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ABSTRACT

A framework for performance analysis of parallel
discrete event simulators is presented. The center-
piece of this framework is a platform-independent
Workload Specification Language (WSL). WSL is a
language that allows the characterization of simula-
tion models using a set of fundamental performance-
critical parameters. WSL also implements a facility
for representing real models. For each simulator to
be tested, a WSL translator is used to generate syn-
thetic platform-specific simulation models that con-
form to the performance characteristics captured by
the WSL description. Accordingly, sets of portable
simulation models that explore the effects of the dif-
ferent parameters, individually or collectively, on the
performance can be constructed. The construction
of the workload simulation models is assisted using
a Synthetic Workload Generator (SWG). The utility
of the system is demonstrated with the generation of
a representative set of experiments. The described
framework can be used to create a standard bench-
mark suite that consists of a mixture of real simu-
lation models, selected from different application do-
mains, and synthetic models generated by SWG.

1 INTRODUCTION

Performance analysis of parallel discrete event simu-
lators is a task complicated by the large number of
interrelated factors affecting performance. (Through-
out this paper, we use the term performance to mean
the inverse of execution time.) Accurate and unbiased
performance analysis is important throughout the de-
velopment cycle of simulators and models. Tradition-
ally, Speedup has been used as a relative performance
indicator. Since speedup is defined with respect to a
sequential simulator (left to the taste of the tester), it
is difficult to get directly comparable speedup figures.
This is especially true if the models under comparison
are not identical. Moreover, while speedup is a useful
measure for coarsely comparing the performance of
systems, it does not expose sufficient detail about the
factors leading to this particular speedup figure.

This paper presents a framework for perfor-
mance analysis of parallel discrete-event simula-
tors. The framework uses a Workload Specifica-
tion Language (WSL) to describe a model in terms
of its performance-critical factors. This platform-
independent representation can then be translated
(using a simulator-specific translator) to different
simulation back-ends. A portable automated WSL
translator, where only minimal back-end description
is needed for each simulator, is provided in order to
simplify the task of building simulator-specific trans-
lators (Balakrishnan 1997). Thus, synthetic work-
loads with tunable performance-related parameters
are generated, allowing the performance of the sim-
ulator to be investigated under controlled workload
conditions. The analysis can be further aided by us-
ing a Synthetic Workload Generator (SWG); a pro-
gram that automatically generates WSL descriptions
that test the effect of subsets of the model parameters
on the performance. The portability of the synthetic
models afforded by the system allows unbiased and
thorough comparison of simulators.

The ultimate goal of this project is to provide a
standard benchmark suite that studies the perfor-
mance space of the simulators using realistic models.
To that end, WSL implements a feature for represent-
ing real models directly. The mixture of real mod-
els, representative of different simulation domains,
serves alongside the synthetic models generated by
the SWG to provide a starting point towards the stan-
dard benchmark suite.

The remainder of this paper is organized as follows.
Section 2 describes Parallel Discrete-Event Simula-
tion (PDES). Section 3 discusses some related bench-
marking efforts. Section 4 presents the performance
analysis framework, and discusses its various compo-
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nents. Section 5 presents an example of the use of the
framework by developing a set of experiments for a
PDES and analyzing the performance. Finally, Sec-
tion 6 presents some concluding remarks.

2 BACKGROUND —PDES

In this section, we briefly overview PDES. In a par-
allel discrete event simulation, the model to be sim-
ulated is decomposed into physical processes that are
modeled as simulation objects. Each simulation ob-
ject is assigned to a Logical Process (LP); the simula-
tor is composed of a set of LPs concurrently executing
their simulation objects. Simulation objects commu-
nicate by exchanging time-stamped messages through
the LPs. Thus, each LP, which can be associated with
multiple simulation objects, receives messages from
other LPs and forwards them to the destination ob-
jects. In order to maintain causality, LPs must pro-
cess messages in strictly non-decreasing time-stamp
order (Lamport 1978; Jefferson 1985). There are two
basic synchronization protocols used to ensure that
this condition is not violated: (i) conservative and
(ii) optimistic. Conservative protocols (Misra 1986;
Chandy and Misra 1981) strictly avoid causality er-
rors, while optimistic ones (Jefferson 1985; Fujimoto
1990) allow causality errors to occur, but implement
a rollback mechanism enabling recovery.

