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ABSTRACT

Users of simulation continue to demand more realism and
accuracy.  This has been addressed by the development of
new simulation languages, better simulation software,
more user-friendly interface, and more advanced
computers.  Despite this advance in general simulation
capability, only recently has significant research
addressed the efficiency of the simulation of the motion of
autonomous spatial objects in discrete simulation. The
overall goal of this paper is to provide an improvement in
the efficiency of a simulation of moving autonomous
objects by the use of various forms of dynamic sectoring.
Research has shown that no single discrete event
simulation methodology has combined the movement and
tracking of autonomous objects in three-dimensional
space with computational efficiency.  The focus of this
paper is to provide a summary of previous sectoring
research, to consider 3D, to propose a new sectoring
approach, and to analytically show why the new approach
should provide an improvement.

1  INTRODUCTION

Users of simulation continue to demand more realism and
accuracy.  This has been addressed by the development of
new simulation languages, better simulation software,
more user-friendly interface, and more advanced
computers.  Despite this advance in general simulation
capability, only recently has significant research
addressed the efficiency of the simulation of the motion of
autonomous spatial objects in discrete simulation.

The autonomous movement of spatial and temporal
objects has not traditionally been a concern of discrete
simulation, which generally focuses on areas in which
spatial and temporal precision is not a priority (such as
queueing and manufacturing problems) or else simulates
movement through the use of a network with specific start
and finish nodes.  Yet spatial and temporal precision are
necessary in many simulations.  Examples of these
systems are military combat and the air traffic patterns
around any airport, as well as in the medical field, where
movement of fluids, such as blood or serum, through the
body must be monitored.

The overall goal of this paper is to provide an
improvement in the efficiency of a simulation of moving
autonomous objects by the use of various forms of
dynamic sectoring.  Research has shown that no single
discrete event simulation methodology has combined the
movement and tracking of autonomous objects in three-
dimensional space with computational efficiency.  The
focus of this paper is to provide a summary of previous
sectoring research, to propose a new sectoring approach
to consider 3D, and to analytically show why the new
approach should provide an improvement.

2  SECTORING OVERVIEW

Recent research into simulation efficiency has found merit
in the concept of sectoring.  For spatial objects to move
autonomously in a simulation, the location vector of all
other objects within the simulation boundaries must be
tracked.  This has routinely meant that scheduled events
are the result of  each object querying every other object
in the simulation.  This basic technique is computationally
inefficient when the number of objects gets large.  The
idea of sectoring allows the simulation space to be split
into segments that an object is required to query only
other objects that are in its sector or on the boundary of
adjacent sectors.  While sectoring reduces the amount of
queries between objects, the crossing of sector boundaries
becomes an additional event to track. Therefore, in order
for sectoring to be beneficial, the reduction in overall
queries between objects must overcome the additional
computational load of tracking the objects as they cross
sector boundaries.

Research into sectoring has resulted in several
important discoveries.  First, the plausibility of two
particular sectoring methods, known as fixed sectoring
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and dynamic sectoring, has been demonstrated in the two-
dimensional billiard balls problem.  Fixed sectoring
provides a fixed or stable amount of identical sized
sectors throughout the entire simulation area for the entire
duration of the simulation.  Dynamic sectoring allows the
size of the sectors to change depending on the number of
objects currently within a sector, attempting to efficiently
account for the contrast in number of objects to query
versus the necessity of accounting for the crossing of
sector boundaries.  Dynamic sectoring is thought to be
most effective when the objects are not randomly or
uniformly distributed throughout the simulation area.

3  RECENT SECTORING RESEARCH

Several individuals have recently performed research in
the area of discrete simulation and spatial object control.
Contributions include using different languages and
operating systems, sectoring techniques, and improved
representation of moving objects (billiard balls, pucks, or
polygons) within the simulation.  Each of these
researchers used a simulation that portrayed objects and
their movement in two dimensions.  More in depth
explanation of these contributions begins with Harless
[1995].

