Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradéttir, K. J. Healy, D. H. Withers, and B. L. Nelson

CLONING: A NOVEL METHOD FOR INTERACTIVE PARALLEL SIMULATION

Maria Hybinette
Richard Fujimoto

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280, U.S.A.

ABSTRACT

A new scheme for interactively testing what-if and
alternative scenarios in parallel simulations is pre-
sented. Potential branches or choices can be specified
interactively and interjected into the on-going simu-
lation as decision points. Once a decision point is de-
fined, different “futures” are computed by cloning the
simulation, and executing the clones concurrently. A
construct called virtual logical processes is introduced
to avoid repeating common computations in different
cloned simulations.

1 INTRODUCTION

Interactive techniques can be used to effectively steer,
analyze and monitor parallel simulation applications.
Capabilities that may be provided by an interactive
system includes pausing, steering, monitoring, roll-
back and reverse execution. Pausing the simulation
is important when a participant wishes to interject
immediate or future branches into the simulation as
decision points. Steering is the insertion of decision
points without pausing. Steering and pausing can
also provide for modification of simulation parame-
ters and variables. Monitoring is a process whereby
specified variables in the simulation are sampled. The
variables may be sampled continuously or triggered
when a predefined condition occurs, such as the ex-
piration of an execution path. Rollback provides for
the re-evaluation of old decision points and variables.
Reverse execution enables the system to re-construct
the events leading to an outcome. In this paper we
introduce a new interactive mechanism for the explo-
ration of what-if and alternative scenarios.

As an example of how interactive simulation can be
used, consider air traffic control. Here, the controller
could benefit from an interactive simulation to de-
termine which scheduling policy offers minimal delay.
If an unexpected event occurs within the simulation,

444

such as a runway closure, the controller interacting
with the simulation may want to evaluate the effect
of activating different scheduling policies. This can be
done by dynamically cloning (replicating) the simu-
lation with different scheduling policies. The effect of
each policy within each clone is monitored to deter-
mine which policy offers the most effective solution.
Inefficiencies in the air traffic flow can be discovered
by monitoring the simulation then allowing backward
execution to evaluate cause and effect relationships.

Existing simulators must re-execute a simulation
from a check-pointed state or from the beginning to
explore alternatives in what-if-scenarios. These tech-
niques re-evaluate scenarios in a batch mode, one al-
ternative after the other. We propose to dynami-
cally create and evaluate different alternatives ahead
of time and in parallel with the on-going simulation
by using a mechanism that provides for interactive
cloning.

The mechanism advocated here clones a new ver-
sion of a simulation in progress to evaluate an alter-
native. Cloning is initiated on the arrival of a request
to explore a possible execution path. The alternate
version of the simulation proceeds in parallel with the
original simulation. At least one of the versions will
eventually commit and the other will expire (unless
both results are requested.) The decision of which
alternative to expire may be interactive or automatic
depending on a given condition included in the orig-
inal request. A benefit of exploring alternatives in
parallel is that an increasing number of alternatives
can be inspected before resolution.

Our approach is intended for parallel discrete event
simulators, where the simulation consists of a col-
lection of logical processes (LPs) potentially execut-
ing on different processors (Fujimoto 1990).- This
type of simulator is driven by LPs exchanging time-
stamped event messages. The simulation maintains
consistency by enforcing all events to be processed in
time-stamp order. Two consistency protocols prevail:

Cloning: A Novel Method for Interactive Parallel Smulation 445

conservative protocols and optimistic protocols. The
conservative protocol enforces consistency by avoid-
ing the possibility of ever receiving an event in the
past. The optimistic protocol, in contrast, provides
for receiving an event from the past by “rolling back”
previously processed events with earlier time-stamps
than the one received.

The cloning mechanism is applicable to both con-
servative and optimistic simulation protocols. Par-
allel discrete event simulators provide speed up for
time-consuming applications such as strategic battle-
management, telecommunication networks, air-traffic
scheduling, various engineering applications and
other large scale simulations. Strategic and tactical
battlefield simulation in particular would benefit from
our mechanism, since they often weigh options and
must be responsive to unanticipated scenarios.