3 RELATED WORK

There are several empirical and analytical studies
(Fujimoto 1987; Fujimoto 90; Barriga, Ronngren, and
Ayani 1995; Samadi 1985; Kumar 1989) of the per-
formance of PDES algorithms. Most of these studies
appear in the context of evaluating the impact a par-
ticular simulator improvement on the performance.
The utility of a new simulator protocol/optimization
cannot assessed accurately using such a narrow com-
parison. For example, the simulation model used for
the comparison greatly influences the performance.
Furthermore, the implementation used for operations
such as memory allocation, event-list management,
GVT calculation and deadlock detection affect the
performance. The number of factors influencing per-
formance is large and, therefore, a set of benchmarks
from the PDES application domain (Fujimoto 1993)
is needed to sufficiently characterize the performance
of a simulator under different working conditions.
Moreover, this benchmark suite must be indepen-
dent of the simulator to allow unbiased comparison
of simulators. Only a small number of the models
described by Fujimoto (Fujimoto 1993) are available
freely. Moreover, some models that are available have
several different implementations.

Several efforts have attempted to build useful per-
formance analysis frameworks for PDES simulators.
The suggested frameworks allow the user to select a
simulation configuration from a set of basic blocks
supported in the framework. (In the context of per-
formance analysis frameworks, user primarily refers
to a simulator developer.) The user builds an appli-
cation and executes it under the different simulator
configurations to analyze the effect of the parameters.
For example, Reynold’s (Reynolds 1989; Reynolds
Jr 1989; Reynolds and Dickens 1989) SPECTRUM
testbed allows a user to implementa simulator config-
uration (protocol), supply an application, and specify
some of the key parameters. The performance param-
eters incorporated in the framework include deter-
minism, queuing, processing delays, causality, state
change characteristics, balance, activity, and connec-
tivity. Thus, the effect of these parameters on per-
formance can be studied. The major drawback of
this framework is the need to re-develop the simula-
tion kernel using the testbed for each configuration.
Furthermore, the application cannot be tested on any
other simulator. Gilmer (Gilmer Jr 1988) also defines
some parameters and uses them to build simulation
models.

Ferscha (Ferscha and Johnson 1996) develops a tool
for performance prediction of Time Warp (Jefferson
1985) protocols and related optimizations. A Time
Warp model is built incrementally and decisions re-
garding different optimizations are made early in the
development stage. Other, similar, testbeds that are
currently in use include Yaddes (Preiss 1989) and
Maise (Bagrodia, Chandy, and Toh 1991). These ap-
proaches do not allow a model to be evaluated on dif-
ferent implementations of a simulation protocol. The
framework described in this paper provides a mecha-
nism for generating a large number of synthetic appli-
cations to test a simulation implementation. More-
over, the representation method can be easily trans-
lated to other simulators.

4 THE FRAMEWORK

This section discusses the different components of the
performance analysis framework suggested in this pa-
per. An overview of the framework is shown in Fig-
ure 1. Central to the framework is the Workload
Specification language (WSL), a language for cap-
turing the performance-critical attributes of applica-
tions. Since the performance-critical attributes are
explicitly visible, WSL can be used to generate syn-
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Figure 1: The Performance Analysis Framework

thetic workloads using a Synthetic Workload Genera-
tor (SWG). Synthetic workload generation allows the
performance space of the simulator to be explored
methodically. Moreover, real models can be repre-
sented using WSL. An automatic translator, at the
back-end of the framework, translates WSL descrip-
tions to equivalent synthetic models that conform to
the performance characteristics specified by the WSL
description; real models must be ported manually.

