
THE FOUR PHASE METHOD FOR MODELLING COMPLEX SYSTEMS

Hamad I. Odhabi
Ray J. Paul

Robert D. Macredie

Centre for Applied Simulation Modelling (CASM)
Department of Information Systems and Computing

Brunel University
Uxbridge, Middlesex UB8 3PH, UNITED KINGDOM
ABSTRACT

This paper investigates an attempt to combine different
simulation tools in order to build a simulation
environment that can be used to model complex system
behaviour. The component tools used in the project are:
the four phase method, a simulation world view derived
from the three phase approach especially for Object-
Oriented and iconic representation; iconic representation
that represents the actual system components and logic
through using icons and arcs; Object-Oriented
Programming and the MODSIM simulation library.
Related aspects of design and implementation are
presented and critiqued through an investigation into the
development of a model for an existing problem.
Different modelling approaches are used to model the
same problem and, as such, the advantages of the four
phase method are highlighted.

1 INTRODUCTION

Discrete-event simulation modelling offers people the
chance to develop an understanding of their problem
domain by building a simulation of the problem space in
which they are interested. Three broad perspectives on
how to approach the development of simulation models
are easily identifiable from the literature:

The first perspective focuses on using a graphical user
interface (GUI) that allows the user to build the model
on the screen, connect the components by arcs to
represent the model logic, and run the simulation (Drury
and Laughery 1994). In most cases, due to the limitation
of the simulation program under use, some
simplifications and approximations to the model may be
required. Such simplifications or approximations can be
very costly.
The second perspective is underpinned by the belief
that no simulation program is able to model all types of
systems behaviour without making some simplifications
or modifications (Joines 1994). This suggests that
models should be developed from scratch by using a
simulation modelling language. This approach
influences the modelling development life cycle by
increasing the production time and may divert the
modeller into concentrating on the programming
challenge rather than on developing an understanding of
the system under study.

The third perspective, on which this paper will focus,
concentrates on using a GUI that is able to automatically
generate code, with the modeller making changes to the
generated code to match the system needs (Hlupic and
Paul 1994). This approach is popular because it can
reduce the model production time and provides the user
with access to low level programming structures where
needed. However, modifying existing code is not easy,
and many issues may have an impact on the code’s
comprehensibility. In this research we are concerned
with two of these basic issues.

The first issue concerns the modelling approach.
Several programming approaches, often known as
‘simulation world views’, have been designed for
discrete-event simulation modelling. The aim of any
approach used should be to aid the production of a valid,
working simulation at minimum cost and/or in the
shortest time (Pidd 1992a).

The second issue that may affect the cost of modifying
the generated code is the programming methodology.
Specific methodologies, reflecting particular
programming paradigms, may support simplified model
code comprehension, and therefore maintenance.
Object-Oriented Programming (OOP), for example, has
become popular in simulation modelling (Kienbaum and

The Four Phase Method for Modelling Complex Systems 511
Paul 1994b), with a claim for relative ease of
maintenance being made for the approach.

This research directly addresses both issues of
modelling approach and programming methodology.
We will introduce a new simulation world view termed
the Four Phase Method (FPM), and discuss its
importance in the context of iconic representations and
the automatic generation of model code. We will argue
that the approach combines the simplicity of the three
phase method with the power of the process-based
approach when modelling complex system behaviour.
The programming methodology that has been used in
this research is OOP because it increases productivity
and speeds up the software development life cycle.
Another important factor which makes OOP attractive is
that it is a natural paradigm for simulation modelling: the
problem space will be composed of objects and this can
naturally be captures and reflected in the model
development.

The aim of this research is to attempt to combine a
new simulation world view (the four phase method),
OOP, and iconic representation to construct a simulation
environment for the development of discrete-event
simulation models. The modelling environment should
be able to model complex system behaviour, provide the
user with a simple iconic representation to ‘drive’ the
model design, and generate understandable code.