The paper is organized as follows: Background
work is discussed in Section 2. This is followed by
a discussion of the virtual logical process paradigm.
Section 4 presents the cloning mechanism. Next, Sec-
tion 5 discusses implementation concerns and impli-
cations. We conclude with a summary and a discus-
sion of future directions.

2 BACKGROUND

Interactive parallel discrete event simulation is a rela-
tively new field. It is becoming active and the body of
literature is growing. Initial methods for interactive
parallel discrete event simulation using an optimistic
simulator have been discussed in (Steinman 1991) and
(Franks et al. 1997).

In (Steinman 1991) a special event type called an
external event is used to enable interaction with the
simulator.- These events can steer the simulation
in some desired direction and sample or query the
progress of the simulator. The approach of (Franks
et al. 1997) allows a user to test what-if scenarios
provided they are interjected before a deadline. Al-
ternatives are examined one after the other and the
simulation must undo the effect of the previous alter-
native before considering another.

The cloning approach introduced here improves
over these related methods by allowing multiple eval-
uations to be carried out simultaneously. Cloning
generalizes to both conservative and optimistic simu-
lation models. Both approaches can adopt the mech-
anism on top of existing systems.

Cloning or replication is well known in the dis-
tributed computing community. Traditionally it is
used to ensure fault-tolerance by providing identi-
cal processes, identical transactions, duplicate data,
or redundant services (Schneider 1990). Cloning can

also improve throughput by placing process replicas
in the proximity of where a service is needed (Gold-
berg 1992; Schneider 1990).

In real-time databases (Bestavros 1994) suggests
in his concurrency control algorithm, to fork reader
processes of dirty data to execute the same transac-
tion with different ordering assumptions. This avoids
the hazards of blockages or restarts. An alternative
schedule is adopted when a suspected inconsistency
materializes; otherwise it is abandoned.

Replication has been used in the simulation com-
munity to improve the accuracy of simulation results
or to find optimal parameter settings (Glasserman,
Heidelberger, and Shahabuddin 1996; Vakili 1992;
Glynn and Heidelberger 1991). The approach is to
run multiple independent replications then average
their results at the end of the runs.

In (Goldberg 1992), cloning is used to speed up
the execution of distributed programs by representing
read-mostly bottleneck processes as multiple replicas
or clones. Virtual time synchronization keeps repli-
cated processes consistent. A criteria in his simula-
tion is that each process sees the same state, while the
state of the cloned process in our paradigm may dif-
fer. This work differ in that we use cloning to explore
different paths concurrently.

The research we report in this article is motivated
by two goals: First, the desire to create a computa-
tional model for efficient interactive simulation. Sec-
ond, the development of a mechanism to realize the
model. In particular we are interested in a model that
supports an efficient, simple, and effective way to ex-
plore alternate scenarios. This is decidedly different
than the studies reported above.

3- THE VIRTUAL LOGICAL PROCESS

An essential requirement of interactive parallel dis-
crete event simulation is to efficiently explore multiple
possible intermediate outcomes. To provide speed the
model should parallelize the process of determining
committed states in order to quickly furnish alterna-
tives. We propose cloning the simulation to facilitate
the exploration of multiple scenarios.

A brute force approach to cloning is to replicate the
entire state of the simulation and create an indepen-
dent execution for each clone. This is very wasteful,
however, as there may be many identical computa-
tions repeated in the different clones. A mechanism
is needed to avoid replication of state and computa-
tion among the clones except when they are different.

In order to provide efficiency in cloning a simu-
lation we introduce the notion of wvirtual logical pro-
cesses (Vs). In this paradigm the simulation is viewed

446 Hybinette and Fujimoto

as a collection of virtual logical processes. Each time
a simulation is cloned a new version of the Vs is cre-
ated. For example, at the inception of a parallel sim-
ulation there is one version of Vs. When the simula-
tion is cloned, a second version of the simulation is
instantly created by instantiating a second collection
of Vs.