4.1 Workload Specification Language

This section describes the Workload Specification
Language (WSL). WSL is not a modeling language;
rather, it is a language for representing the work-
loads in a format that facilitates performance anal-
ysis of parallel discrete-event simulators. WSL sup-
ports synthetic as well as real workloads. Synthetic
workload descriptions are based on a characteriza-
tion of a PDES workloads in terms of some funda-
mental parameters. Specification of a real workload
is implemented by inserting simulator specific code
in the WSL object definition. The representation of
real models exposes the structure of the models to
the user and allows systematic conversion to other
simulation languages. While this approach does not
reduce the task of the initial modeling of a system,
it facilitates translation of models among simulation
languages with high accuracy, allowing an impartial
comparison to be carried out. In addition, synthetic
workload descriptions, written using WSL, can be di-
rectly applied to the different simulators (using the
automatic translators).

A workload specification in WSL consists of a listof
simulation object definitions ( SimObject ) followed
by a list of instantiations of these objects. Every sim-
ulation object may have an unlimited number of defi-
nitions. These definitions correspond to the different
simulation kernels or to a synthetic ( Synthetic ) rep-
resentation. The translator generates translated code
depending on the target simulation platform. In the
remainder of this section, we overview the represen-
tation and translation facets of WSL.

4.1.1 Synthetic Representation

A simulation object can be represented as a synthetic
object; a representation that does not perform any
useful function but produces resource demands that
are similar to a real simulation object. The syn-
thetic object is used to build a synthetic workload.
Ideally, the characteristic of the synthetic workloads
should match thatof a real workload. For this reason,
a workload characterization of several PDES models
was carried out and parameters thataffect the perfor-
mance were isolated. Several of the parameters have
been identified previously by Fujimoto (Fujimoto 90),
and Reynolds (Reynolds 1989). Some of the impor-
tant parameters supported by WSL are:

1. Computation Granularity
2. Memory Requirement
3. Topology
4. Input and Output Behavior
5. Event Population
6. Event Probability
7. Event Delay
8. Number of Processors
9. Number of Physical Processes

10. Ease of Verification
11. Initial configuration

The lasttwo parameters do notrelate to performance,
but have been included to provide information that
can be used to verify the correctness of the simula-
tion. A complete breakdown of the parameters is not
provided here for brevity (Balakrishnan 1997). The
synthetic description given in figure 2 demonstrates
how the parameters are specified. A complete model
consists of a set of such objects with an associated
connectivity pattern (topology).

4.1.2 Real-Model Representation

WSL also supports real model descriptions, inserted
as simulation-specific code. Each simulation environ-
ment is assigned a unique tag which is used to mark
model descriptions suitable for it (using the keyword
SimModel). When generating simulation models for a
given simulation environment, the translator searches
for the tag corresponding to it. The structure of a real
object description is shown in figure 3. Every section
is optional; the structure serves as a guideline. The
design was found to be well suited for writing the
description in C++. However, it should also be use-
ful for other languages because of the organization of
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SimObject nameOfObject {
SimModel Synthetic {
Input boolean ;

Output number ;

Distribution {distribution}
{separation interval list};

Delay {distribution,{...}}
// One Distribution is needed

for each output channel

Init boolean ;

IOFunction {distribution}
{separation interval list};

Granularity floating point number ;

EventSize number ;

StateSize number ;

FileInput number ;

FileOutput number ;

IterationCount number ;

}
}
where

distribution := {UNIFORM | POISSON |

NORMAL | EXPONENTIAL |

BINOMIAL | CONSTANT}
{ seed, seed }

separation interval list := {x, y}

Figure 2: Structure of a Synthetic Object

the design. More precisely, the organization provides
a clear methodology for re-writing an object descrip-
tion in another language, by making the primary con-
stituents individually-available in self-contained de-
scription clauses.

Once the simulation objects have been defined, a
net-list representing a set of objects and their connec-
tivity is instantiated. The net-list definition enables
optional statically-defined simulation object to LP as-
signment. Each object definition may be instantiated
multiple times, and connected to other objects using
the net-list. Every simulation object (SimObject) can
have only one synthetic description but multiple real
descriptions. The translator can be directed to choose
either synthetic or simulator-specific descriptions.