In the following section we will define terms and
notations which are used in the paper. This will lead us
on to a broad description of the four phase method
(section 3), which will provide the background to our
presentation of the main characteristics of the modelling
environment, along with a description of its design and
implementation (section 4). Section 5 will discuss the
use of the four phase method in building a simulation
model for a manufacturing system. The section will also
reflect on the insights gained from the practical use of
the environment, particularly focusing on the advantages
of the FPM over other, established modelling approaches
when applied to the same modelling problem. Section 6
will present conclusions drawn from the research.

2 DEFINITIONS

Before we explain our research, we will define terms and
notations that will appear frequently in the rest of this
paper:

• A process is a set of actions that a node has to
perform. For example, the process of the source
node consists of the following actions: generating
token(s), initialising token(s), and sending tokens to
the next node.
• A node represents a process or a hierarchically
arranged group of processes.

• A Delay node represents a process that requires a
period of time (simulation time) to be completed.

• An UnDelay node represents a process that happens
in a simulation time = 0.

• A hierarchical node contains other nodes that may
themselves be hierarchical nodes.

• A token represents an entity moving through the
system. For example, a customer in a bank.

• Resources represent domain elements that constrain
the performance of the system, such as manpower, a
communications link, or machines.

3 THE FOUR PHASE METHOD

Discrete computer simulation programs can become
complicated, making it important to use a well-structured
approach when writing or modifying them. There are at
least four widely used programming/modelling
approaches (world views) for discrete-event simulation
modelling (Pidd 1992a):

• The three phase approach.
• The activity approach.
• The process interaction approach.
• The event approach.

A common factor is that all of these modelling
approaches work as structuring devices to specify a
simulation model's steps to the computer. It is important
that a modelling approach should enhance the
conceptualisation of the simulation problem and the
understanding of the system behaviour. It should also
reduce the time taken to produce working, valid
simulations and ease the task of the programmer.

As we shall explain in section 5.2, the development of
iconic representations such as hierarchical activity cycle
diagrams HACD (Kienbaum and Paul 1994a) and
extended activity cycle diagrams X-ACD (Pooley and
Hughes 1991), have demonstrated that the three phase
and the activity approaches do not have sufficient
support for all types of icons/nodes (especially UnDelay
Nodes). By contrast, the process-interaction approach
has a complex executive, which makes the enhancement
of an existing program a more elaborate task. The event
approach usually requires the user to become directly
involved in computer programming.

The modelling approach used throughout this research
is termed the Four Phase Method (FPM) as it was first
described in Odhabi and Paul (1995). This new
approach has many advantages in meeting the needs of
the analysis and model building phases when using an
Object-Oriented approach. It has been designed

512 Odhabi, Paul, and Macredie
especially to be used in conjunction with OOP and iconic
representation, although it does not require a particular
iconic representation. A program written using FPM
represents the model life cycle in four separated
steps/phases. Each phase describes a set of actions to be
undertaken. All of these phases occur in the same
simulation time. FPM is underpinned by two general
considerations:

• each icon (node) in the iconic representation has an
internal queue. When the node receives an entity, it
holds it in the internal queue.

• a distinction is drawn between two classes of nodes.
The common characteristic of all nodes in the first
class, called Delay Nodes, is that they can delay
entities for some time. By contrast, the common
characteristic of the second class is that they do not
delay entities when they are required by another node
in the model. This class is called UnDelay Nodes.

Fig. 1 shows the general structure of a simulation
model based on the FPM. The model starts by
initialising the system. In the initialisation, the model
creates the nodes, defines the system variables, etc.

Figure 1: The Four Phase Method
 After initialisation, the phases of the FPM must be
executed sequentially in a cycle. The starting point in
this cycle is Phase1. Phase 1 searches the activity list to
find the earliest activity finishing time, and advances the
simulation clock to this time. For this purpose, Phase 1
keeps information regarding current activities in the
system. After Phase 1 completes its trial, Phase 2 stops
the activities that have been scheduled to be completed
by this time, and moves the relevant entities into the
internal queue. However, Phase 2 only works on Delay
Nodes. Phase 3 which works only on UnDelay Nodes,
checks all the UnDelay Nodes to find those which are
able to start processes at this time and performs the
relevant processes (with duration time zero). Phase 3
must be repeated until there is no Undelay Node with
processes to start. Phase 4 starts processing the relevant
Delay Nodes, calculates the finishing time, and records
this time. When all relevant Delay Nodes have been
processed, Phase 4 checks for an interrupt or a specified
finishing condition.