Consider the example scenario in Figure 1, depict-
ing a simulation with three LPs: A, B and C. The
snapshot shows that the simulation has been cloned
once, so two versions of the virtual logical processes
exist. Each version is shown as a plane. The first
version, the top plane, has a set consisting of three
virtual logical processes. Similarly, the plane on the
bottom, representing the cloned simulation, consists
of a set of three virtual logical processes.

A virtual logical process has its own state and ef-
fects communication via messages between processes
of the same version. The versions diverge as the state
between versions diverges. To avoid copying the en-
tire state upon instantiating a clone, the state is up-
dated incrementally. This is done by assigning the
state of each virtual logical process (V) to a physical
logical process (P). Each of the virtual logical pro-
cesses are said to map to the physical logical process
that maintains its state. One physical process may
maintain the state of several virtual logical processes.

Process mapping is analogous to virtual memory
where a virtual address is translated to a physical
memory address. The same address in main mem-
ory can be shared by two virtual addresses, but two
addresses in main memory cannot be mapped to the
same virtual address. Similarly, two virtual processes
may map to a single physical process, but two phys-
ical processes cannot be mapped to the same virtual
process.

To facilitate the discussion we introduce some nota-
tion and definitions. Version refers to an entire sim-
ulation. For example, version 1 refers to the original
virtual simulation, virtual version 2 refers to the first
cloned simulation of version 1. Virtual logical process
A version 1 is denoted by Vi, where version number
is the superscript and specific logical process is the
subscript. V' denotes a virtual logical process. P de-
notes a physical logical process. Similarly, P3 refers
to version 2 of physical logical process A. The version
number of a physical logical process is the same as the
lowest version number of the virtual logical processes
that maps to it.

Before a simulation is cloned there is one set of Vs
and one set of Ps. The mapping between them is
one-to-one and onto. In the example, the mapping
between Vs and Ps before cloning the simulation is
simply:

Figure 1: A Snapshot of a Simulation That Has Been
Cloned; the Top Image Shows the Two Virtual Ver-
sions of the Simulation, the Bottom Image Shows the
Mapping of the Virtual Processes to Physical Pro-
cesses A, B and C

— V4 maps to P}

— V3 maps to P}

— Vé maps to Pé
After cloning, there are two sets of virtual processes,
each set represents a particular version of the sim-
ulation. The first set or version of virtual processes
represents the original simulation, the second set rep-
resents a new version of the simulation that differs in
its mapping to physical logical processes.

The simulation may be cloned on a set of partic-
ular physical logical processes. In the case where the
cloning set contains one physical logical process the
effect is the creation of a new set of virtual logical
processes and one new physical logical process. The
new virtual logical processes map to the same physi-
cal processes as the original version except for the vir-
tual logical process that now corresponds to the newly
created physical logical process. The new clone then
proceeds to process the message that was received as
the impetus for cloning. Consequently, the state be-
tween the two versions of a physical logical process
now differ from the original simulation.

In the example, the bottom image in Figure 1 shows
the mapping between virtual processes and physical

Cloning: A Novel Method for Interactive Parallel Smulation 447

logical processes after the simulation is cloned on
physical process A. Here the mapping of the origi-
nal version of virtual processes stays the same. The
mapping of the new version of virtual processes is as
follows:

— V3 maps to P3

— V2 maps to P},

— VC% maps to Pé
Notice that for virtual processes B and C, version
one and version two share the same corresponding
physical process; while virtual process A version one
and version two maps to different physical processes.

The semantics of cloning a simulation on a physical
logical process or processes is what enables the explo-
ration of different scenarios. This represents a deci-
sion point where the states of the two versions start
to diverge. As the simulation progresses the mapping
of virtual processes to physical processes changes, as
new physical processes are created. Message sends
and receives are carried out in the physical layer. In
this manner a physical send corresponds to a set of
sends in the virtual process layer. In the example
(see Figure 2), a send of physical process B to physi-
cal process C is echoed in the set of sends consisting
of both virtual process B version 1 and version 2 to
virtual process C versions 1 and 2.