Harless built on the billiard ball problem first
simulated by Goldberg, and then refined by Lubachevsky,
Rogers, and Toleti. Harless considered the issue of non-
uniformly distributed autonomous objects and interjected
the concept of dynamic sectoring.  While fixed sectoring
had previously been demonstrated on an arbitrary basis to
provide improved efficiency in simulating the movement
and collisions of spatial objects, no complete effort had
been given to the investigation of non-uniformly
distributed objects.  Harless used dynamic sectoring, so
that sectors were subdivided whenever a sector contained
“too many” spatial objects and were rejoined whenever
the sector contained “too few” spatial objects.  Thresholds
for determining when to subdivide were determined with
some preliminary testing.  Using billiard ball simulation,
Harless demonstrated that the dynamic sectoring
methodology can provide smaller mean execution time for
non-uniform distribution of spatial objects than the fixed
sectoring methodology [Harless, 1995].

Using the object-oriented simulation developed by
Harless for both fixed and dynamic sectoring, Doescher
attempted to validate the work of previous sectoring
researchers by establishing analytically that fixed
sectoring, with uniformly distributed objects, is more
efficient than no sectoring, and to investigate which
factors affect optimal sectoring.  Specifically, previous
researchers had shown in isolated cases that sectoring was
an improvement over no sectoring, but had not
investigated statistical steps to demonstrate the
relationships between sectoring, number of objects, speed
of objects, size of objects, and resulting efficiency.  While
Doescher was not able to determine which factors clearly
affect optimal sectoring , he demonstrated improved
simulation efficiency using sectoring for certain ranges of
number of objects and object size, which he labeled
density.

4  NEW SECTORING APPROACH

The goal of this paper is to consider a modified dynamic
sectoring approach and to demonstrate that dynamic
sectoring provides  increased efficiency in discrete event
simulation methodology for the movement of autonomous
spatial objects in three dimensions.  Previous research
focused on a two-dimensional simulation region, with the
movement of objects being like those of billiard balls on a
table. Three dimensional space seems intuitively to be
more realistic and representative of the physical systems
that are modeled.

Until now, the sector shapes used in both fixed and
dynamic sectoring have been square, and the distribution
of objects has been either uniform or non-uniform
(meaning that clusters of objects occur).  It is quite
possible that there are better forms of sectoring that will
provide greater computational savings.  For example,
certain combinations of object distribution and object
density may be more responsive to some modified version
of fixed or dynamic sectoring with a given number of
sectors.  In three dimensions, while cubic sectors are the
simplest to conceptualize in a simulation, the overall
shape and distribution of objects in the simulation may
make other shapes, such as concentric spheres, more
efficient.  This is investigated more fully in the analytical
model described below.

5 METHODOLOGIES FOR 3-D SECTORING
ANALYTICAL MODELS

5.1 Overview

In order to conduct a comparison of various sectoring
techniques, an analytical way must be formulated to
measure the necessary effort.  A standard of measure that
has traditionally been used for computational complexity
is known as “order of work”, or often “big-oh” notation,
and is denoted in the form of O(N) [Aho, 1987].  This is a
measure in general terms of the scale of computational
complexity, and means that as N increases, the simulation
running time increases at a rate of N.

An example of how this measuring tool is used is in
the simulation of autonomous objects without sectoring.
This methodology is described in the general terms of
order of work by O(N2), meaning that the complexity of
the computations is on the scale of the number of objects
in the simulation squared [Harless, 1995].  This
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approximation provides anticipated efficiency, as well as
identification of certain conditions (e.g. type of sectoring,
object distribution, number of sectors) that may
demonstrate sectoring benefits.

The two-stage process used to analytically determine
computational complexity is described below.  The
general process is valid for all cases considered, and is
therefore applied to each methodology.  An equation and
example of the computational complexity for each
specific sectoring methodology is provided.

5.2  Two-stage process for model development

The analytical model is representative of a simulation that
is in steady state.  Thus, a master event list has been
created which portrays all currently scheduled events in
sequence.  The computational work reflects the two-stage
process of: 1) determining the next event for two objects
that have just collided, and 2) updating the master event
list.  While there are two events to consider, namely
collisions between two objects and sector crossings, we
will ignore sector crossings.

For the purpose of deriving an analytical model, the
current event is assumed to be a collision.  Since
collisions involve two objects and are therefore a more
computationally demanding event, collisions represent a
worst case scenario.  As is noted, other assumptions are
made that allow for a worst case scenario, since this both
narrows the problem and provides insight into the upper
boundary of computational complexity.