4 DESIGN AND IMPLEMENTATION

Fig. 2 illustrates the general conceptual design of the
FPM and object-oriented simulation in the context of our
research. The modelling tools presented in Fig. 2 are the
minimum requirements for demonstrating the use of the
FPM. Other tools may be added or existing ones
modified depending on the needs of the modeller.

Figure 2: The General Conceptual Design of the Four
Phase Approach in Object-Oriented Simulation

Language (MODSIM II)

The lowest ‘level’ in this design is MODSIM II
(1992), which includes the language structure and the
library elements. A particular simulation model is at the
highest level. The concepts at each level are
‘encapsulated’ so that a simulation model user, for
instance, need not be concerned about the concepts at a
lower level (Joines 1994). The four phase objects are
placed next to the highest level to work as an interface

The Four Phase Method for Modelling Complex Systems 513
between the simulation model and the lowest levels.
When the model invokes any phase to start, for example
Phase 1, the phase deals immediately with the relevant
nodes and library in order to perform the process.

This section will investigate the conceptual design
presented in figure 2 in more detail, discussing the four
phase objects and the modelling tools.

4.1 The FPM Objects

The implementation of the four phases as objects in their
own right is illustrated in Fig. 3.

Figure 3: The Definition of The Four Phase Objects

An abstract object, FourPhaseObj, has been defined.
This object is the ancestor (parent) of the actual four
phases' objects. FourPhaseObj has three fields. The first
is EndPhase which is a boolean used to announce the end
of the current phase. If EndPhase is FALSE, the phase
must repeat the process. The second field is

FourPhaseObj = OBJECT;
 EndPhase : BOOLEAN;
 ActiveManager : ActivityListManagerObj;
 StopManager : StopActivityListManagerObj;
 ASK METHOD InitActiveManager;
 ASK METHOD InitStopManager;
 ASK METHOD SetEndPhase(IN TheEnd : BOOLEAN);
END OBJECT;

Phase1Obj = OBJECT(FourPhaseObj);
 CurrentTime : REAL;
 ASK METHOD InitCurrentTime;
 ASK METHOD SendCurrentTime : REAL;
 ASK METHOD TransfareActive;
 ASK METHOD StartPhase1;
END OBJECT;

Phase2Obj = OBJECT(FourPhaseObj);
 ASK METHOD StartPhase2;
 ASK METHOD CurrentActivity : ActivityObj;
END OBJECT;

Phase3Obj = OBJECT(FourPhaseObj);
 UndelayNode : QueueObj;
 ASK METHOD Init;
 ASK METHOD AddToUndelayList(IN Node : IconObj);
 ASK METHOD NodeStarted(IN Bo : BOOLEAN);
 ASK METHOD StartPhase3;
END OBJECT;

Phase4Obj=OBJECT(FourPhaseObj);
 DelayNode : QueueObj;
 ASK METHOD Init;
 ASK METHOD AddToDelayList(IN Node : IconObj);
 ASK METHOD StartPhase4;
END OBJECT;
ActiveManager which is a queue based object.
ActiveManager is used to store a group of activities. It is
important to note that any Activity object ‘knows’ the
nodes and entities that it belongs to. The third field is
StopManager which is another queue based object.
Unlike ActiveManager, StopManager stores only the
activities that must be stopped by the current simulation
time.

In addition to these three fields, there are three
‘methods’. The first and second methods are used to
initialise ActiveManager and StopManager. The last
method is used to set EndPhase to either TRUE or
FALSE, according to the system situation.

