
AN INTRODUCTION TO SLX

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike, Suite 900

Annandale, Virginia  22003-2603,  U.S.A.
ABSTRACT

SLX is Wolverine Software’s “next generation”
simulation language.  SLX builds on the strengths of
Wolverine’s GPSS/H (Crain, 1997).  It provides
powerful simulation capabilities in a modern, C-like
language framework. SLX provides a multiplicity of
layers, ranging from the SLX kernel, at the bottom,
through traditional simulation languages, e.g., GPSS/H,
in the middle, to application-specific language dialects
and extensions at the top.  This paper focuses on three
key features of SLX.  The power of these features is
illustrated by presenting an SLX solution to a small, but
moderately difficult simulation/animation problem. An
earlier paper (Henriksen 1996) provides a broader
overview of SLX for readers who are already familiar
with simulation, and Henriksen (1995) presents key
concepts of the architecture of SLX.

1  INTRODUCTION

This paper presents three key features of SLX: (1) SLX’s
ability to describe parallelism in systems being modeled,
(2) SLX’s generalized wait until mechanism, and (3)
SLX’s statement definition mechanism, which  allows
the introduction of new, user-defined statements into the
SLX language.  In the section which follows, a small, but
moderately complex conveyor modeling problem is
presented.  In subsequent sections, the three
aforementioned features are presented in detail, and the
layered solution to this problem is discussed.  Along the
way, representative components of each layer are
presented.  The lowest layers include subroutines written
in SLX which serve as computational building blocks for
intermediate layers.  The highest layer is built by
defining new statements for describing the operation of
conveyor systems.  The end result is a small conveyor-
modeling package which is dialect of SLX.  This
package is suitable for use by “end users” as it stands.
However, the beauty of the layered SLX implementation
is that users with specific needs not addressed by the
general-purpose package can go down one or more
levels, to replace, modify, or add to the conveyor
modeling features which have been implemented.

2  A SAMPLE PROBLEM

Figure 1 depicts a small, hypothetical conveyor system
This system is an extension of a system for which a
GPSS/H solution was presented in an earlier paper
(Henriksen 1986).  A brief description of the system
follows.

Four “pickers” are assigned to adjacent 25-foot
sections of a 100-foot wide storage area.  The pickers are
responsible for picking cartons from storage and placing
the cartons on a conveyor belt.  The orders for each
picker, are uniformly distributed along a 25-foot storage
area.  Cartons are of 11-inch, 17-inch, and 23-inch
lengths, uniformly distributed.  The time required to pick
ranges from zero to 10 seconds, depending on how far a
given order is from the previous order.  (Zero distance
implies zero time, and the maximal 25-foot distance
implies a 10-second picking time.)  Pickers are initially
positioned in the middle of their 25-foot sections.)

Once a picker has picked a carton from storage, (s)he
carries the carton along a path perpendicular to the
conveyor belt.  When a picker reaches the conveyor belt
(s)he must wait for an available space to come by which
is 6 inches wider than the carton on either side.  The
conveyor belt moves at a speed of 1 foot/second, unless
it is stopped (discussed below).  Pickers are lazy.  If
space is not available, they wait for it to appear, rather
than walking to the left or right, trying to find available
space.  If space is available, a carton can be placed on
the conveyor, whether or not the conveyor is stopped,
and the picker can move on to his/her next order.

The conveyor belt extends 10 feet past the end of the
storage area; i.e., it is a 110-foot conveyor.  The
conveyor belt connects to a 30-foot section of



560 Henriksen
Figure 1: A Hypothetical Conveyor System

Dock 4 Dock 3 Dock 2 Dock 1

Accum

SensorPicker 4Picker 3Picker 1

Belt Conveyor

Loop Conveyor

Picker 2

Conv
accumulating conveyor which also moves at a speed of
one foot/second.  Cartons queue up at the downstream
end of the accumulating conveyor, awaiting placement
on a circulating loop conveyor.  A light beam sensor is
positioned at the midpoint of the accumulating conveyor.
Each time a carton passes the sensor, the beam is broken.
If the beam stays continuously broken for a 3-second
period, the 110-foot conveyor belt is stopped until the
beam is once again visible.

At the end of the accumulating conveyor, cartons are
placed on a loop conveyor which circulates at a speed of
2 feet/second.  Placing a carton requires a 6-foot free
space on the loop conveyor (3 feet either side of where
the front edge of the carton is placed).  A 2.5-second
cycle time is incurred to place a carton on the loop; i.e.,
remaining cartons on the accumulating conveyor do not
advance until 2.5 seconds after a carton is placed on the
loop.