4- THE CLONING MECHANISM

A cloning mechanism must consider the following is-
sues: (1) when a physical process is created; (2) how
and when the mapping between virtual logical pro-
cesses and physical logical processes changes; and (3)
what set of virtual logical processes receives and sends
messages.

To illustrate how and when a physical logical pro-
cess is created and which physical processes send and
receive messages, we describe different scenarios en-
countered in an example military tactical simulation
consisting of a platoon, a tactical wing and a theater
command center. To conform with our earlier exam-
ple depicted in Figure 1, the platoon is represented by
logical process A, the tactical wing by logical process
C, and the theater command center by logical pro-
cess B. The simulation is cloned to simulate two out-
comes: A missile hit and miss on the platoon. Here
the state of the two versions of the simulation differ
in the state of the platoon and therefore a new phys-
ical process is created to map to the second virtual
version of the platoon. Each set of virtual logical pro-
cesses representing the tactical wing and the theater
command center maps to one physical process, Pc
and Ppg, respectively.

In order to determine when a physical process is
created or what set of physical logical processes re-
ceive a message, the mapping before the sending of
a message is considered. The approach considers the
sets of virtual processes mapped to the physical send
process and the physical receive process. This de-
termines if a physical process or a message needs to
be cloned. To reduce the cost of multiple-futures,
the mechanism re-uses as many resources as possi-
ble and only replicates smaller portions that cannot
be shared.

To highlight the different possible scenarios we will
continue to step through the military example. Recall
that the simulation is cloned on P}, thus resulting
in the creation of P%. The cloning of P3 results in
V2 mapping to a different process than V}, this is
denoted in the figure by a second circle around V3 in
version 2 of the planes. The damaged platoon (V})
differs from the undamaged platoon (V3) and thus is
mapped to a different physical process.

Following the initial cloning, suppose the theater
command center (B) requests a status report from
the tactical wing (C'). Message sends and message
receives are realized on the physical layer so this is
the same as physical process P} receiving a message
from physical process P} as shown in Figure 2. The
receiving of a message is determined by examining
the sets of virtual processes mapped to the sending
and receiving process. In this case only physical pro-
cess Pl receives a message because each member in
the virtual send set (Vi, V3) is received by virtual
processes (V4, VZ) which are mapped to the same
physical process P.. Thus the same physical message
between the physical processes is echoed between the
virtual send set and virtual receive set. This is be-
cause both virtual versions are identical in state and
should be equally influenced by the same message.
Logical processes apart from the consequences of the
platoon remain the same and can share the same com-
putations.

Continuing with the example, suppose the theater
command center (B) requests a status report from the
platoon (A) of the consequence of the missile — that is,
P} sends a message to P} (see Figure 3). A message
send from P} implies that each member (V3 and V3)
in the virtual processes set that maps to P send
a message. Because virtual processes (V; and V3)
are mapped to different physical processes and both
see the arrival of a message from their corresponding
virtual sender (VA and V2) two physical messages are
sent, one message to each physical receiver (P} and
P?).

Next, the damaged platoon (V}) proceeds by re-
questing extra man power from the theater command

448 Hybinette and Fujimoto

Figure 2: Transparent Send and Receive between Vir-
tual Logical Processes

(V). This corresponds to the sending of a physical
message from P} to P} (see Figure 4). Since virtual
process version 2 of processes B should not receive
the message, version 2 of the virtual receivers should
be prevented from being influenced by this message.
This is achieved by changing the mapping between
virtual and physical processes. The result is that the
process is cloned before an event is processed so that
the state of the physical process is not influenced by
the incoming message. The new “version 2” of physi-
cal process of B is prevented from the misconception
that A needs extra manpower.

