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ABSTRACT

The paper present a layered design for a discrete event
simulation framework based on the Java programming
language. A description of this project’s goals and
motivation is followed by a some brief comments on
Java’s suitability for work in this area. The main body
illustrates and discusses the design of the simJAVA
framework in the context of a simple queuing scenario. A
summary of strengths and limitations of object
orientation and Java for this class of application concludes
the paper.

1 INTRODUCTION

The importance of conceptual and notational frameworks
for guiding and structuring a modeling enterprise can
hardly be overstated and a wide variety of programming
tools together with a rich repertoire of knowledge about
their safe application has long been employed in the
design and construction of simulation models. Since the
early 1960s we have seen the emergence of many so
called simulation programming languages, such as
GPSS, CSMP, GASP, Simscript, Simula, CSSL,
ModSim and others [see Kreutzer 1986]. Since the rapid
pace of technological change has left little time for their
design to mature, commercial simulation tools all too
often have unfortunately not been based on solid
foundations. Instead bits and pieces of new technologies
have been added without giving much thought to their
interaction with already existing features. Consequently
many popular simulation programming systems today are
riddled with non-intuitive interfaces and inconsistent and
unnecessary restrictions. Better and cleaner designs must
be explored, taking advantage of the latest research in
both model and software design [e.g. see Winograd 1996].
The simJAVA framework is part of such a project, based
on a pattern language for simulation software [see
Kreutzer 1996]. Beyond this it will also serve as a testbed
for ideas targeted at providing better modeling tools for
the world-wide-web (WWW). In order to tune and refine
this design while learning through experimentation,
alternative implementations are also developed for other
domains (e.g. environmental models) and in other base
languages (e.g. Scheme, Smalltalk, and Beta). Java [see
e.g. Arnold & Gosling 1996] is a programming tool for
writing portable web applications which can be embedded
in html, a mark-up language used to describe documents
on the WWW. While its syntax is similar to C++ it is
much more modern in its design, trading many of C’s
low level features (e.g. casts and pointer arithmetic) and
some run time efficiency for better expressiveness and
conceptual simplicity (e.g. automatic garbage collection).
As a result Java offers a purely object-oriented framework
based on the best features of Objective C, Smalltalk,
C++ and other object-oriented programming languages.
Goals for its design include easy cross-platform
portability as well as a strong focus on software security,
reliability and simplicity. Java’s core functionality can be
augmented via libraries called “packages”, whose number
and quality is rapidly growing. One of Java’s most
interesting features is its support for concurrency through
parallel threads of execution, which is particularly useful
for hosting process oriented simulation software. Java’s
close association with the WWW makes it also a very
attractive delivery vehicle  for teaching.

2 THE simJAVA FRAMEWORK

There are two ways to "cope" with complexity in models
and programs, i.e. simplification and delegation of tasks.
While delegation lets us automate all of the many
“mechanical” tasks faced by a programmer, simplification
is based on abstraction, i.e. the removal or aggregation of
detail, components and/or relationships. To decrease
mental complexity in this fashion we must partition a
system into layers, where we can then treat concepts as
primitives, while decomposing them into sub systems at
the layers below. Object oriented descriptions offer an
elegant and powerful metaphor for organizing such layers
of knowledge through locality of description; i.e. by
restricting the scope of the context a programmer needs to
consider at any point in time. Encapsulation ensures that
objects can be insulated from a surrounding context by
allowing access to internal representations (ie data and
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methods) only through well defined interfaces; the so
called message protocols. Since message names can be
disambiguated by context, i.e. their "meaning" depends on
the class of receiver, we can make use of polymorphism,
where generic names can be employed to denote different
actions of similar type; linked to different
implementations for different kinds of objects (e.g.
“update” for different types of data collection objects).
Finally, inheritance of structure and behaviour along
class/subclass links as well as chunking components into
higher-level composites make it easy to extend systems
by adding new layers. This strategy enables us to bridge
large semantic gaps between linguistic support for a
concrete domain (e.g. queuing networks) and some general
purpose but abstract implementation language (e.g. Java)
via a sequence of short intermediate steps (e.g. utility
packages) This strategy offers both an elegant means for
successive composition from "lower level" concepts
towards ever more specific, application related features (a
"bottom up" approach) and a pattern for successive
decomposition of "higher level" functionality into ever
more basic building blocks (a "top down" approach).
Using these features skilfully can result in better
structured and more flexible models and programs, which
are potentially more reliable, easier to understand, change
and maintain.

