
INTEGRATING DISTRIBUTED SIMULATION OBJECTS

Joseph A. Heim

Industrial Engineering, 352650
University of Washington

Seattle, WA 98195
ABSTRACT

Creating comprehensive simulation models can be
expensive and time consuming. This paper discusses
our efforts to develop a general methodology that will
allow users to quickly and efficiently create high fidelity
simulation models by linking independent model objects
distributed across the Internet or enterprise intranets.
The result of linking these models is a model network
that can be used to evaluate the aggregate performance
of the system as well as investigate the interactions and
performance of the individual component models. Our
approach for creating a plug-and-play model integration
environment is based on the principles of object-
oriented programming and distributed object
computing. Drawing on advances in language and
network communication technology, we continue to
refine an early proof-of-concept prototype called
ENVISION (ENVironment for Integrating Simulation
models Interactively Over Networks). The primary
objective is to create a testbed system that will help us
better understand how manufacturers might actually use
this type of modeling facility if it was available.

1 MODEL INTEGRATION

For manufacturing firms, the consequences of
broadened competition and technological advance are
succinctly captured in two metrics: time, the profound
pressure to respond synchronously to the rapid ebb and
flow of the market; and complexity, the expanded scope
and functionality of products, the increasing number
and dispersal of participants, the new technologies and
production processes to be adopted, and the distributed
nature of the entire product realization process.
Decisions become less intuitive as the complexity of the
systems increase, the time to make good decisions is
shortened and the cost to recover from incorrect
decisions can be substantial. Understanding the criteria
that define the performance of the individual
components is difficult; anticipating the aggregate
performance of these new manufacturing systems when
the markets, partners, products, technologies and
processes continue to change presents enormous risk
and challenge.

Simulation models have the potential to provide
much of the information needed to reduce the risks
associated with the design, analysis and operation of
complex systems for product realization. But
overarching, integrated models, with the scope to
adequately reflect the interdependent performance of the
system components, are expensive and difficult to
construct; in most instances we build these models from
scratch. We need a means of creating a rich depiction
of systems from reusable models rather than starting
anew each time. Model integration therefore has two
primary objectives: provide a comprehensive
understanding of the overall system as well as its
component parts; and, leverage the intellectual resource
investments that models represent.

Model integration is used to join individually and
independently functioning models of the component
parts to create comprehensive model networks that can
share data and coordinate their modeling activities. The
individual models, such as work cells, machine tools, or
material handling subsystems, represent portions of the
larger system aggregate. The individual models can
also be programs that evaluate system performance,
such as a capacity planning model comparing the
performance of alternative production configurations
represented by independent models. Different system
designs can be created by modifying the parameters of
participant models or by changing model elements
representing manufacturing system components—
unplug one model and plug-in another.

By allowing the model builder to use the knowledge
abstracted in existing models, model integration reduces
programming effort, simplifies model validation and
increases the breadth of design options that can be
considered in the time available. Model integration is
also an effective strategy for development of large
models, since interoperability supports the selection of

Integrating Distributed Simulation Objects 533
the language and environment most appropriate to each
element of the design effort. For instance, we could
have one or more models that were computationally
intensive and others that would run adequately on a
small workstation or personal computer. With
distributed model integration models remain on the
computer providing the appropriate resources; their
integration is a matter of network data communications.

In this paper we present a methodology for
integrating distributed simulation models that is vendor,
language- and platform neutral. The fundamental con-
cepts used to create comprehensive system models from
distributed models is based on object-oriented
programming, client/server relationships and intelligent
agent assisted model network construction.

2 COMPONENT-BASED MODELING

Much of the cost associated with modeling can be
attributed to the approach we take towards model
construction and software development in general (Cox
1996). In the early 1800s, classical manufacturing was
in a similar situation: products were made by skilled
craftsmen, each component fashioned in a cut-to-fit
fashion, so product costs were high. Interchangeable
component parts ushered in the industrial revolution.
Because skilled workmen were no longer required for
product assembly, the cost of manufactured products
were significantly lower, and, accordingly, many more
people were able to afford manufactured products.

