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ABSTRACT

We are developing a parallel simulation framework for
large-scale network simulation. An important com-
ponent of this work is the development of a TCP/IP
model library. TCP/IP experts at LBNL have al-
ready developed the ns simulator for investigation of
protocol variants. ns is a flexible and easy-to-use
tool, but its construction thwarts high performance
simulation of large scale networks. In order to model
TCP/IP as accurately as does ns but still provide
high performance, we are transforming ns source code
into the Telecommunications Description Language
(TeD), a tool that brings automated parallelization
to network simulation. This paper describes the is-
sues that arose in the course of this transformation.

1 INTRODUCTION

The explosion of network use and interest in net-
works creates a need to simulate very large scale net-
works. Applications include the study of more effi-
cient ways to handle the ever-increasing loads of the
Internet, multi-media over the Internet, multi-casting
and routing algorithms, etc. With these demands, so
arises a need for faster simulators to handle the larger
loads. Towards this end, the Telecommunications De-
scription language (TeD) (Perumalla, Ogielski, and
Fujimoto 1996; Perumalla and Fujimoto 1996a) is a
system under development at Georgia Tech to pro-
vide a simulation framework for large-scale network
simulation. TeD is modular and object-oriented. Its
design reflects an overriding goal that TeD submod-
els be reusable, that they support a library approach
to building up large complex systems, and models
be extensible. TeD models are run in parallel, au-
tomatically, by being transformed into functionally
equivalent GTW (Georgia Tech Time Warp) (Das et
al 1994; Perumalla and Fujimoto 1996b) code.

We are part of an NSF-funded project to develop
technology to support large-scale network simulation.
A key ingredient to many networks is the TCP/IP
protocol family. Our goal is to develop accurate
TCP/IP models and make them available as TeD li-
braries so that higher level protocol simulations might
be built modularly, drawing upon the TCP/IP model
code. Clearly then it is important to use an accepted
and accurate model for TCP/IP behavior. To en-
sure this we turned to the ns simulator, developed at
Lawrence Berkeley National Lab by noted TCP/IP
experts. This paper describes the issues that arose
in the course of transforming ns source code into
functionally equivalent TeD code. The transforma-
tion is of some interest, because in its focus on au-
tomated parallelization, TeD imposes modeling con-
straints that affect how one can build TeD models.

ns is built using a combination of Tcl and C++.
The user’s interface to ns is through a Tcl script that
defines network topology, protocol variants, traffic
type, traffic source and sinks, etc. Behind Tcl, C++
objects implement the network behavior and execute
the discrete-event simulation. An ns user essentially
describes an experiment or set of experiments. If one
wished to implement a new variant on TCP/IP, one
would need a certain facility with defining new ob-
jects “under-the-covers” and knowledge of how to in-
tegrate them into the ns framework. The heart of ns
is event-oriented simulation (as opposed to process-
oriented simulation).

TeD is best viewed as a combination of a special
TeD “meta-language” that provides simulation spe-
cific constructs, and C++. The meta-language is
the framework that describes the simulation topol-
ogy and the experimental framework. Ordinary C++
code—some of calling meta-language macros—is used
to describe object behavior. Given a sufficient set
of library submodels, one can build a TeD model at
basically the same level of abstraction as one builds
an ns model. In TeD’s case it is mostly a matter
of configuration and selection of pre-defined behav-
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iors for pre-defined network objects. Because TeD,
like ns, is object-oriented, converting from ns into
TeD is a reasonable way to approach the goal of fast,
accurate simulations. There is a fundamental differ-
ence though. While the ns engine is event-oriented,
the TeD world-view is process-oriented (with restric-
tions). This difference and the restrictions TeD places
on model expression create the key technical chal-
lenges of this transformation. Nevertheless, we be-
lieve that TeD TCP/IP models can be built which be-
have identically (statistically) to equivalent ns mod-
els, but, because of TeD’s parallel execution, achieve
significant speedups.