simJAVA uses this strategy to compose increasingly
more specialised components (e.g. for data collection,
distribution sampling ..), which may serve as building
blocks for “higher level” components (e.g. a discrete
event monitor or a resource in a queuing network).
Throughout the design of the patterns on which this
framework is based we have tried to identify layers and
concepts with which the description of given classes of
applications becomes simple, while providing
extensibility through recursive composition in terms of
these underlying structures. If such abstractions are
carefully chosen one may start with a small base of
general and flexible ideas, which are elaborated through a
number of layers until  they support convenient
frameworks for specific applications (e.g. queuing
scenarios). while ensuring that no irrelevant details (e.g.
how a server is implemented) will “leak” (i.e. no
unnecessary knowledge of implementation is revealed) to
a higher layer and that all abstractions are “safe” (i.e. they
can not be easily misapplied). This approach offers a good
compromise between the often conflicting needs for
generality and abstraction on the one hand, and familiarity
and concreteness on the other. Users can now choose to
“operate” at the level they feel most comfortable with,
based on their needs, preferences and experience. In this
way we hope to come closer to the elusive goal of
crafting tools which have “low thresholds and high
ceilings” [Fischer 1989].

Figure 1 summarizes simJAVA’s features from this
perspective. Here the lowest layer is derived from the host
language’s linguistic abstractions. At the next layer a
range of model instrumentation tools can be used for
statistics collection and their display. In addition to these
most basic features a monitor object will also be needed;
e.g. to advance model time and start, control and
terminate all processes’ execution. Based on this core,
different styles of model construction have their own
special needs. So called stochastic simulations, for
example, use probability distributions to reflect the
effects of all those aspects which are not considered
important enough to warrant more detailed causal
descriptions. For such models appropriate frequency or
probability distributions (i.e. a sampling layer) must be
supplied. All layers define classes in terms of a protocol
of messages to which they react (e.g. sample for all
distributions). Implementation of this functionality can
conveniently draw on the features provided at levels below
(e.g. on the data collection layer for recording and
summarising sampling statistics). Process-oriented
discrete event simulations extend this perspective by
viewing a model as structured collections of active and
passive entities, bound into webs of relationships which
define transformations and patterns of interaction across
both space and time (i.e. a synchronisation layer).

LAYER: OBJECTS: PATTERNS:

synchronization
       layer

conditions, interrupts, 
server groups ..

rendez-vous,
master-slave ..

Java layer class, inteface, thread .. data abstractions, 
control abstractions ..

instrumentation
       layer

tally, histogram .. observation, 
presentation ..

sampling layer draw, uniform, exponential .. sampling,
transformation ..

monitor layer entity, clock, agenda, 
processqueue ..

time slicing,
nest event ..

scenario layer e.g. resources, transactions, 
       schedules, priorities ..

open& closed qns, 
event- & process-
orientation ..

Figure 1:  Layers, Objects  & Patterns in simJAVA

Queuing scenarios are a well known example of a
subclass of discrete event scenarios in which specialised
abstractions (e.g. transactions, queues and resources)
describe the effects of capacity limitations and routing
strategies on the interactions among workload items and
server objects. Note that this layer can easily be further
extended to cater more directly for more specialised
scenarios, such as the analysis of communication
networks, the modeling of material flows in a factory, or
the simulation of office procedures. In such cases suitable
class definitions and patterns of combination as
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extensions and compositions of the existing ones would
need to be provided. Note that although classes and
patterns at lower layers seem to be stable simJAVA’s
design has not reached “the end of the road” yet, since a
substantial amount of experimentation with concepts over
some period of time is needed for “good” reusable
components to evolve (often trading “local convenience”
and efficiency against increased generality and reusability).
This is also the only way to design “habitable” interfaces
and “revealing” graphical representations, work on which
we have started more recently.