Phase1Obj, Phase2Obj, Phase3Obj, and Phase4Obj
are instances of FourPhaseObj; as such, they inherit all
its fields and methods.

Phase1Obj defines an extra field (CurrentTime) and
four methods. These new methods are used to initialise
the simulation time, to send information concerning the
simulation time to the model objects, to transfer
activities from ActiveManager to StopManager, and to
start the phase.

Phase2Obj starts the process by asking the
StopManager to remove the first activity from the queue,
asking the activity owner (Delay Node) to finish the
process. Phase 2 repeats this process until there are no
activities left in StopManager. Phase2Obj provides
information to the system concerning the current activity
being processed.

Phase3Obj keeps information concerning any
UnDelay node that is holding entities in its internal
queue in the field UndelayNode. Phase3Object starts the
process by setting EndPhase to TRUE and asking
UndelayNode to ask every node in its queue to attempt
to start its process. The node checks which processes
can start; starts appropriates processes and asks
Phase3Obj to set the EndPhase to FALSE. Phase3Obj
repeats this process until there is no Undelay node
holding entities able to start processes at this time. In
summary, Phase3Obj has defined four new methods: the
first is the initialisation of the phase that includes
creating the UndelayNode; the second allows Phase3Obj
to add any Undelay node to the list; the third informs
Phase3Obj about the situation after asking the node to
start processing; while the last method starts the phase.

Phase4Obj is concerned with Delay Nodes, so it keeps
information about Delay Nodes that are available in the
model, using a field called DelayNode. DelayNode is a
queue based object, meaning that it can store any type of
object.

4.2 Nodes in the FPM

514 Odhabi, Paul, and Macredie
Fig 4. illustrates the hierarchical structure and the
inheritance mechanism of nodes in the FPM. IconObj is
the ancestor of all nodes in this implementation. It is a
dynamic image object: it can be drawn, moved, rotated,
scaled, etc. IconObj uses an internal queue to hold the
entities; it ‘knows’ the next node(s) by making use of the
field NextIcon. This general node initialises itself,
accepts entities, pushes entities to the next nodes, starts
new processes, finishes old processes, and adds links to
relevant nodes in the model.

Two groups of nodes based on IconObj have been
created. Fig. 4 is a high level hierarchical structure
which illustrates these groups.

The first group is the Delay Nodes which includes the
Source node and the Activity node. The Source node
creates tokens of a particular token category. The
Activity node delays tokens for some amount of time
before sending them on their way. The Activity node is
not capacity limited, meaning that it can process any
number of tokens at the same time.

The second group is the UnDelay Nodes, which
includes the following nodes types:

• Assemble node: assembles or joins tokens belonging
to different categories.

• Disassemble node: disassembles tokens of different
categories.

• Request node: allocates adequate units of a resource
to tokens.

• Release node: releases some of the resources owned
by a token.

• Queue node: creates tokens in the initialisation step
and delays a token until a suitable message is
received from the system.

• Sink node: terminates tokens which arrive at it, acting
as an ‘exit door’ for the system.

Figure 4: The Hierarchical Structure and Inheritance of
The Model Nodes
• Assign node: changes the values of token or system
attributes.

• Branch node: responsible for aspects of routing
decisions; the decisions depend on the user’s needs
(for example, when the user wants to route a token to
different arcs depending on the token category or its
attributes).

For a detailed description of these nodes the reader
should refer to Kienbaum and Paul (1994a) or Pooley
and Hughes (1991).

4.3 Other Elements in the FPM

The remaining modelling elements in the FPM are
tokens, resources, activities, and attributes. Tokens
represent the system entities that will be generated by the
source, are engaged in some processing activities, and
then finally leave the system. Each token can carry any
type of objects and hold information. Activities are used
to hold information such as the ‘owning’ node, a list of
tokens that are involved in the activity, and its finishing
time. Attributes are used to store information concerning
tokens, resources, and system variables.