2 AN OVERVIEW OF SIMULATION
USING ns

ns extends Tcl with simulation specific objects and
functions. A network topology is defined by using
nodes and links as building blocks. nodes are con-
nected by links and may contain agents, which are
responsible for sending and receiving packets. In the
process of creating these structures, the user can de-
scribe many of their characteristics. For example, two
characteristics of links are ‘bandwidth’ and ‘packet
drop policy.’ The user can also schedule changes to
occur at specified times during the simulation. For
instance, one might simulate a node in the network
going down at time 100.0. Finally, the user can set
up customized traces to gather information about the
simulation. See Figure 1 for an example of a typical
ns script.

3 AN OVERVIEW OF MODELING IN TeD

A model in TeD consists of entities which communi-
cate using events and channels. Each entity object
represents some physical network object, and events
are messages between entities that encapsulate infor-
mation and stimulate simulation behavior. Messages
are passed through channels. Both the sending and
receiving entity declare a channel variable (which may
have different names) and a configuration statement
executed at initialization maps them together, creat-
ing a link between those entities. Channels of this
type are called external. The entity itself in TeD
just specifies the interface of that object to the rest
of the world—the instantiation of behavior that uses
that interface is separate, being contained in an ar-
chitecture. We will illustrate these concepts with a
TCP model. Top level entities in this model resem-
ble ns primitives, e.g., nodes and links. nodes may
have any number of channels, while links have ex-
# create two nodes
set n0 [ns node]
set n1 [ns node]

# connect them with a 1.5Mb link with a transmission
# delay of 10ms using FIFO drop-tail queueing
set link0 [ns link $n0 $n1 drop-tail]
$link0 set bandwidth 1500000
$link0 set delay 0.100

# links in ns are unidirectional, so do both directions
set link1 [ns link $n1 $n0 drop-tail]
$link1 set bandwidth 1500000
$link1 set delay 0.100

# set up BSD Tahoe TCP connection in one direction only
set src1 [ns agent tcp $n0]
set snk1 [ns agent tcp-sink $n1]
ns connect $src1 $snk1
$src1 set class 0

# Create an ftp source at the source node
set ftp1 [$src1 source ftp]

# Start up the ftp at the time 0
ns at 0.0 "$ftp1 start"

# run the simulation for 10 simulated seconds
ns at 10.0 "exit 0"

ns run

Figure 1: Sample ns Code Defining a Network with Two
Connected Nodes, with an Established FTP Connection
Between Them

actly two. These channels are mapped to define the
(static) network topology. The object-oriented struc-
ture of TeD also allows for entities to contain com-
ponents which are themselves entities. For example,
node entities might have an array of agent sub-
entities which do the actual implementation of TCP.

TeD follows the VHDL (Bhasker 1996) language in
that for each entity, at least one architecture must be
defined which specifies that entity’s behavioral model.
The architecture defines the state of the entity (vari-
ables to be used during the simulation), and its behav-
ior (which includes how it will respond to events that
it receives). In the TCP example, an architecture for
a node might contain a routing table (state), and
a process which forwards packets when they are re-
ceived (behavior). In fact, processes are the primary
means by which the behavior of an entity is described.
One entity can have multiple processes, and they can
pass information and synchronize with each other if
they are connected by internal channels. Such chan-
nels reside within the entity, but behave otherwise
identically to external channels.

Functions can also be used to describe the behavior
of an entity, so long as the behavior described does
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event Packet {
int seq number; // packet sequence number
. . .  // lots of other fields
}
channel packetChannel { Packet } // channel type declaration

entity Node( int numLinks ) { // takes one parameter
channels {

// a channel array to be mapped to the connecting links
inout packetChannel nodeChannel[numLinks];
}
}
architecture NodeArch(int IPaddress) of Node( int NumLinks ) {

state {
RtrTable r table; // routing table for forwarding packets
}
channels {

packetChannel forwardChannel; // an internal channel
}
behavior {

// will contain any agent subentities at a node
component theAgents;
process #1 handle( nodeChannel[0 to numLinks-1] );
process #2 forward( forwardChannel );
}
}

entity Link {
channels {

// external channels, mapped to the two connected nodes
inout packetChannel linkChannel[2];
}
}
architecture LinkArch of Link {

state {
PacketQueue q; // to hold packets in transit
}
channels {

packetChannel sendChannel; // an internal channel
}
behavior {

process #1 send( sendChannel );
process #2 handle( linkChannel[0 to 1] );
function update stats(int packet class);
}
}

Figure 2: Simplified Pseudo-TeD Code Defining a Packet
Event with Node and Link Entities

not involve synchronization or use of message chan-
nels. It is advantageous to use functions when possi-
ble, as TeD processes have additional overhead. How-
ever, as we will see, our transformation frequently
forced us to employ processes owing to the TeD con-
straints on functions and synchronization.