For stage one, let us assume that the next event to
occur is a collision.  Once that event has occurred, the
next event for each of the two objects involved in the
collision must be determined.  If the methodology used is
a form of sectoring, the model compares trajectories of
these two objects with all other objects in the current
sector and adjacent sectors.  All adjacent sectors are
checked due to the possibility that an object may be at or
near the sector boundary, and a boundary collision may
occur.  If no sectoring is used, the model must check for
possible collisions of these two objects with all other
objects in the simulation. The result will be the next
scheduled events for the two objects involved in the
previous event. These two new events may invalidate
previously scheduled events, thus having a ripple effect.

The second stage is then to compare the time to the
events in the master event list.  The model searches for
the proper place in the event sequence for the two new
events and places them there.  As the event list could have
a length equivalent to N/2, assuming every object is
scheduled to collide with another object, the search for
the two new events is approximately 2 times N/2, or N.

This entire process repeats itself until the event list is
updated for every object, which can be considered a
ripple effect.  Specifically, this means that the objects that
collided with these two objects must also have new events
calculated.  This cycle of continuously updating the event
list, as a worst case, could occur for every object, which
leads to the equations described below.  The result is that
the second stage of the process dominates resources in the
sectoring problem.

5.3  No Sectoring Methodology

Assuming N objects in the simulation, the work
associated with determining the next event for the two
objects involved in the latest collision is approximately
2N.  This comes from the requirement of each of the two
objects to check their new trajectories with those of every
other object in the simulation for a possible new collision.
To update the master list for each new collision, the upper
limit of the amount of work is approximately N, as
described above.  Assuming that this cycle must occur for
every pair of objects in the simulation, the estimated
number of possible total work for no sectoring (WNo) for
the total simulation region is
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5.4  Fixed Sectoring Methodology, Uniform or
Random Object Distribution

Calculating order of work for fixed cubic sectoring is
somewhat more complicated.  This methodology divides
the trajectory space into k cubic sectors of equal
dimension.  Spatial objects are then distributed uniformly
or randomly throughout the simulation region, with the
expected number of objects in each sector to be N/k, or n.

After a collision, the determination of the next event
follows the two-stage process described above.  Basically,
the velocity vectors of the two objects that just collided in
a particular sector are examined and compared to the
vectors of the other objects in that sector and adjacent
sectors, and new events for these objects are scheduled.
The amount of work necessary to complete these
comparisons is bounded by

2n + 2(n)(AS) = 2n(1+AS)  (2)
where AS is the number of adjacent sectors.  These two
new events are inserted in the master event list, which
triggers the cycle of determining a new schedule of
events.

To determine AS, consider a two-dimensional
trajectory space as in the figure below.  The maximum
number of adjacent sectors is eight (which occurs when
the sector under consideration is not adjacent to the
simulation boundary).  In three-dimensional space, the
maximum number of adjacent sectors is 26 (assuming a
center cubic sector), while the minimum number of
adjacent sectors is 7 for corner sectors.  Since the number
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of adjacent sectors varies, it will be designated as the
variable AS.

Figure 1: Fixed Sectoring

The remainder of the equation for calculating the
amount of work for fixed sectoring is the same as for no
sectoring.  Checking the entire master event list in order
to place the new events in their time sequence could result
in work approximating N.  Repeating this cycle for each
new set of events resulting from this ripple effect results
in the following equation, as an upper bound for fixed
sectoring, uniform distribution:
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5.5  Dynamic Sectoring (Cubic Sectors) Methodology

Dynamic sectoring with cubic sectors requires a slightly
different approach.  Its usefulness is apparent when
objects are no longer distributed uniformly throughout the
simulation region, but rather are clustered in certain areas.
A pair of thresholds are introduced into the simulation,
including the upper limit of objects allowed in the sector
before that sector sub-divides into smaller square sectors,
and the lower limit allowed in sub-divided sectors before
the smaller sectors consolidate into their previous larger
sector.