Finally, the theater command (V) sends extra
manpower to the damaged platoon (V}). In the phys-
ical layer, P} again sends a message to P3. This cor-
responds to virtual process V3 sending a message to
virtual process V1. Here, no sending or receiving is
echoed in other virtual versions because there is no
sharing of physical processes and the message should
only influence the simulated version that corresponds
to the message send.

There are four general cases. All possible scenarios
can be derived from the base cases. They are based on
the mapping of the sender and of the receiver before
receiving the message:

e The same physical sender and receiver is shared
between virtual logical processes (see Figure 2,
virtual processes V3 and V32 both maps to P}
and both V2 and V2 maps to P}).

e The same physical sender is shared between vir-
tual senders but the virtual receivers do not share

Figure 3: Multi-Casting a Message

the same physical receiver (see Figure 3, VA and
V2 both maps to the sender Pj, but V} and V3
maps to different physical processes).

e The physical sender is not shared between virtual
senders but the virtual receivers share the same
physical receiver (see Figure 4, virtual receiver
V2 that is initially mapped to physical receiver
P2 does see a send from virtual sender V3).

e Virtual logical processes are independent of each
other and do not share physical logical processes
(see Figure 5, P3 does not receive a message from
P3).

The cloning mechanism first determines the physi-
cal processes that receive a message. Next it considers
the generation or cloning of a new physical process.
As illustrated in the example above the reception of
messages and creation of processes depends on the set
of virtual processes mapped to the sending physical
process and on the set of virtual processes mapped
to the receiving physical process. The following sets
and functions are defined:

PRcvSet (msg) The set of versions of physical logical
processes that receive message msg.

PSend (msg) The single version of a physical logical
processes that sends message msg.

VRcvSet (msg) The set of versions of virtual logical
processes mapped to a single version of a physical
logical process receiving the message msg.

VSendSet (msg) The set of versions of virtual log-
ical processes mapped to a single version of a
physical logical process sending the message msg.

Cloning: A Novel Method for Interactive Parallel Smulation 449

Figure 4: Creation of a Physical Logical Process

VSet (P!) The set of versions of virtual logical pro-
cesses mapped to the single version of physical
logical process P..

PSet (V, x) The set versions of physical logical
processes that maps to the set V' of virtual logical
processes x. Returns the version numbers of all
physical processes at x that map to some virtual
version € V.

VLow (V') The lowest version number of the virtual
processes in the set V.

The physical processes to receive a message are de-
termined as it is sent. Each physical process that
maps to a version that is also in the virtual send set
(VSendSet) receives a message. In Figure 3 where
physical logical process P} sends a message to phys-
ical logical process P} the VSendSet is { 1, 2 }. A
message sent from P} implies that both VA and V3
sent a message, because both versions of the virtual
process B are mapped to the same physical logical
process. PRcvSet is thus PSet ({1, 2}, A) =
{1, 2 }. Since PRcvSet has an additional physical
process the message is copied and forwarded.

After determining which processes receive a mes-
sage, the generation of new physical processes is con-
sidered. A physical process is created if there is a
virtual logical process in the receive set that does not
have a corresponding virtual sender or if the receiving
physical logical process found above has not yet been
created. For instance, consider a logical process that
has been cloned (say the clones are version 1 and ver-
sion 2). Next, version 1 of the physical processes pro-

Figure 5: Un-Transparent Send and Receive between
Virtual Logical Processes

ceeds to send a message to a physical process that has
not yet been cloned. Now since version 2 of the vir-
tual processes did not send the message, version 2 of
the virtual receivers should be prevented from receiv-
ing a message from physical logical process version
1. The first version should not influence the second
virtual version. This is achieved by creating a new
copy of the physical logical process before receiving a
message.