Model building is still in the craftsman-mode of
production. It needs to move from the classical, cut-to-
fit handiwork approach to an industrial-based method of
fabrication from interchangeable component parts.
Model “assemblers” should be able to integrate the
model component parts in a plug-in manner, thus
minimizing the time, cost and expertise required to
construct comprehensive models within the context of
their organization. The basic methodology we want to
create reminds us of the Lego-blocks children use to
build complex representations of machines and
buildings, and the Plug-and-Play technology that allows
us to change personal computer hardware components
without coordinating complicated switch settings and
software drivers.

2.1 Plug-and-Play Modeling

Although we have to be careful to not push it too far,
building our own stereo systems—the way we select and
assemble the components we need to play and record
music—can be a somewhat more accessible metaphor
for explaining how one might construct plug-and-play
models of complex manufacturing systems.
By adhering to the guidelines for proper mating of
physical connectors and matching appropriate electrical
characteristics, a variety of stereo components can be
combined to create a wide range of audio systems: a
minimal configuration providing adequate presentation
of the broadcast signal or recorded media; at the
opposite end of the spectrum, we can use audio
components of greater fidelity to present a sound that is
very rich and difficult to distinguish from a live
performance. We can easily add new components to the
system, substituting higher fidelity components where
we feel we gain the most benefit (e.g., volume versus
quality of sound appears highly correlated to age and
income of the owner), and replace aggregated
subsystems (combined preamplifier, amplifier and
tuner) with a set of components that individually
accomplish the same functions with greater control and
precision (e.g., ability to adjust frequency curves).

The basic result of each configuration is the same,
the ability to hear broadcast or recorded music. The
difference is in the precision, quality and fidelity of
reproduction, a result of the particular component parts
we used and their interactions. Interoperability of the
components is based on well defined protocols for
communication among the components. For stereo
systems the protocols are a set of standards for physical
and electrical interconnection of audio components.

2.2 New Integration Technology

The approach we propose is obviously then not a unique
concept but rather a synthesis and extension of many
ideas and developments published (Fishwick 1996;
Zeigler 1990) as well as many of the modeling
researchers with whom we have discussed most of the
issues presented in this paper. (Delen, Pratt and Kamath
1996; Kamath, Pratt and Mize 1995)

The technologies available now and those on the
horizon anticipate important applications in many areas
beyond simulation and other forms of modeling
activities. (Hawker and Waskiewicz 1996) But for
simulation and modeling, advances in network
communications and programming languages provide
opportunities to create the standards and protocols that
will allow simulation models to interoperate in the
much the same way that physical and electrical
protocols allow audio components to be interconnected
and function. (National Research Council 1994, 1995)

The most important network communication and
user interface developments are HTTP (HyperText
Transfer Protocol) and web browsers (e.g., Netscape’s
Navigator and Microsoft’s Explorer). Java, a network-
centric, object programming language provides a
platform-independent way of creating model objects,

534 Heim
and CORBA (Common Object Request Broker
Architecture) provides an open object infrastructure, or
middleware, that allows simulation objects created with
object-oriented as well as procedural programming
languages to interoperate across the data
communications networks. (Vinoski 1997; Gosling and
McGilton 1996; Nair, Miller and Zhang 1996) These
technologies provide a vendor- and language-neutral
foundation on which model builders anywhere in the
world can construct comprehensive systems models by
composition and synthesis of component models
(software or model objects) accessible on the Internet.

The integration of distributed simulation models is
based on three fundamental themes: (1) models are
objects; (2) they communicate with one another in
client/server relationships by passing messages; and (3)
each model is represented by an agent that explains the
capabilities of the model and assists with integration of
that model. A few words about objects, client server
relationships and agents will clarify our approach to
distributed model integration.

2.3 Programs and Objects

An enormous object-oriented programming and design
literature is available, so only a brief overview of objects
and object-oriented simulation is presented here. (Buss
1996; Joines and Roberts 1994; Dahl and Nygaard
1966) Three basic principles define object oriented
programming: encapsulation, the way objects hide
implementation and associated data but advertise
functionality; message passing, a strict protocol by
which objects communicate and request performance of
advertised functionality by other objects; and classes
and inheritance, a means of organizing the kinds objects
you create to maximize code reuse and minimize
maintenance efforts. (Goldberg and Robson, 1983) A
significant benefit of object-oriented programming is
the reduction in cognitive distance between the world
you wish to represent in the computer and the
mechanisms you have available to accomplish that
representation. Object oriented programming does this
by preserving the decomposition of the system in the
computer code you create. (Booch 1986)