Figure 2 presents an example of typical TeD code,
and Figure 3 presents a diagram of what a modeled
network might look like.

4 CONVERTING ns TO TeD

Because both ns and TeD are based heavily on C++,
the framework of the conversion involved a direct
translation from pure C++ in ns to TeD “encapsu-
lated” C++ structures. However, because TeD is,
in a sense, a narrower version of C++—not just any
C++ code can be transplanted into a TeD model—
LINK
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Figure 3: A Simple Network as it Might be Constructed
in Either TeD or ns

there were many constraints which hindered a com-
pletely straightforward translation. In building the
TeD model, we sought to ensure consistent behavior
with ns, and intuitive (and efficient) implementation.
Consistent behavior with ns will make verification of
the transformation straightforward, while an intuitive
implementation makes for a clean and easily extensi-
ble model.

TeD constraints make the achievement of both
goals non-trivial. First we shall briefly summarize
the general transformation approach. Then we’ll ex-
amine the restrictions which had the most impact on
the structuring of the TeD code, and the difficulties
they presented. Finally, we discuss how we worked
around these difficulties.

4.1 The General Approach

To make the translation as simple as possible, we
mapped ns constructs directly into analogous TeD
constructs whenever possible. Specifically, C++
classes in ns became entities in TeD, with the ex-
ception that the ns Packet class was more natu-
rally implemented as a TeD event. ns class meth-
ods became either functions or processes of the cor-
responding TeD entity. Typically, if an ns method
passed a Packet object as one of its parameters, that
method was translated into a TeD process (event-
driven) which is invoked whenever a packet arrives
on one of its channels. Other ns object methods are
converted into TeD functions with identical parame-
ters. (Section 4.1.1 discusses this further.)

A consequence of this transformation is that ns
methods that pass Packets as arguments to other
ns methods must be transformed into TeD processes,
and must establish TeD channels between TeD pro-
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cesses corresponding to ns caller and callee methods.
If caller and callee are member functions of the same
object, the corresponding TeD channel is internal; it
is otherwise external. For example, a node passing a
packet to a connecting link uses an external chan-
nel in the transformed code, while one process in an
agent passing a packet along to another process
within that same agent uses an internal channel.

The primary ns building blocks, node, link, and
agent, all map directly into corresponding TeD en-
tities. The latter provides an excellent example of
how TeD separates interface specification from imple-
mentation. ns provides a number of different agent
types, e.g., TCP agents, sink agents, ftp agents. In
the ns internals a specific agent type is created by
defining a class derived from the agent base class,
specializing methods and additional data structures
as needed. Similar variations are possible with the ns
data source class, and its corresponding architec-
tural variants in TeD. In TeD, the entity definition
corresponds to the base class (think of it as a virtual
base class) and the architectures correspond to de-
rived classes. The point of TeD’s approach this way
is to emphasize the distinction between interface def-
inition and implementation.

4.1.1 Processes and Functions

TeD provides a process-oriented view of behavior, as
TeD model behavior is expressed though the inter-
action of TeD processes. TeD processes interact by
sending events to each other through TeD channels;
TeD processes synchronize through blocking “wait”
statements that cause the process to suspend for some
specified duration of simulation time or until some
event appears upon a channel.

TeD provides both functions and processes that
can read from and write to model state variables.
Functions are the usual sort one finds in imperative
programming languages, and they may call a limited
number of TeD macros that reference the simulation
clock, and manipulate state variables. In particu-
lar, a function cannot refer directly to a TeD event
data structure which means it cannot send or receive
events on a TeD channel. Nor can it call any TeD
synchronizing statement (a wait).