5 FPM IN ACTION: MODELLING A FLEXIBLE
ASSEMBLY SYSTEM

This section explores the FPM through the crafting of a
simulation model for a manufacturing system. The
model layout and problem description will be
introduced. The characteristics of using different
modelling approaches will be discussed to highlight the
advantages that we see in using the FPM.

5.1 Model Layout and Problem Description

The problem being investigated is not of principal
importance to this work, since it is mainly concerned
with the modelling process in its own right. It could be
an investigation of production quantity or the calculation
of the average time that is required to produce a product.
The model to which we refer has been discussed in
(Carrie 1988). Fig. 5a shows level 1 of the system which
consists of a loop conveyor serving three workstations, at
each of which machines perform some assembly task.
Each workstation has a buffer position at which material
may wait for the machines to complete the operation on
its previous assembly. There are three types of
assembly, each of which requires a different type of
material, and therefore visits a different set of
workstations.

At WORKSTATION 1, materials of type 1 and 2 (M1
and M2) will be assembled to produce a new material

The Four Phase Method for Modelling Complex Systems 515
(M12). By contrast, at WORKSTATION 2 a new
material (M34) will be produced by assembling M3 and
M4. WORKSTATION 3 produces the final product by
assembling M12 and M34. The Conveyor has 30
carriers on it and it keeps moving on all times.

Several interesting nodes have been used to describe
the logic of this model, in particular, a ‘conditional
assemble’ node. Such a node does the assemble process
when a specific condition has been satisfied. CASM1 is
an example of a conditional assemble node.

Figure 5a: A Flexible Assembly System Using Iconic
Representation Level 1

CASM1 works as follow: when an empty carrier
arrives at the node, it will do the assemble process
(loading) only if there is any material queuing;
otherwise, the carrier travels empty on its way to
WORKSTATION 1. Unlike the conditional assemble
node, the assemble node adds the entity to the internal
queue until the required entity arrives.
WORKSTATION is an example of a hierarchical node.
The hierarchical node is used, usually, to simplify the
graphical representation. If necessary, the user can
specify the internal structure of any hierarchical node.
Travel1, Travel2, and Travel3 are activity nodes, which
represent the travel activities between the different
workstations. The difficult part in this model is that the
conveyor moves at all times and no loading can be done
until the empty carrier arrives at the loading point. The
conveyor takes fifteen seconds to travel from the first
loading point to WORKSTATION 1, and takes ten
seconds to travel between any two sequential
workstations.

Figure 5b shows the internal structure of the
hierarchical nodes (WORKSTATION 1,
WORKSTATION 2, and WORKSTATION 3) that
appeared in Figure 5a. When a carrier arrives at
WORKSTATION 1, the branch node (B1) will check it.
If B1 has not found any material in the queue of the
carrier, the carrier will travel on its way to the
conditional assemble node (CASM2). Otherwise, the
carrier goes to the branch node (B2) which is responsible
for identifying the types of material. At B2, Materials
type 1 or 2 are sent to the disassemble node (CASM1),
which will unload it from the carrier. Any other types of
material are sent to the activity node, Travel2. B3 sends
the materials, which must be type 1 or 2, to station 1 and
sends the carrier to CASM2.

Figure 5b: A Flexible Assembly System Using Iconic
Representation Level 2

CASM2, which is a conditional assemble node, works
like CASM1. Station 1 is a hierarchical node which
represents the assemble process to produce material type
M12. The same logic can be used in describing the
internal structure of WORKSTATION 2.

WORKSTATION 3 is a little different. Any carrier
arriving at this workstation must be either empty or
carrying materials type M12 and M34 that have been
produced by WORKSTATION 1 and WORKSTATION
2. At WORKSTATION 3, both types of materials (M12
and M34) are required, which means there is no need to
check the type of materials. After assembling M12 and
M34 to produce the final product (M), WORKSTATION
3 sends the final product (M) to the collecting point
using another conveyor.