2.4 Objects as Simulation Models

For instance, if you were creating a model of a
manufacturing plant you might want to represent the
machines, routings, work in process, the tools and
fixtures, the customer orders and the workers. Using an
objected oriented approach, we identify the “things” or
entities in the system and the relationships among the
entities--what they do to accomplish the objectives of
the system. Our application entities or objects might be
the customer orders, workers, routings, machines, tools
and fixtures, and work in process. Each of these objects
would be represented by a coherent chunk of code that
contained all functionality for that object as well as the
state of the object. The functionality would be that set
of activities the object would perform if asked, and the
state of the object would be the value of all variables
describing that particular object. For example, the
customer order object would be able to answer questions
about its internal state such as “what kind of product are
you,” or “what is your due date.” The machine objects
might respond to messages such as “begin busy state
with this order.” The result of that message would be
that the machine object receiving the message would
change the value of the internal state variable
representing its busy/idle status.

2.5 Client/ Server Relationships

The most widely dispersed example of client/server
relationships is the world wide web (WWW). Our
browsers (Netscape and Internet Explorer) are the
clients and the applications providing information and
data are the servers. We say that the requests come
from clients and that the server responds to those
requests. In more advanced applications the client or
server attribution is likely to be dynamic, based on the
context of the communicating program processes:
sometimes a program process will be a server, but in
other contexts it may also be a client of another program
process.

For instance, its easy to envision a situation in
which our WIP order objects, machine objects and
material handling objects could be both clients and
servers. An order (client) requests that a machine object
(server) perform some transformation; the machine
object (client) in turn requests that the material
handling system (server) transport the WIP order from
its present location. In all cases, servers are not
concerned with the source of the request (in object
terms, the request is a message) except to know where
the results of the request must be returned. Of equal
importance, the client is not concerned about the
manner in which its request is accomplished by the
server (the server encapsulates, or hides the manner in
which it computationally achieves its activities). This
kind of relationship among program processes provides
great flexibility for implementation. Since clients have
no concern about internal changes to implementation,
revisions and improvements to the server-side of the
relationship can proceed independently. The server is
only responsible for continuing to respond to its

Integrating Distributed Simulation Objects 535
previously advertised capabilities (services) in the
agreed upon manner (the protocols for exchange).

This means that we can substitute modeling
implementations, even going so far as to move the
model to a new platform for higher speed computation,
and the users, the remote clients of that model will not
have to make changes to the manner in which the
models interact. Improvements and maintenance may
proceed independently of users of the model services.

2.6 Agents

Agents are software programs that execute specific tasks
on behalf of another party. The rules under which they
operate can be created and defined in various ways and
of varying complexity and sophistication. Agents can
also be characterized by whether they are deliberative or
reactive, that is do they respond to stimuli or do they
have an internal reasoning logic which allows them to
participate in “thoughtful” processes. For instance, an
email agent would be reactive. It would monitor receipt
of messages and based on the database of criteria
provided, the agent would filter and dispatch each
message into the appropriate folders (immediate
response, work related, entertainment, no response
necessary) for our later perusal and action. A
deliberative agent might try to formulate responses to
the received email messages by more closely examining
the message content.

For our modeling purposes, the agents will provide
reactive services. They will help model builders select
the appropriate model from among a menu of models,
and they will assist in the configuration and operation of
the distributed model networks. An important aspect of
model integration is the selection of appropriate models
to be linked. The agent provides an open ended
structure into which we will later be able to incorporate
the necessary information and mechanisms to address
the semantic issues of model selection more completely.

Our basis for integrating distributed models then is
to create the framework and methodology in which
individual models can become message-passing objects
that communicate with one another as both clients and
servers. Each model has associated with it an agent that
describes the capabilities of the model, its constraints
and data needs as well as the data it produces and
coordination requirements. The agents for the models
also generate the interface programming logic needed to
participant in the distributed modeling activity.
3 ENVISION: AN ENVIRONMENT FOR
MODEL INTEGRATION

Earlier model integration efforts by the author produced
an unrefined, but operational, proof-of-concept
prototype called ENVISION. The prototype helped us
explore many of the architectural issues involved in
creating an open systems integration methodology, and
demonstrated that linking distributed object-models
(analytical as well as simulation) was feasible for tasks
that were otherwise quite difficult and time consuming
when the models were integrated in more traditional
ways (e.g., file translation, hand carrying results
between programs, customized interfaces). (Heim
1994)