To demonstrate JavaSIM’s modeling style we will now
show how it can be used to represent a simple queuing
scenario. Consider a garden party held in honour of a
visiting monarch, where local dignitaries are given a
chance to mingle and shake the Queen's hand. Although
this will  most likely be a colourful affair with many
intriguing aspects,  from a suitably abstract perspective
we may only be interested in predicting the party’s
success in terms of a few abstract measures; such as the
Queen’s utilization and the average duration of the guests’
stay. Assuming some empirical basis for summarising
the dignitaries’ arrivals and the duration of handshakes
through distributions, we can then reflect “the essence” of
this event in a queuing model -  with the Queen’s hand as
a server of capacity one. Let us further assume that after a
shake some of the dignitaries may wish to repeat this
experience, while others will hurriedly leave. Figure 2
shows a life cycle diagram for this scenario. The meaning
of symbols should be clear; i.e. circles denote states and
boxes activities, which may bind resources at the start and
release them once they are finished.

Before we cast these events into a JavaSIM model you
should note that even this simple scenario could be
described from a number of different perspectives. The one
we have chosen is often referred to as material orientation.
The roots of this term reach back to the simulation of
priority rules in so called job shop models, which are
composed of machines processing materials; the domain
in which this pattern was first applied. In this context
"machines" are permanent and active (ie they have a life
cycle and must be modelled as processes), while
"materials" are transient and passive (i.e. they store only
properties, are operated upon by machines, and can be
modelled as data). From a material-oriented perspective a
dignitary’s life cycle is a recurring sequence of queuing
for, grabbing, holding, and releasing the monarch's hand;
until it is time to leave. simJAVA supports both material
and machine-oriented viewpoints.

Before we cast these events into a JavaSIM model you
should note that even this simple scenario could be
described from a number of different perspectives. The one
we have chosen is often referred to as material orientation.
The roots of this term reach back to the simulation of
priority rules in so called job shop models, which are
composed of machines processing materials; the domain
in which this pattern was first applied. In this context
"machines" are permanent and active (ie they have a life
cycle and must be modelled as processes), while
"materials" are transient and passive (i.e. they store only
properties, are operated upon by machines, and can be
modelled as data). From a material-oriented perspective a
dignitary’s life cycle is a recurring sequence of queuing
for, grabbing, holding, and releasing the monarch's hand;
until it is time to leave. simJAVA supports both material
and machine-oriented viewpoints.

shake hands

arrivals

departure

wait

QUEEN

SUBJECT 1
acquire

release

n

 Figure 2:  A Queen’s Gardenparty

Before we can use the simJAVA framework’s
components in models we must import them. Figure
3shows the relevant packages’ structure and the following
Java code implements the model. Terms shown in bold
represent Java keywords, while italicised ones are part of
simJAVA’s built-in abstractions. Note that simJAVA
collects and presents many standard statistics on lengths
and delays in a queue as well as all resources’ utilization.
However, if we are also interested in the mean time a
dignitary will idle away at the party we must record this
explicitly by using a data collector (e.g. a Tally such as
time_at_party - to summarise time series data).
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 Figure 3:  The JavaSIM Package

// a garden party simulation.
// Times are in seconds.

import distributions.*;
import data_collectors.*;
import monitor.*;
import queues.*;

class Dignitary extends SimProcess {
static Server queen;
static NegexpDist shaketime;
static BoolDist goback;
static RandIntDist intershaketime;
static Tally time_at_party;

public Dignitary(String name, Monitor aMon)
{  super(name, aMon); }

public void run() // a life cycle
{do
  { queen.Acquire(this);
 hold(shaketime.sample());
 queen.Release();

     hold(intershaketime.sample());
while (goback.sample());

System.out.println(getName() + "enough ");
time_at_party.Update(now() - birthTime); ))

class Source extends SimProcess
{ // used to generate dignitaries

static NegexpDist interarrival;

public Source(String name, Monitor aMon)
{ super(name, aMon); }

public void run() // a life cycle
{int i;
Dignitary thisVIP;