Determining the set of physical logical processes
that need to be cloned (PClone) includes inspect-
ing the VRcvSet of each receiving physical process.
PClone is determined by adding the lowest version
number of each set that remains from subtracting
VSendSet from all VRcvSets. Recall that the version
number of a physical logical process is the same as
the lowest version number of the virtual logical pro-
cess that is mapped to it. In order to illustrate this
case refer to Figure 4. Here, physical logical process
P} sends a message to physical logical process Pj.
PRcvSet is {1}. Virtual versions 1 and 2 map to the
physical process Pj, so VRcvSet is {1, 2}. The set of
versions of virtual logical processes that maps to the
physical sender P} is {1}. Thus, we need to create a
logical process to map to virtual process {2} before
processing the message because VRcvSet - VSendSet
= {2} (it is only one version in the difference so this
is also the lowest version number). A case where the
lowest version number is important is shown in Fig-
ure 6.

450 Hybinette and Fujimoto

Figure 6: Four Cloned Simulations

The remaining two cases do not require messages
to be copied nor the creation of physical processes
(see Figure 2 and Figure 5). Thus, to implement
the model we furnish functions that decide when to
create a physical logical process and when a message
is copied and forwarded to additional physical logical
processes.

5- IMPLEMENTATION

As discussed in the previous sections, an algorithm
to implement the cloning mechanism needs two steps:
The first is to determine the set of physical receivers
(PRcvSet); the second is to determine which of the
physical logical receivers are cloned. The pseudo-code
below shows an algorithm for the first step:

Input: PRcvSet, VSendSet, PSend
Output: PRcvSet

function GetPRcvSet
PRcvSet = PSend
WorkSet=VSendSet-VSet (PX;E‘_’Z(;RCVSH))
while (WorkSet # (0)
x € VLow (WorkSet)
PRcvSend = PRcvSend U x
WorkSet = WorkSet - VSet (Py, ;,)
end_while
return PRcvSet

The function GetPRcvSet determines the virtual re-
ceive set from the virtual send set. The receiving

physical processes is then determined by inspecting
the mapping between virtual logical processes and
physical logical processes of the virtual receive set
found in the previous step.

After determining the physical logical processes
to receive a message, the processes that need to be
cloned are found. Pseudo-code for an algorithm to
accomplish this step is listed below:

Input: PRcvSet, VSendSet
Output: PCloneSet

function GetPCloneSet
if (| PRcvSet | = 1 and VSet (PRcvSet) =)
PCloneSet = PRcvSet
return PCloneSet
end_fi
PCloneSet =0
for each member = € PRcvSet
VRcvSet = VSet (P, ,)
PCloneSet = PCloneSet
U VLow (VRcvSet — VSendSet)
end _for
return PCloneSet
end _function

The function GetPCloneSet retrieves the virtual re-
ceive set from each physical processor that will receive
a message. The virtual send set is then subtracted
from the virtual receive set since these are virtual
logical processes that should not be influenced by a
message receive from a different simulation version.
Each set difference then clones a physical process that
is equal to the lowest version number of its processes
(the other processes in this set are mapped to the new
process).

An architecture utilizing the cloning model is now
described. A diagram of the architecture is shown
in Figure 7. There are five modules: An interactive
module; a user application (describes the system be-
ing simulated), the cloning application layer, the sim-
ulation kernel, and the cloning kernel layer.

The interactive module is an interface between the
user and the simulation. The interface includes two
actions, the first is the request to clone a simulation,
the second is to expire a particular clone. The request
to clone a simulation includes parameters of the new
simulation.

In response to a request, a cloning manager in the
cloning application layer clones the entire simulation
into two virtual versions that run concurrently. The
simulation kernel interface copies and creates objects
iteratively. The cloning manager maintains the map-
ping of virtual versions to physical versions. The sim-
ulation kernel which drives the application contains

Cloning: A Novel Method for Interactive Parallel Smulation 451

@ User Application

Commitment Events 3
< =]

=

(5]

=

B Cloning
User Input g Simulation Kernel Kernel

- Layer

Figure 7: Architecture

either an optimistic or conservative protocol.