But the original version of ENVISION required a
combination of C, Smalltalk and FORTRAN routines,
and too many low-level operating system calls to be of
practical application. However, the availability of data
communications-enabled, object-based programming
languages such as Java (Gosling and McGlinton 1996),
and the ability to construct high-performance, platform-
independent graphical user interfaces has encouraged us
to revisit the implementation of ENVISION. The
motivation has come from our recognition that many of
the 375,000 smaller manufacturers in the United States
would likely benefit from greater access to simulation
modeling, but most have not adopted the technology. (
National Research Council 1993) Recent investigations,
therefore, are concerned with understanding how the
firms would use such a modeling facility and from
where they would expect to obtain the models for
integration.

Rather than reviewing the original implementation
of ENVISION in detail, we’ll look at the approach we
have taken to convert it into a more useful and
accessible system. The development effort has been
divided into three major tasks:
• Developing a standard methodology to transform

individual distributed simulation models into
objects with full network communicating abilities;

• Creating agents to assist in selection and
integration of models;

• And developing an environment that brings
together the tools and mechanisms to construct
model networks and monitor and control their
interactions.

Our objective is to create a testbed system that will help
us better understand how manufacturers might actually
use this type of modeling facility if it was available.

536 Heim
3.1 Model Objectification

The first research task is to develop a standard manner
for describing the model interfaces that will allow
independent models to interoperate as an association of
distributed model-objects. Although all new code will
be written in Java for reasons of portability and ease of
extension, we are not likely to have models of any
consequence written in Java. Models created with
“legacy” simulation languages will continue to be the
major source of potential model objects, so we create an
object shell, or wrapper, that surrounds the model and
enables it to send and receive messages in a standard
object-like manner. This provides the “outer”
communications edge of the wrapper. The other portion
of the wrapper, the “inner” edge of the communications
standard is concerned with creating a mapping facility
that translates the language of the host into the standard
at the opposite edge of the object wrapper. For instance,
some models read and write to files or particular
hardware ports on the computer. These must be
mapped into message-format leaving the model and
converted from message format into file format when
coming into the model from outside its wrapper.

The wrapper or shell provides the mechanisms for
translating a model into a standard format. But that
doesn’t get the model object connected to other model
objects, possibly on other computers on the Internet. A
concept called middleware provides the network
interoperability among the distributed model objects.

Middleware is the translating layer between
heterogeneous clients and servers (both of them are
objects); those objects could be on different computer
platforms, they could be written in different languages,
and they could be located anywhere on the Internet or
an enterprise intranet. Because we intend to develop an
open systems architecture and methodology for model
integration, we will avoid vendor-specific imple-
mentations that are not open to current and developing
standards. The most open middleware choice at this
time is CORBA (Common Object Request Broker
Architecture), an industry specifications standard for
distributed computing. (Vinoski 1997)

Object Request Brokers (ORBs) are the software
analog of the hardware backplane, or bus, in which
electrically standardized pin assignments and physical
configuration allow a set of electronic subassemblies
(e.g., printed circuit boards) to be combined to
accomplish some system objective. Following this
analogy, our collection of encapsulated simulation
models are our printed circuit boards and the ORB is
our backplane for connecting our model-objects. The
set of messages to which our models will respond are
the electrical standards for pin assignment and the ORB
assures that pin assignments among the model-objects
are matched correctly.

Model objects require one more layer of software to
allow them to interoperate without concern for platform,
language or location. This layer of software is needed
to create the an interface that crosses the Internet. An
interface generator, under the control of the model
agent, creates the appropriate IDL (Interface Definition
Language) with which the encapsulated models will
communicate. The IDL allows the creators of
individual component models (such as a machine model
or material handling system model) to specify in a
standard manner the functions their models provide for
access by potential client models without concern for
what kind of computer will interoperate or in what
language the remote model participants were written.