System.out.println("Gate opens!");
for (i = 0; i <= 20; ++i)
{hold(interarrival.sample());
 thisVIP = new Dignitary("fred" + i, 

 aMon);
 thisVIP.schedule(now()); ) ) )

class GardenParty
{ // the "driver class"
public static void main(String[] args)
{ // Instantiate & initialise entities
Monitor james = new Monitor();
Source gate = new Source("Garden Gate", 

    james);
Source.interarrival
  = new NegexpDist("Inter-Arrival", 60);
gate.run();
Dignitary.queen = new Server("The Queen", 

 james);
Dignitary.shaketime

      = new NegexpDist("Shake Time", 10);
Dignitary.goback
  = new BoolDist("Go Back?", 0.5);
Dignitary.intershaketime

      = new RandIntDist("Inter-shake time", 
 30, 300);

Dignitary.time_at_party
  = new Tally("Time spent at party");

// start a simulation
james.begin();

  // (stops once all dignitaries have left)
Source.interarrival.show();
Dignitary.goback.show();
Dignitary.intershaketime.show();
Dignitary.shaketime.show();
Dignitary.time_at_party.show();
Dignitary.queen.show(); ) )

This model is composed of three classes: Dignitary,
Source and GardenParty. The GardenParty sets up and
drives the simulation. Since this is a self-contained Java
program and not an applet it contains a main method at
which execution will start. In simJAVA the main method
forms the “body” of the simulation, which instantiates
(via new), initialises (via assignment) and activates (via
schedule or run) other simulation objects. Here we
have two process descriptions. The first, called Source,
models a gate through which dignitaries arrive, governed
by a specified interarrival time distribution. Once it is
time, Source instances (here a single one referred to as
gate) will generate and activate 20 arrivals (as wired into
our Source’s code) before they snap shut. Arriving
dignitaries step through the life cycle shown in their run
method, i.e. they try to acquire the queen, engage here in
a shake, and release her again, until their energy or
patience runs out. Note that a hold() message is used
to model delays and that the resource representing the
Queen will keep track of her queue and utilization. Note
also that she is represented by one of class Dignitary’s
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class variables (i.e. as static). Alternatively we could have
chosen to make her a direct GardenParty component. A
monitor (here referred to as james) must be started before
the simulation begins moving through time. The
command james.begin(); accomplishes this.

Active model components (i.e. those with a life cycle)
must be defined as a subclass of SimProcess, so that they
can be delayed and scheduled in terms of model time.
simJAVA models use a monitor to advance model time
and control all events’ execution, making sure that all
actions, of all active phases, of all conceptually parallel
processes are performed in the right sequence. simJAVA
views a model’s behaviour as defined by a collection of
active entities executing their life cycles. Although this is
a “natural” view of the world it needs support for
expressing concurrency and process synchronisation (e.g.
coroutines). While most modern simulation languages
offer such features, they are usually lacking in general
purpose programming tools, making implementation of
process-orientation an awkward task. simJAVA draws on
Java’s thread concept to provide the necessary
infrastructure for this approach. Figure 4 and the
associated monitor’s run method’s code document the
resulting architecture, which reflects a typical discrete
event monitor pattern quite cleanly. Note that the term
event routines refers to process descriptions here, each of
which keeps a reference to the code it will resume at when
it is activated next, while holding and scheduling
processes will suspend them until they can be resumed by
their monitor.

The run method’s operation should be easy to
understand, with the main interest focussing on how
threads are being used. Note that Java relies on the
underlying operating system’s services to implement
threads and that we must force them to give up control at
strategic points to avoid relying on preemptive multi-
tasking by the host’s operating system - e.g. without a
Thread.yield(); statement the above code would
not work on a MacIntosh (since the first thread would run
to completion and stop the simulation before any other
could gain control).

public void run() {

Event next;
  while ((! (agenda.events.isEmpty())) && 

      (clock.time <= simTime)) {

// get first event on the agenda
next = agenda.getNextEvent();

// update the clock to this event's time
clock.set(next.when());

// continue next waiting process (event)
if (clock.time <= simTime)
{ next.execute();
Thread.yield();  }

else
  { next.proc.resume();
  next.proc.stop(); } }

// simulation has stopped.   
// kill all processes on agenda

for(int i=0 ; i<agenda.events.size() ;
  i++) {

         ((Event)agenda.events.elementAt(i)).
proc.resume();

((Event)agenda.events.elementAt(i)).
proc.stop(); }

// resume & stop all queued processes
for(int i=0 ; i<inTransit.size() ; 
i++) {
((SimProcess)inTransit.