6- CONCLUSION AND FUTURE WORK

This paper introduces the paradigm of virtual logical
processes to explore different possible futures as an
efficient computational model of interactive parallel
simulation. The paradigm suggests a cloning scheme,
which is described. To avoid copying the entire state
upon instantiating a clone, the state is cloned incre-
mentally. This is done by assigning the state of a
virtual logical process to a physical logical process.

The model is applicable to conservative and opti-
mistic simulation protocols. Our goal is to demon-
strate the effectiveness of the model by implementing
it on top of the Georgia Tech Time Warp simula-
tor (GTW). A method for re-merging cloned physical
LPs if they later converge is also being explored.

Currently, it is assumed that a user interjects deci-
sion points into the simulator. Another area of future
research is defining a mechanism for automating the
interjection of decision points, perhaps, by balanc-
ing the “running ahead” and “branching” depend-
ing on the probability of particular branches against
available computational resources and real time con-
straints. This may offer an effective tool to explore
the ordering of simultaneous events (Wieland 1997)
and in the analysis by stochastic methods.

ACKNOWLEDGMENT

This work was supported by U.S. Army Contract
DASG60-95-C-0103 funded by the Ballistic Missile
Defense Organization.

REFERENCES

Bestavros, A. 1994. Multi-version speculative concur-
rency control with delayed commit. In Proceedings
of the 199/ International Conference on Comput-
ers and their Applications, Long Beach, Califor-
nia.

Fujimoto, R. M. 1990. Parallel discrete event simula-
tion. Communications of the ACM 33 (10): 30-53.

Franks, S., F. Gomes, B. Unger, and J. Cleary. 1997.
State saving for interactive optimistic simulation.
In Proceedings of the 11th Workshop on Parallel
and Distributed Simulation, 72-79. Burg Locken-
haus, Austria.

Goldberg, A. P. 1992. Virtual time synchronization
of replicated processes. In Proceedings of the 6th
Workshop on Parallel and Distributed Simulation,
107-16. Newport Beach, California,

Glasserman, P., P. Heidelberger, and P. Shahabud-
din. 1996. Splitting for rare event simulation:
Analysis of simple cases. In Proceedings of the
1996 Winter Simulation Conference, 302-308.
Coronado, California.

Glynn, P. W., and P. Heidelberger. 1991. Analysis of
parallel replicated simulations under a completion
time constrain. ACM Transactions on Modeling
and Computer Simulations 1 (1): 3-23.

Vaikili, P. 1992. Massively parallel and distributed
simulation of a class of discrete event systems: A
different perspective. ACM Transactions on Mod-
eling and Computer Simulations 2 (3): 214-238.

Schneider, F. 1990. Implementing fault-tolerance ser-
vices using the state machine approach: A tuto-
rial. ACM Computer Surveys 22 (4): 299-320.

Steinman, J. 1991. SPEEDES: Synchronous parallel
environment for emulation and discrete event sim-
ulation. In Proceedings of the SCS Western Sim-
ulation Multi-Conference on Advances in Paral-
lel and Distributed Simulation, 95-103. Anaheim,
California.

Wieland, F. 1997. The threshold of event simultane-
ity. In Proceedings of the 11th Workshop on Paral-
lel and Distributed Simulation, 56-59. Burg Lock-
enhaus, Austria.

AUTHOR BIOGRAPHIES

MARIA HYBINETTE is a Ph.D. student in the
College of Computing at the Georgia Institute of
Technology. Her research interests include parallel
simulation, parallel algorithms, and real time sys-
tems.

RICHARD FUJIMOTO is a Professor in the Col-
lege of Computing at the Georgia Institute of Tech-
nology. He is working on performance issues related
executing discrete-event simulation programs on mul-
tiprocessor and distributed computing platforms.

	CLONING: A NOVEL METHOD FOR INTERACTIVE PARALLEL SIMULATION
	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	3 THE VIRTUAL LOGICAL PROCESS
	4 THE CLONING MECHANISM
	5 IMPLEMENTATION
	6 CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENT
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 444
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

