback overheads
are high as in the COMP application, the reduction
is as much as 57%. The effect of a reduction in roll-
back overhead is offset to some extent by the cost of
adaptive synchronization. As a percentage of the to-
tal time taken by the optimistic runs this is in the
range of 1 to 2 % for the TORUS and COMP net-
works and between 4 – 12% for the CQN network.
The graphs also show that the time spent in adaptive
synchronization as a proportion of the rollback cost is
larger for the CQN application than the TORUS and
the COMP. One of the reasons the CQN application
does not rollback as often is because of the lower con-
nectivity among servers. For this reason we observe
minor or no improvement in the execution time for
an adaptive run of the CQN network.

5 CONCLUSION

In this paper we have presented a cost based adap-
tive model for reducing overheads of synchronization
in ParaSol. Our adaptive synchronization model is
able to reduce rollback costs, on an average, by about
25% for the applications that were studied. An im-
portant aspect of our adaptive synchronization model
is that it makes few assumptions. We assume station-
arity of the interarrival time distributions of trans-
actions in real-time and virtual-time. As a model
simplification we also assumed that these distribu-
tions are independent of each other. Additional ex-
perimentation in other execution environments with
other simulations are required to study the perfor-
mance of the adaptive model. The model can also
be improved to take into account the effect of anti-
messages and use global information when it is avail-
able at low cost.

ACKNOWLEDGMENTS

This research was supported in part by ONR-
9310233, BMDO-34798-MA, and NSF-CCR 9311862.
The second author was supported in part by CNPq-
Brazil, grant 260059 /91.9.

REFERENCES

Ball, D., and S. Hoyt. 1990. The adaptive time-warp
concurrency control algorithm. In Proceedings of
the SCS MultiConference on Distributed Simula-
tion, 174–177.

Chandy, K. M., and J. Misra. 1979. Distributed
simulation: A case study in design and verification
of distributed programs. IEEE Transactions on
Software Engineering, 5(5):440–452.

Das, S. R., and R. M. Fujimoto. 1994. An adaptive
memory management protocol for time warp par-
allel simulation. In Proceedings of the 1994 ACM
Sigmetrics Conference on Measurement and Mod-
elling of Computer Systems, 201–210.

396 Mascarenhas, Knop, and Rego
0 4 8 12 16 20
Jobs/Switch

0

50

100

150
S

e
c

o
n

d
s

CQN 8x8, CLUS 4

 Adpt

 Opt

 RB-Adpt

 RB-Opt

 Adpt Cost

0 4 8 12 16 20
Jobs/Server

0

100

200

300

400

500

S
e

c
o

n
d

s

TORUS 8x8, CLUS 4

 Adpt

 Opt

 RB-Adpt

 RB-Opt

 Adpt Cost

0 4 8 12 16 20
Jobs/Server

0

1000

2000

S
e
c
o

n
d

s

COMP 8x8, CLUS 4

 Adpt

 Opt

 RB-Adpt

 RB-Opt

 Adpt Cost

Figure 4: Performance of CQN, TORUS and COMP as the Transaction Density is Varied
Ferscha, A. 1995. Probabilistic adaptive direct opti-
mism control in time warp. In Proceedings of the
9th Workshop on Parallel and Distributed Simu-
lation, 120–129.

Ferscha, A., and G. Chiola. 1994. Self adaptive logi-
cal processes: The probabilistic distributed simu-
lation protocol. In Proceedings of the 27th Annual
Simulation Symposium, pages 78–88.

Ferscha, A., and J. Luthi. 1995. Estimating rollback
overhead for optimism control in time warp. In
Proceedings of the 28th Annual Simulation Sym-
posium, 2–12.

Fujimoto, R. 1990. Parallel discrete event simulation.
CACM, 33(10):30–53.

Hamnes, D. O., and A. Tripathi. 1994. Investigations
in adaptive distributed simulation. In Proceedings
of the 8th Workshop on Parallel and Distributed
Simulation, 20–23.

Jefferson, D. R. 1985. Virtual time. ACM Trans-
actions on Programming Languages and Systems,
7(3):404–425.

Knop, F. 1996. Software Architectures for Fault-
Tolerant Replications and Multithreaded Decom-
positions: Experiments with Practical Parallel
Simulation. PhD thesis, Department of Computer
Sciences, Purdue University.

Law, A. M., and W. D. Kelton. 1982. Simulation
Modeling and Analysis. McGraw-Hill.

Mascarenhas, E. 1996. A System for Multithreaded
Parallel Simulation and Computation with Mi-
grant Threads and Objects. PhD thesis, Depart-
ment of Computer Sciences, Purdue University.

Mascarenhas, E., and V. Rego. 1996. Ariadne: Ar-
chitecture of a portable threads system supporting
thread migration. Software-Practice and Experi-
ence, 26(3):327–356.

Mascarenhas, E., F. Knop, R. Pasquini, and V. Rego.
1997. Checkpoint and recovery methods in the
ParaSol simulation system. In Proceedings of
the Winter Simulation Conference.
Srinivasan, S., and P. F. Reynolds Jr. 1995. NPSI
adaptive synchronizaton algorithms for PDES. In
Proceedings of the Winter Simulation Conference,
658–665.

AUTHOR BIOGRAPHIES

EDWARD MASCARENHAS, is a Member of
Technical Staff at Silicon Graphics Computer Sys-
tems. He received a Masters degree in Industrial En-
gineering from NITIE (Bombay, India), an M.S. in
Computer Sciences from Purdue University in 1993,
and a Ph.D. degree in Computer Sciences from Pur-
due University in 1996. His research interests in-
clude parallel computation, distributed simulation,
and multithreaded programming environments.

FELIPE KNOP, Ph.D., Computer Sciences De-
partment, Purdue University, (August 1996), re-
ceived a Masters degree in Computer Sciences from
Purdue University in 1993 and a Masters degree in
Electrical Engineering from University of São Paulo,
Brazil, in 1990. He joined IBM, RS/6000 Scalable
POWERparallel division, in August 1996. His cur-
rent research interests include parallel and distributed
simulation, and multiprocessor operating systems.

VERNON REGO is a Professor of Computer
Sciences at Purdue University. He received his
M.Sc.(Hons) in Mathematics from B.I.T.S (Pilani, In-
dia), and an M.S. and Ph.D. in Computer Science
from Michigan State University (East Lansing) in
1985. He was awarded the 1992 IEEE/Gordon Bell
Prize in parallel processing research, and is an Editor
of IEEE Transactions on Computers. His research
interests include parallel simulation, parallel process-
ing, modeling and software engineering.

	MINIMUM COST ADAPTIVE SYNCHRONIZATION: EXPERIMENTS WITH THE ParaSol SYSTEM
	ABSTRACT
	1 INTRODUCTION
	2 RELATED WORK
	3 ADAPTIVE SYNCHRONIZATION
	3.1 The Minimum Average Cost (MAC) Model

	4 PERFORMANCE
	5 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 389
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