5.2 Model Analysis and Discussion

In this research, iconic representation has been used in
both the analysis and model building phases. This iconic
representation is computer-based rather than paper-
based. It serves as a framework with which the
simulation user can analyse and conceptualise the
problem. It can also be used as a communication
medium among the people involved in the project. As
mentioned above (and outlined in Fig. 5) new nodes have
been introduced to improve the iconic representation.

The implementation of this iconic representation using
an Object-Oriented language and any existing modelling

516 Odhabi, Paul, and Macredie
approach faces many difficulties. The four established
modelling approaches introduced in section 3 have been
used in this investigation. The attempt to use the three
phase method faced three major problems. First, the
three phase method uses the activity as the main building
block. Entities move to the activity from the previous
queue(s) to engage in some process and after finishing
the process they move to the next queue(s). As such, the
three phase method does not support the UnDelay Nodes
such as assemble, disassemble, assign, branch, etc.
Second, the three phase method does not contain any
detail to support Object-Oriented programming. Third,
the three phase approach forces the use of Activity Cycle
Diagrams (ACDs) or similar diagrams to specify the
simulation model’s steps to the computer. In our view,
this makes it difficult to model complex system
behaviour using the three phase approach.

The process based (process-interaction) approach
seems to be attractive, since it is similar to a production
description. The process is a sequence of operations
through which an entity must pass during its life cycle
within the system. During the simulation time, entities
will be created as members of different classes. When
an entity is created, it takes the process of its class as a
template for its future life, and the system then keeps
track of how far the entity has moved through its process.
A control program, named ‘executive’, supervises the
progress of each entity through its process template,
passing control to each process in turn, and trying to
move the corresponding entity as far as possible through
its template at a given point in simulation time.
However, the approach does have two disadvantages.
First, it requires a rather complex executive. More
importantly, the interacting processes are more complex
to program and the executive increases in complexity in
line with the model’s complexity. This makes
enhancement of an existing program more difficult.

The Event-Scheduling approach concentrates on
events and their effect on systems state. However, an
event’s routines can get rather complex, making
enhancement and debugging somewhat tortuous (Pidd
1992a). Another disadvantage is that the event approach
usually requires the user to become directly involved in
computer programming.

The last modelling approach that has been used in this
investigation is the Four Phase Method (FPM). This
approach supports iconic representation. The approach
pays special attention to Delay Nodes and UnDelay
Nodes. However, the user can introduce any new node
that has been found necessary. The most important
advantage of this approach is that its executive remains
simple irrespective of the model’s complexity. This
makes the enhancement of existing code possible.
Another advantage of this approach is that it reduces the
model run time by recognising which nodes have been
affected by the previous process, and asks only those
nodes to start.

6 CONCLUSIONS

This paper has attempted to combine a new simulation
world view (the FPM), Object-Oriented Programming
(OOP), and iconic representation to build a simulation
environment for application in discrete-event simulation
modelling. Both the modelling and implementation
phases of discrete-event simulation have been addressed.
The aim has been to build the simulation model
gradually and uniformly from the analysis to final
simulation model implementation. Such an approach
might encourage a non-specialist developer to use
simulation.

This research suggests that the FPM has the simplicity
of the three phase method and the power of the process-
interaction approach in modelling complex system
behaviour. The FPM appears to be a simple, high-level
system and enhances the conceptualisation of simulation
problems and the understanding of system behaviour. At
the same time, it reduces the time to produce working,
valid simulation models by supporting the task of the
modeller.

REFERENCES

Carrie, A. 1988. Simulation of manufacturing systems.
London: Wiley.

Drury, C.E., and K.R. Laughery 1994. Fundamentals of
simulation using MICRO-SAINT, in: Proceedings of
the Winter Simulation Conference, ed. J.D. Tew, S.
Manivannan, D.A. Sadowski, and A.F. Seila, 546-551.
SCS, New York,USA.

Fishwick, P.A. 1994. Simulation model design, in:
Proceedings of the Winter Simulation Conference, ed.
J.D. Tew, S. Manivannan, D.A. Sadowski, and A.F.
Seila, 173-175. SCS, New York, USA.