4.2 Synthetic Workload Generator (SWG)

The Synthetic Workload Generator (SWG) is a pro-
gram that automatically generates workloads with
emphasis on different performance-related properties.
Thus, a suite of models where one or more parame-
ters are varied while the others are held at fixed values
can be generated. This enables methodical analysis
of the behavior of the simulator with respect to the
parameter being varied, such that the regions of good
SimObject nameOfObject {
SimModel Warped {
Input boolean ;

Output number ;

Event

[[ // declare the variables in the

// event here ]]

[[ // initialize the Event variables

// declared ]];

State

[[ // declare variables needed in the

// state here ]]

[[ // initialize State the variables

// declared here ]];

Object {baseObjectName} {
Variables

[[ // declare any special

// variables here ]];

Constructor

[[ // constructor (C++ terminology) for

// the object ]];

Initialize

[[ // put the initialization code here ]];

Execute

[[ // code for processing the received

// event goes here ]];

Finalize

[[ // code to be executed at the end of

// simulation ]];

[[ // additional functions can be

// written here ]];

}}}

Figure 3: Structure of a Real Object

and bad performance are identified.

SWG operates in two phases: (i) the graph gen-
eration phase, and (ii) the model generation phase.
The graph generation phase builds a directed graph
according to the specified parameters. The control-
lable graph parameters are the number of nodes and
graph topology (e.g., GRID ,TREE, COMPLETE ,
RANDOM). The graph generation phase was built
using the Library of Efficient Data-types and Algo-
rithms (LEDA) (Mehlhorn, Näher, and Uhrig 1996).
The generated graph is checked for compliance to ad-
ditional properties such as number of sources, num-
ber of sinks, and the existence of cycles. The second
phase starts with the graph representation and con-
verts every node to a synthetic simulation object by
filling in the values for the parameters shown in Fig-
ure 2. Once the second phase terminates, the simula-
tion object description and the net-list for the WSL
description of the workload are ready.

Figure 4 shows the structure of the SWG. The pa-
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rameter values are generated using statistical distri-
butions that are bound at the time of generation. It is
possible to override the statistical distribution speci-
fication of the parameters, by supplying constant val-
ues instead. The language can be extended to model
additional distributions.

4.3 WSL Translator

The translator is the critical component of this per-
formance analysis framework. It is designed using
PCCTS (Parr 1995), a compiler construction toolkit.
The translator consists of a parser that calls prede-
fined functions in the PublishClass; there is one
PublishClass for each simulation environment sup-
ported by the translator. Figure 5 shows the orga-
nization of the translator. Building a translator for
a new simulation environment involves filling in the
pre-defined methods for its PublishClass; only the
back-end to the generator need be modified.

Accurate translation of the synthetic objects is cru-
cial to the success of the synthetic models in exer-
cising the system according to the parameter values
specified in the WSL description. Each parameter in
the synthetic description is well defined, and mod-
els that correctly exhibit the required behavior can
be built. The translator supports partitioning the
network and assigning simulation object to different
processors as required by the WSL specification.

We have constructed a translator for WARPED,
a Time-Warp synchronized simulation kernel (Mar-
tin, McBrayer, and Wilsey 1995). the complete sys-
tem has been used for performance evaluation of the
WARPED kernel. The framework was written in
C++ and the translator implemented using PCCTS
(Parr 1995), a freely available compiler construction
toolkit. The system was tested using the GNU g++
compiler.
PublishClass

Synthetic Descriptions Actual Descriptions

any other Warped 

multiple simulation environments
such as

that can be written seperately for

WSLParser

that has two sets of functions for
translating 

calls pre-defined funtions in 

builds symbol table and netlist and

s

Figure 5: Structure of the WSL Translator

5 EXPERIMENTS

In this section, the framework is used to analyze the
performance of the WARPED (Martin, McBrayer,
and Wilsey 1995) simulation kernel. The models used
to perform the experiments were generated using the
SWG. They were then translated to WARPED code
by a translator written for WARPED. The exper-
iments were conducted on a SUN SPARCCENTER
1000 with 4 processors. The GNU g++ compiler with
the optimizations (-O2) was used to compile the mod-
els. The WARPED kernel was used with the aggres-
sive cancelation (Rajan and Wilsey 1995) strategy,
Least Time Stamp First (LTSF) scheduling policy,
and using the MPI communication implementation.
The synthetic model used consisted of 100 simulation
objects that were randomly partitioned among two
LPs. The topology used was a GRID.