3.2 Building Model Agents

The purpose of model agents is to facilitate the
construction of network models. Model agents know
what their model object can accomplish, what data they
need to perform those actions and what information the
model will provide as it executes. For example, when a
person wants to construct a network model, they
download the model agents representing all of the
model objects needed. The agents will configure the
interface of their respective model objects and provide
the information necessary to configure the network
model. The agents also help the network model builder
select the appropriate model objects from those available
on the network by providing semantic information about
the model objects they manage. The builder of the
individual models creates each model agent using tools
and templates also developed in this project.

The agent is created and maintained separately
from the model. For instance, there could be several
implementations of the same modeling function and all
could be represented by the same agent. The agent
would help the user select the most appropriate
implementation based on execution speed, size of the
task to model, ancillary capabilities (e.g., graphical or
animation output).

As the specificity, functionality and intellectual
property content of models from equipment suppliers
and other commercial sources grows, the importance of
retaining control and restricting access will become
important. (Cox 1996) Agents can provide the intel-
lectual property controls and accounting mechanisms
needed to allow customers considering adoption of their
equipment access to their high fidelity models. Vendors
could charge users for access to their models and rebate
those costs if the equipment modeled was subsequently
purchased from them.

Integrating Distributed Simulation Objects 537
3.3 An Environment for Constructing Model
Networks

The final task is the definition and construction of an
integrated environment in which model objects can be
accessed and connected into network models. The
network model construction environment must have a
means of determining the availability of models, link
the models into an appropriate federation and then
provide the mechanisms for controlling the execution
and capturing the results of the modeling activities. We
are using a browser-based GUI to construct and operate
the model network. LDAP (Lightweight Directory
Access Protocol) defines a reasonably simple
mechanism for Internet clients to query and manage an
arbitrary database of hierarchical attribute/value pairs
over a TCP/IP connection. An implementation of
LDAP client-server protocol will be used to retrieve and
manage a directory for locating available model objects.

When distributed models function in a model
network their progress and activity must be coordinated,
that is, results from one or more models may need to be
provided as input data for several other models;
interactions and dependencies among components of the
manufacturing systems are not limited to simple pair-
wise associations. The model construction environment
is also responsible for defining modeling coordination
needs and then accomplishing those coordination
functions with only minimal input from the people
building the model networks. The number of decisions
to be made by the model builder should be minimized as
well as the responsibility for identifying when data
exchanges occur among participant models.
Coordination of the models remains an unresolved
issue, although we believe that the work by Zeigler
(1990) and others on parallel/distributed model
execution can provide important guidelines on
developing the necessary coordination mechanisms for
the distributed simulation objects. (Chow and Zeigler
1994)

4 SUMMARY

Modeling reduces time, cost and risk while producing
information needed for design, analysis and operation of
complex production systems. However, the costs of
modeling, the expertise required, and the need to create
models that are context representative are impediments
to more wide spread adoption of simulation technology.
We need a means of easily creating comprehensive
system representations from reusable models rather than
starting anew each time. In this paper we presented a
methodology for integrating distributed simulation
models that is vendor-, language- and platform-neutral.
The fundamental concepts are based on object-oriented
programming, client/server relationships and
intelligent, agent-assisted model network construction.
A primary objective of model integration is to obtain a
better understanding of the system, the performance of
the component parts and their interactions. We want to
be able to construct models that become good
information systems and expose errors and stimulate
their correction before the systems are operational.
(Brooks 1995)

REFERENCES

Booch, G. 1986. Object-Oriented Development. IEEE
Trans. Software Engineering, Vol. SE-12, No. 2,
February, 211-221.

Brooks, Fred. 1995. The Mythical Man-Month,
Anniversary Edition, Addison-Wesley, Reading MA.

Buss, A.H. and K.A. Stork. 1996. Discrete Event
Simulation on the World Wide Web Using Java.
Proceedings of the 1996 Winter Simulation
Conference, Coronado, CA, 780-785.

Chow,A.C. and B.P. Zeigler. 1994. Parallel DEVS: A
Parallel, Hierarchical Modular Modeling Formalism.
Proceedings of the 1994 Winter Simulation
Conference. Lake Buena Vista, FL, 716-722.

Cox, Brad. 1996. Superdistribution: Objects as property
on the electronic frontier. Addison-Wesley, Reading,
MA.

Dahl, O.J. and K. Nygaard. 1966. SIMULA-An
ALGOL-based Simulation Language. Communi-
cations of the ACM, Vol. 106, September, 671-678.