TeD processes have time and space overhead, as
process representation persists in the TeD internals.
Furthermore, the flow of control between processes
is different than that between ordinary functions.
Therefore TeD, we prefer to convert ns methods to
TeD functions. However, this is impossible if the
method schedules events, or is a method that is called
first to process an ns event occurrence. An ns method
state variable X
is accessed

is accessed
state variable X

Execution of
function B

Execution of
process A

Execution of
process B

Execution of
process A

problems to worry about.

state variable X
is modified

function B
called

zero-delay event
scheduled to invoke B

state variable X
is modified

real (wall clock) time

real (wall clock) time

completed, and the value of X will not be modified as A requires.
Because B is a process, it does not get executed until A is

Since B is a function, there are no synchronization

Figure 4: Examples of Process and Function Interac-
tion

is readily converted to a TeD function if it only reads
and writes architecture state variables. It can be con-
verted to a TeD function if it reads values from an
event state, but only with a bit of hands-on modifi-
cation. One needs first to identify which fields of the
event are read. A TeD function cannot read these
directly, but it can read new variables passed as ex-
tra parameters. The code calling the function uses
TeD macros to extract field values from TeD events,
and passes those values along to the function. While
this sort of transformation has its attractions, it will
greatly complicate any future attempt we might make
to fully automate the transformation of ns code to
TeD.

Figure 4 shows example time-lines of executing sim-
ulations with interrelated processes and functions.

An additional reason for preferring functions to
processes is that flow-of-control is more apparent. A
function call behaves exactly as one expects. How-
ever, if one TeD process sends another an event
through a channel, the recipient process will not exe-
cute before the sending processes has suspended, even
if the channel is internal and has zero time delay as-
sociated with it. Thus it can be challenging to cor-
rectly transform an ns calling sequence where method
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A calls method B, B then schedules an event and re-
turns to method A. If the post-call code in A depends
on state-modifications done by B, we cannot mind-
lessly turn A and B into processes that share a chan-
nel, because the state changes anticipated by A in the
original ns code will not have taken place. Depend-
ing on A and B there are some approaches one can
consider. If A is the only caller of B one may be able
to introduce an additional channel between processes
representing A and B for the purpose of B reporting
its completion and A blocking on that report. A’s
call to B is transformed into a process representing A
sending an event down one channel, and waiting for a
response on the new channel. B’s process, of course,
must then send an event down the new channel when
it has completed its task. If A’s call to B is nested
inside of an if conditional, switch, or a loop, then
A’s process will have to be rewritten to hoist the new
call to wait out of the condition—TeD permits calls
to wait statements only at the lowest level of nesting
in a process’s code (Premore, Nicol, and Liu 1996).
Such a transformation is dependent on the specifics
of the process code.

The introduction of an acknowledgment channel
will not work if method B is called by more than one
method, because the recipient of the acknowledgment
must be unique. One can finesse this difficulty at the
introducing a channel for each unique caller (and deal
with the issue of caller identity so that the acknowl-
edgment can be sent through the correct channel).

4.2 Exceptions to the General Approach

Even though TeD has many features which aid gen-
eral network simulation, we found ns using constructs
for which there was no immediate replacement in
TeD. These include event cancellation, dynamic mem-
ory allocation, and process synchronization.

4.2.1 Event Cancellation

Some ns agents send out packets of data (one such
agent is a tcp agent) and simultaneously send a
(future) time-out message to another agent. The ns
mechanism is to pass a future event to the ns sched-
uler, for, if an acknowledgment is not received by
the time-out event, special action is taken. Typically
though the acknowledgment is received in time, and
the processing of that acknowledgment directly can-
cels the time-out event. Event cancellation of this
type is not supported in TeD.

We can accomplish the same effect in TeD by hav-
ing ack message processing mark the sent packet as
acknowledged, and by having a time-out event check
whether its packet was acknowledged. TCP rules for
acknowledgment allow us to minimize the additional
saved state to only one word (the earliest sent pack-
age not yet received). However, event cancellation
would still be useful and would reduce—potentially
significantly—the overall memory use in the simu-
lator (by eliminating time-out events whose packets
have arrived) and the time spent manipulating the
event list, and the time spent firing up a process that
will only turn around and suspend itself.