elementAt(i)).resume();
((SimProcess)inTransit.

elementAt(i)).stop();}

inTransit.removeAllElements();  }

event routine

event routine

event routine

CLOCK

current event

time

event notice

time

event notice

time

event notice

time

event notice

AGENDA

time

• get next event
• update clock
• execute event

next event monitor    
        pattern

 Figure 4:  A Simulation Monitor’s Components

3 CONCLUSIONS

The recent dramatic shift in the cost ratios of hardware,
software and human resources has challenged traditional
views of the goals and processes of model development.
Since ambition invariably taxes the limits of technology
there is a sore need for tools which allow us to cope with
higher levels of model and program complexity in a
reliable fashion. The modeling framework described in
this paper is a step towards this goal in that it eases
model development and serves to relieve the modeller
from some of the many routine tasks associated with her
craft. Java, a modern object-oriented language supporting
multiple threads was chosen as a programming tool for
this project, and all software has been written in an
object-oriented style. The resulting simJAVA package is
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very flexible. Encapsulated and reusable components can
be specialised and extended to make rapid composition of
models an easy and painless task, while standard
components can be reused and more specialised subclasses
can be evolved to cater for specific requirements. In this
way special purpose libraries can be built, whose
components are defined, tested and debugged incrementally
and interactively. By using classes of objects to
encapsulate closely related information as manageable and
separately testable chunks we prevent mental complexity
from growing exponentially with a model’s size. Separate
name spaces for all classes of objects ensure that naming
of simJAVA’s classes, their properties and messages do
not prejudge any choices made in whatever context these
objects will later be used in. Such polymorphism  means
that identifiers can be short and informative, e.g. all
distributions respond to sample and all data collectors to
update. Although implementations of these methods
may differ considerably from class to class, this need not
concern the user in any way. Inheritance of structure and
behaviour enables us to import appropriate functionality
from superclasses, which means that common aspects
need to be defined only once and can be kept localised in a
single place. This has the nice side effect that consistency
becomes easier to ensure and any consequences of changes
are less likely to be overlooked.

What should be appreciated is the ease with which
complex simulations can be defined in this fashion, and
how easily the framework can be assembled and extended
once “the right” building blocks have been found.
Identifying and casting them in convenient linguistic
abstractions is an ongoing task for which much work is
still needed; particularly with regard to graphical
instrumentation and GUI-style model development tools.
Our experiences during this project have firmly convinced
us that object-orientation and a process-based perspective
is an appropriate framework for this domain. Since
discrete event models are best represented by sets of
conceptually “active” entities we have made good use of
Java’s threads to support this view of the world.
  While simJAVA’s core has been patterned after a
conventional discrete event simulation framework [e.g.
see G. Birtwistle’s (1979) Demos system] Java’s support
for graphical interfaces (i.e. its AWT package) and applets
embedded in web pages will allow us  to go some way
beyond this. Java 1.2’s support for nesting of methods
and classes in the style of Beta and Simula will provide
further  opportunities to explore better linguistic
abstractions for process synchronisation.

We strongly believe that it is futile to attempt to
anticipate all the services a given class of users will ever
require. Instead of freezing such a decision in rigid
language designs we are convinced that good tools must
provide safe and convenient means for their own
extension; thereby allowing new layers to be added and
existing abstractions to be refined. Simula's class
libraries, the Smalltalk programming system and the
simJAVA toolbox we have discussed in this paper
demonstrate the power of this approach, which can only
be harnessed safely if the conceptual gap between layers is
small. Of course, this may require many such layers to
coexist, which will have a negative impact on
computational efficiency. This problem is a pervasive and
persistent one and needs to be addressed. Exploring the
relevant tradeoffs more deeply and reflecting about the
"appropriateness" of particular modeling styles (e.g. what
levels, what entities, what functionality, how to partition
functionality, how to describe interaction and
synchronisation ...) requires much further thought and
experimentation. Design, analysis, implementation, and
empirical exploration of reusable and “higher level”
application frameworks is an essential ingredient to this
research and simJAVA as well as similar work in this
area (see e.g. Howell and McNab 1996) tries to make
such a contribution to the discrete event simulation
domain.
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