Delen, D., D. Pratt and M. Kamath. 1996. A New
Paradigm for Manufacturing Enterprise Modeling:
Reusable, Multi-Tool Modeling. Proceedings of the
1996 Winter Simulation Conference, Coronado, CA,
985-992.

Fishwick, P.A. 1996. Web-Based Simulation: Some
Personal Observations. Proceedings of the 1996
Winter Simulation Conference, Coronado, CA, 772-
779.

Goldberg, Adele and David Robson. 1983. Smalltalk-
80: The Language and Its Implementation, Addison-
Wesley, Reading, MA.

Gosling, J. And H. McGilton. 1996. The Java Language
Environment: A White Paper.
http://www.JavaSoft.com/doc/language_environment/

Hawker, Scott and Fred Waskiewicz. 1996. Agility
enabled by the SEMATECH CIM Framework. In
SPIE Proceedings, Plug and Play Software for Agile
Manufacturing, Boston, MA, 69-95.

Heim, J.A. 1994. Integrating Distributed Models: The
Architecture of ENVISION. International Journal of

538 Heim
Computer Integrated Manufacturing, Vol. 7, No. 1,
47-60.

Joines, J.A. and S.D. Roberts. 1994. Design of Object-
Oriented Simulation in C++. Proceedings of the
1994 Winter Simulation Conference. Lake Buena
Vista, FL.

Kamath, M., D.B. Pratt and J.H. Mize. 1995. A
Comprehensive Modeling and Analysis Environment
for Manufacturing Systems. Proceedings of the 4th
Industrial Engineering Research Conference, 759-
768.

Koonce, D. , R. Judd and C. M. Parks. 1996.
Manufacturing systems engineering and design: an
intelligent, multi-model, integration architecture.
International Journal of Computer Integrated
Manufacturing. Vol.9, No.6., 443-453.

Nadoli, G. and J.E. Biegel. 1993. Intelligent
Manufacturing-Simulation Agents Tool (IMSAT).
ACM Trans. on Modeling and Computer Simulation,
Vol. 3, No. 1, 42-65.

Nair, R.S., J.A. Miller and Z. Zhang. 1996. Java-Based
Query Driven Simulation Environment. Proceedings
of the 1996 Winter Simulation Conference,
Coronado, CA, 786, 793.

National Research Council. 1993. Manufacturing
Studies Board. Learning to Change: Opportunities to
Improve the Performance of Smaller Manufacturers.

National Research Council. 1994. Computer Science
and Telecommunications Board. The Open Data
Network: Realizing the Vision of an Integrated
National Information Infrastructure. In Realizing the
Information Future: The Internet and Beyond, 43-
111.

National Research Council. 1995. Computer Science
and Telecommunications and Manufacturing Studies
Boards. Information Technology for Manufacturing:
A Research Agenda.

Nwana, H. S. 1996. Software Agents: An Overview. The
Knowledge Engineering Review, Vol. 11, No. 3, 1-
40.

Vinoski, S. 1997. CORBA: Integrating Diverse
Applications Within Distributed Heterogeneous
Environments. IEEE Communications Magazine,
Vol. 14, No. 2, February.

Zeigler, B.P. 1990. Object-Oriented Simulation with
Hierarchical, Modular Models, Academic Press, San
Diego, CA.

AUTHOR BIOGRAPHY

JOSEPH A. HEIM is an assistant professor of
Industrial Engineering at the University of Washington
in Seattle, Washington. His teaching responsibilities
include computer integrated systems, simulation,
inventory management, and scheduling. Heim’s
research focuses on the use of distributed discrete event
simulation models to coordinate complex collaborative
tasks. Professor Heim is a member of ASEE, ACM, IIE
and SME.

	INTEGRATING DISTRIBUTED SIMULATION OBJECTS
	ABSTRACT
	1 MODEL INTEGRATION
	2 COMPONENT-BASED MODELING
	2.1 Plug-and-Play Modeling
	2.2 New Integration Technology
	2.3 Programs and Objects
	2.4 Objects as Simulation Models
	2.5 Client/ Server Relationships
	2.6 Agents

	3 ENVISION: AN ENVIRONMENT FOR MODEL INTEGRATION
	3.1 Model Objectification
	3.2 Building Model Agents
	3.3 An Environment for Constructing Model Networks

	4 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 532
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