Again, the graphical representation of a two
dimensional model can provide some clarity.  As
mentioned earlier, dynamic sectoring allows for sectors to
divide further into smaller sectors when the number of
objects in the sector reach a certain threshold.  In the
figure below, any sector having more than three objects
will sub-divide into smaller square sectors such that none
of the smaller sectors have more than three objects.
Figure 2: Dynamic Sectoring (Squares)

The calculation of order of work for dynamic
sectoring with cubic sectors is similar to fixed sectoring,
requiring several small adjustments. First, the average, or
expected, number of objects per sector (n) is now
approximated by the threshold value, which can be called
t.  Additionally, the number of sectors (k) becomes a
variable s, since the number of total sectors changes
throughout the simulation as sectors are sub-divided and
then consolidated.  Finally, the upper bound of the
number of possible adjacent sectors, AS, changes to
infinity.  This is the result of a situation where there is
continuous subdivision of sectors in one region, while
bordering this region are sectors that retain their original
size.  The following upper bound is therefore used to
determine the total work using dynamic sectoring with
cubic sectors (WD,C):

( )[ ]W
N

t AS ND C, = + +
2

2 1 (4)

with AS having infinity as an upper bound.

5.6  Dynamic Sectoring (Concentric Spheres)

The notion of using concentric spheres may be
particularly helpful for certain types of object distribution.
Rather than just the occurrence of clusters, where certain
areas have a noticeably higher concentration of objects
than other areas, most or all of the objects move toward
and remain near a particular region of the simulation
space.  This region, or point in space, is called an
attractor, and results in a single concentration of objects
in the simulation region.  (A practical application of this
might be an airport).  A two-dimensional depiction of this
phenomenon is seen in the figure below.
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Figure 3: Dynamic Sectoring, Concentric Circles

Since this is a form of dynamic sectoring, the number
of sectors varies according to a designated threshold, or t,
which is the maximum number of objects allowed in the
spherical sector before an additional spherical sector is
created.  The computation of possible comparisons is
basically the same as for the previous case, with one
exception.  The number of adjacent sectors (AS) can
assume only values of 0,1, or 2 (with 0 implying no
sectoring), since the concentric nature of the sectors
means that the outer-most and inner-most sectors have
one adjacent sector, while the remaining sectors have two
adjacent sectors.  Thus, letting AS equal 2, the upper
bound for the total possible work using dynamic sectoring
with concentric spheres (WD,S) is

[ ]W
N

t ND S, = +
2
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6 CASE STUDIES USING THE ANALYTICAL
METHODOLOGIES

6.1  Uniform Distribution

One way to conduct analytical modeling of sectoring in a
3 dimensional simulation region is to address the different
object distributions separately, concentrating first on
uniform distribution.  The two methodologies examined
are no sectoring and fixed sectoring.  Dynamic sectoring
with cubes is not considered because it is the same as
fixed sectoring when objects are distributed uniformly or
randomly.

For example, choose a 3-dimensional simulation with
64 cubic sectors (k), and a total number of 512 objects
(N).  The average number of objects per sector (n) is
therefore equal to 8, and the threshold for sector sub-
division is also 8. Only 8 of the 64 are not at least a part
of one boundary, therefore just those eight have 26
adjacent cubic sectors.  The remaining 56 have between 7
and 17 adjacent sectors, depending on whether the sector
being considered forms a corner of the simulation space
or merely part of the simulation boundary plane. The
average number of adjacent sectors (AS) is 14.625.  The
number of possible comparisons to find the next events
after a collision and to update the event list is 195,051.

Similarly, with the same number of objects, but with
the number of cubic sectors (k) equal to 27, we get a
slightly different numbers of possible comparisons.  The
average number of objects per sector (n) is now 18.96.
The average number of adjacent sectors decreases to
11.704, since only the center sector has a full 26 cubic
adjacent sectors, while the remaining sectors have
between 7 and 17.  The resulting number of possible
comparisons for fixed sectoring is now 254,357.

Finally, computing the number of possible
comparisons using 125 cubic sectors and contrasting these
three figures with no sectoring reveal the following:
•  No sectoring: 393,216
•  Fixed Sectoring (27 sectors)  254,357
•  Fixed Sectoring (64 sectors)  195,051
•  Fixed Sectoring (125 sectors)  168,396

While these numbers show significant savings in
computational requirements as the number of sectors
increases, they do not show the significance of sector
crossings.  Intuitively, sector crossings become a more
important factor in the total work when there are a greater
number of sectors in the simulation, and although they
may detract from the apparent improvement from larger
numbers of sectors, it is not expected that they will
significantly influence results.  These numerical results
could provide insight for obtaining a starting point for
simulation runs.