Hlupic, V., and R.J. Paul 1994. Simulating an automated
paint shop in the electronics industry, Simulation
Practice and Theory 1: 195-205.

Joines, J.A. 1994. Design of object-oriented simulation
in C++, in: Proceedings of the Winter Simulation
Conference, ed. J.D. Tew, S. Manivannan, D.A.
Sadowski, and A.F. Seila, 157-165. SCS, New York,
USA.

Kienbaum, G., and R.J. Paul 1994a. H-ACD:
Hierarchical activity cycle diagrams for object-
oriented simulation modelling, in: Proceedings of the
Winter Simulation Conference, ed. J.D. Tew, S.
Manivannan, D.A. Sadowski, and A.F. Seila, 600-610.
SCS, New York: USA.

The Four Phase Method for Modelling Complex Systems 517
Kienbaum, G., and R.J. Paul 1994b. H-ACDNET: An
object-oriented graphical user interface for simulation
modelling of manufacturing systems, Simulation
Practice and Theory 2: 141-157.

Macredie, R.D., and H.I.A. Odhabi 1995. A graphical
user interface for discrete event simulation.,
International Journal of Manufacturing System
Design, 2(2): 97-104.

MODSIM II 1992. The language for object oriented
programming (reference manual). La Jolla, CA.:
CACI Product Company.

Odhabi, H.I.A., and R.J. Paul 1995. Accessible
simulation modelling for manufacturing system
design., International Journal of Manufacturing
System Design, 2(2): 145-151.

Pidd, M. 1992a. Computer simulation in management
science 3rd ed, Chichester.: John Wiley & Sons.

Pidd, M. 1992b. object orientation and three phase
simulation, in: Proceedings of the Winter Simulation
Conference, ed. J.J. Swain, D. Goldsman, R.C. Crain,
and J.R. Wilson, 600-610. SCS, San Diego, CA.

Pooley, R.J., and P.H. Hughes 1991 Towards a standard
for hierarchical process oriented discrete event
simulation diagrams, Part II: The suggested approach
for flat models, Transactions of Society for Computer
Simulation 8(1): 21-31.

AUTHOR BIOGRAPHIES

HAMAD I. ODHABI is a Ph.D. student in the
Department of Information Systems and Computing,
Brunel University. He received a B.Sc. degree in
Physics from King Suad’s University, Saudi Arabia in
1988, and he received an M.Sc. degree in Simulation
Modelling from Brunel University in 1994.

RAY J. PAUL holds the first U.K. Chair in Simulation
Modelling, at Brunel University. He previously taught
Information Systems and Operational Research at the
London School of Economics. He received a B.Sc. in
Mathematics, and a M.Sc. and a Ph.D. in Operational
Research from Hull University. He has published widely
in book and paper form (two books, over 100 papers in
journals, edited books and conference proceedings),
mainly in the areas of the simulation modelling process
and in software environments for simulation modelling.
He has acted as a consultant for variety of United
Kingdom Government departments, software companies,
and commercial companies in the tobacco and oil
industries.

ROBERT D. MACREDIE is a Lecturer in the
Department of Information Systems and Computing,
Brunel University. He received a B.Sc. in Physics and
Computer Science and a PhD in Computer Science from
Hull University. His research interests are in human-
computer interaction, simulation modelling, and virtual
environments/virtual reality. He has published widely in
these areas, and is also executive editor of the
international journal Virtual Reality: Research,
Development and Applications.

	THE FOUR PHASE METHOD FOR MODELLING COMPLEX SYSTEMS
	ABSTRACT
	1 INTRODUCTION
	2 DEFINITIONS
	3 THE FOUR PHASE METHOD
	4 DESIGN AND IMPLEMENTATION
	4.1 The FPM Objects
	4.2 Nodes in the FPM
	4.3 Other Elements in the FPM

	5 FPM IN ACTION: MODELLING A FLEXIBLE ASSEMBLY SYSTEM
	5.1 Model Layout and Problem Description
	5.2 Model Analysis and Discussion

	6 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 510
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