The effect of increasing event granularity is inves-
tigated first. The results are shown in the Figure
6. Higher granularity does not affect efficiency (ra-
tio of committed events to the total number pro-
cessed events). Event granularity is independent of
the scheduling time of each event. For very low gran-
ularities (.001 to 1 microsecond) the drop in event
rates is more gradual than the rate shown in Figure
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Figure 6: The Effects of Event Granularity

6.
Since WSL provides support for partitioning, the

same model was studied using two and four LPs; the
1 LP case serves as the base case. The granularity
value used for this study is 0.1 microsecond. The
results are shown in Figure 7.

For the next experiment, WSL was used to repre-
sent the ping-pong models presented by Barriga (Bar-
riga, Ronngren, and Ayani 1995). The results of scal-
ing these benchmarks is shown in Figure 8 and Figure
9. SWG was used to produce scaled versions of these
models from the synthetic equivalent description of
the real model. Figure 8 shows the effect of increas-
ing messages sizes on the event processing rates. The
Ping model (Figure 9) is used to assess the effect of
the buffer sizes in the message passing layer. After
the buffer becomes full, the event processing rates
stabilize. This occurs after a momentary decrease in
event processing rate (caused by the full buffers).

The experiments discussed in this section are in-
tended as a sample of the capabilities of the frame-
work; they are not sufficient for a full characterization
of WARPED. Using SWG, workloads for testing any
of the performance parameters can be generated eas-
ily. Thus, similar experiments can be carried out to
study the effects of other parameters on the perfor-
mance.

Finally, it is important to verify that synthetic rep-
resentations of real models reflect the behavior of the
original models. In order to verify this correspon-
dence, we evaluated the behavior of synthetic mod-
els for some circuits of the ISCAS’85 (CAD Bench-
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Figure 7: The Effect of Parallel Execution

marking Lab, NCSU 1989) benchmark suite relative
to the behavior of the real models. The results are
encouraging; however, more extensive evaluations are
necessary to strengthen this conclusion (Balakrishnan
1997).

6 CONCLUSIONS

The framework presented in this paper introduces a
common and uniform methodology for performance
analysis and benchmarking of simulation environ-
ments. The framework, which is based on a Work-
load Specification Language (WSL), provides a sim-
ple platform for capturing workload characteristics
and translating the workload description into syn-
thetic models with equivalent performance character-
istics. The performance analysis framework has many
important applications throughout the development
cycle of simulators and models. Because PDES is
used to simulate increasingly complex applications,
it is important to be able to evaluate the feasibility
of an implementation before embarking on a complex
modeling effort. For example, since the framework
supports a mixture of real and synthetic objects it
can be used to build a prototype of the simulation
model before the actual one is built. Moreover, the
WSL representation of real models exposes their im-
plementation details. This facilitates straightforward
and accurate translation of a model to other systems
such that unbiased performance comparisons are pos-
sible.

With the help of a Synthetic Workload Generator
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(SWG), the framework can be used to characterize
newly built simulation kernels, or the effect of new
optimizations on existing kernels. For each simula-
tor, a small amount of effort is required to write the
back-end for the WSL translator. The synthetic rep-
resentation permits the analysis and characterization
of the performance trends of a simulator using the
SWG. Moreover, SWG can be used to perform ca-
pacitance testing on the simulator. The real models
can be used, alongside the synthetic models gener-
ated by SWG, to provide a comprehensive, realistic,
and portable benchmark suite.

The benchmark suite is especially useful if it is
continuously augmented with models from emerging
application domains — continuing to reflect realistic
workloads. We have started assembling a benchmark
suite of real models that will be complemented by
SWG produced workloads. The suite currently in-
cludes an implementation of gate-level digital logic
simulator, a sharks world model (Conklin, Cleary,
and Unger 1990), and the set of ping models proposed
by Barriga (Barriga, Ronngren, and Ayani 1995).
The circuits used for the digital-logic simulation are
from the ISCAS’89 (CAD Benchmarking Lab, NCSU
1989) benchmark suite. Additional models are being
added to the benchmark suite.
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