4.2.2 Dynamic Memory Allocation

Dynamic memory allocation is a well-known problem
area for optimistically synchronized parallel simula-
tors; the difficulty stems from the need to maintain
value histories in the variables using such space. On
the other hand, C and C++ programs use dynamic
memory constructs freely, and ns is no exception.

ns dynamically creates and destroys packets. Hap-
pily, since these corresponded to events in TeD, and
the TeD language provides a structure for manipu-
lating them (creating, sending, and receiving), no dy-
namic memory issues arose—it was built into TeD,
and no memory needed to be allocated explicitly in
the modeling process. On the other hand, ns is rife
with dynamic data structures such as linked lists that
are implemented naturally using dynamic memory.
Our sole recourse is to use statically allocated arrays,
sized maximally. Determining maximal array sizes is
a dark art given the variant behavior one expects of
discrete-event simulations.

4.3 Process Synchronization

As described in Section 4.1.1, we prefer transform-
ing ns methods into TeD functions rather than TeD
processes. However, there can be times when TeD
processes cannot be avoided, and this leads to syn-
chronization problems. Consider the following situa-
tion: a method for the Agent class, called send, has a
loop which each pass calls one of two other methods,
output or sched, for which the order of invocation
matters. Restrictions discussed earlier force these lat-
ter methods to be transformed into TeD processes;
send invokes them by sending them events along in-
ternal channels, with no delay. However, this means
that all of those events will “arrive” at exactly the
same time. There is an undocumented default order
TeD uses to evaluate these “same-time” events, and
being static it cannot be adapted to the particular
sequence called for by the equivalent ns code. In this
case we could have included acknowledge channels (as
described earlier), or finesse the problem through the
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simulation clock. Choosing the latter method we en-
forced the desired sequence by adding insignificant
but mathematically present delays to the invocation
times.

Simultaneous events are a common source of prob-
lems for simulators of all kinds. A more esthetically
pleasing solution in this case would be possible if TeD
provided semaphores shared by processes bound to
the same entity.

5 PERFORMANCE ISSUES

The strategy we have outlined for transforming ns
source code into TeD has the advantage of relative
simplicity, and (we hope) provides a set of readable
TeD objects. Since we track the ns logic as closely
as we can, validation of the transformed code is a
matter of ensuring that ns and TeD versions of the
same problems yield statistically identical output (we
would have to modify ns in order to synchronize ran-
dom number streams and have the two versions pro-
duce deterministically the same sample path from the
same random number seeds).

The downside of this approach is that it gener-
ates events in TeD where in ns there are function
calls. The performance implications are potentially
serious. Still, our initial goal is to get an accurate
TCP/IP simulator up in TeD first, and then work at
performance optimizations. Even with the existing
approach, the potential exists for larger simulations
and (perhaps) faster simulations by exploiting paral-
lelism.

Another potential problem area is the size of state
memory. Large arrays in TeD must be declared where
ns uses dynamic lists. These must be “state” arrays,
saved by the optimistic simulator, at potentially high
cost. TeD does provide a “large state” mechanism
for incremental state-saving. Nevertheless, the cost
of state-saving is generally acknowledged as the most
serious among Time Warp overheads, and is one we
will have to examine carefully.

6 CONCLUSIONS

We are developing TCP/IP model libraries for the
TeD parallel simulation language. To ensure the ac-
curacy of our models, we are transforming the logic of
the ns simulator into TeD. This paper reports on the
approach we are using, the difficulties we encounter
and their solution, and the tradeoffs of this approach.
We find that while TeD lacks constructs and imposes
restrictions that complicate an otherwise straightfor-
ward translation, essentially we are able to map the
ns logic into TeD without destroying its logical flow.

After validating the TeD models so created, we will
evaluate the performance of TeD versus ns to better
assess the performance price we pay for the direct
translation approach, and then of course evaluate the
parallel performance of the TeD models. Finally, an-
ticipating much room for performance optimization,
we will revisit the overall structure with an eye to-
wards limiting the number of extraneous events. Ul-
timately we aim to provide the TeD user community
with a library of modular high performance TCP/IP
models.
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