6.2  Clustering

Consider the same case described above, except that
instead of uniform distribution of objects, there is a
cluster of objects in the simulation region. In this
situation, the two methodologies that may provide
improvement over no sectoring are fixed sectoring and
dynamic sectoring with cubic sectors.  The number of
possible comparisons for the no sectoring case remains
the same.  To more clearly illustrate the difference
between the two sectoring methodologies, assume that the
cluster contains all the objects in the simulation space and
that the fixed sectors (and initial sectors in the dynamic
sectoring case) are sized such that all clustered objects
reside within one sector.

If the threshold value, t, is set equal to n, then the
following approximates the number of possible
combinations for the two methodologies:
• Fixed sectoring (n = 19) 393,216
• Dynamic sectoring (t = 19) 254,357
• Fixed sectoring (n = 8 ) 393,216
• Dynamic sectoring (t = 8) 195,051
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These numbers show that fixed sectoring can result in
virtually a no sectoring approach, since all objects reside
within one sector.  Additionally, in this scenario, the
dynamic sectoring method has similar results to fixed
sectoring in uniform distribution, as the sector containing
the cluster can sub-divide until the threshold value is met.
Again, while not providing a thorough understanding of
what to expect in the simulation scenario, this comparison
allows for some guidance in how to set the initial
simulation  parameters.

6.3  Attractor

Consider the case where the objects are moving generally
toward a single attractor in the simulation region.  While
the objects may not appear as a large congested cluster,
they nevertheless may form an approximation of a
multivariate normal distribution around the attractor, such
that objects continue moving in the direction of the
attractor, and objects are closer to each other when nearer
to the attractor.  In this situation, the two methodologies
that may provide improvement over no sectoring are
dynamic sectoring with cubic sectors and dynamic
sectoring with concentric spheres.  The number of
possible collisions for the no sectoring case remains the
same. 

Assume that the location of the attractor is known
and it is chosen as the center of the concentric spheres.
Also recall that the average number of adjacent sectors,
AS, hinges on the fact that the inner concentric spheres
have two adjacent sectors, while the outermost and
innermost concentric spheres have only one.  This will
result in an AS close to 2, with the actual value depending
on the sector containing the next event.

If the threshold value, t, is set at 8 for one iteration
and at 19 for another, then the following approximates the
number of possible comparisons for the two
methodologies:
• Dynamic sectoring, cubic sectors                (t = 19)

254,357
• Dynamic sectoring, spherical sectors          (t = 19,

AS = 2) 160,256
• Dynamic sectoring, cubic sectors                (t = 8 )

195,051
• Dynamic sectoring, spherical sectors          (t = 8, AS

= 2) 143,360
This comparison shows the potential for

improvement in simulation time using concentric spheres.

7  FINAL INSIGHTS

The above analysis provides some insight into the effects
of various sectoring methodologies and object distribution
on the number of possible comparisons and subsequent
order of work.  While some mention has already been
made regarding overhead, or sector crossings, that are not
part of the analytical computations above, there are also
other factors that may affect computational speed.  This is
evident from the results of Doescher and Harless.

At no time in Harless’ simulations was dynamic
sectoring more than three times faster than fixed sectoring
in a similar object environment.  Additionally, it is
apparent that the relatively small number of sector
crossings in that best case could not have accounted for
such a closing of the gap between the two methodologies.

Doescher focused strictly on fixed sectoring.  His
research showed that in no circumstance was fixed
sectoring able to reduce computational speed over no
sectoring by more than 52%.  Again, the number of sector
crossings was not sufficient to explain these results.
However, there are at least two possibilities.

The first is what Doescher called object density.  This
is the product of the number of objects and the size of
objects in the simulation.  Doescher showed there was
some correlation between the object density and the
efficiency of fixed sectoring, with greater object density
resulting in more significant improvement for fixed
sectoring versus no sectoring.

Additionally, the data structures, such as simple
arrays or link lists, used in the program could affect how
efficiently the simulation progresses.  How well the
sectors are structured, identified, and how objects are
tracked and assigned to sectors influence the efficiency of
the simulation.

Finally, there are undoubtedly other factors that have
not been considered. The next step in trying to improve
the simulation efficiency would appear to be an empirical
study to try to gather data to explain the gap between the
theory and the practice.
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