Each carton is assigned a destination, uniformly
distributed among four loading docks.  The loop
conveyor has a length of 454.2477 feet, and the four
loading docks are located at offsets 147.24, 187.24,
227.24, and 267.24 along the loop.  When a carton
reaches its destination, subject to a limitation described
below, it is placed on a 20-foot conveyor which moves at
6 inches/second.  When a carton reaches the end of a
loading dock conveyor, it vanishes from our hypothetical
system.  The transfer of a carton from the loop to a
loading dock conveyor requires a minimum 10-second
cycle time.  If a second carton reaches its target loading
dock sooner than 10 seconds after its predecessor has
reached the same destination, the second carton must go
around the loop and try again.  It is possible for a carton
to circulate 2, 3, 4, or more times around the loop.

3  MODELING PARALLELISM IN SLX

3.1  Active Objects and Pucks

In SLX, two kinds of objects are used to represent
components of systems being modeled.  Passive objects
are used for modeling entities which have no
“executable” behavior.  In our conveyor model, cartons
are modeled as passive objects acted upon by other
objects.  (For those readers familiar with C, passive
objects are very much like C structs.)  Active objects
have executable behavior patterns specified in an actions
property of the object’s class definition.  In our
conveyor model, active objects are used to model pickers
and “transfer managers,” which supervise the transfer of
cartons from one conveyor to another.

Objects are created by using the new operator, which
returns a pointer to the newly created object.  When an
activate operator is applied to a pointer to an object, a
puck (defined below) is created for the object and placed
on the Current Events Chain; i.e., the puck is placed in a
ready-to-execute state.  The new and activate operators
are almost always used in a single statement:

activate new Picker(25.0, 50.0);

Pucks are the schedulable entities in SLX.  Scheduled
time delays and state-based delays, e.g., waiting for a
server to become available, are puck-based operations.
Thus manipulation of pucks is the basic mechanism by



An Introduction to SLX TM 561
which a collection of objects experiences events over
time.  Pucks embody the means of achieving simulated
parallelism.  The SLX simulator can be regarded as a
puck manager.

3.2  Active Objects and Pucks vs. Transactions

The original version of GPSS introduced the transaction-
flow modeling paradigm to the world in 1962.  In the
transaction-flow world view, attention is focused on units
of traffic, called transactions, which flow through a
system, competing for system resources.  In the 35-year
period since GPSS was introduced, a number of other
languages have implemented variations of the
transaction-flow world view.  Implementation of this
world view, and the terminology used to describe it vary
widely (Schriber and Brunner 1997).

In traditional transaction-flow languages, a trans-
action contains two types of data, user-defined data
particular to the unit of traffic, and “scheduling” data,
needed to keep track of the state and “location” of the
unit of traffic in a model.  Figure 2 shows this
distinction.  In a GPSS model of our conveyor system, a
transaction representing a picker would have attributes
such as left edge of picking zone, right edge, current
position, etc.  Scheduling data would include priority,
next scheduled “move time”, next model statement to be
executed, etc.  Scheduling data includes values which
can be modified by a program, e.g., transaction priority,
and other values which are “internal” values maintained
by run-time support routines for the simulation language.
All user-defined transaction data can be both read and
written by user code.

Scheduling
Data

User-Defined
Attribute Data

Figure 2: The Structure of a Transaction

In SLX the functionality of a transaction is broken
down into independent lower-level components, and
there are no transactions, per se. The role of a
transaction’s user-defined data is played by an SLX user-
defined object class.  The role of a transaction’s
scheduling data is played by an SLX puck.  The
statements which are executed by the object are
contained in the actions property of the object’s class
and any lower-level procedures it invokes.

3.3  Inter-Object and Intra-Object Parallelism

In SLX, parallelism can be modeled in two ways: as
interactions among objects (inter-object parallelism) and
as multiple actions performed on behalf of the same
object (intra-object parallelism.)  The SLX conveyor
model uses both methods.  For example, the four picker
objects interact (albeit indirectly) by virtue of the fact
that they compete for space on the belt conveyor.
Resource contention of this form is characteristic of
transaction-flow languages.  Intra-object parallelism is
achieved by creating one or more additional pucks for an
active object.  This is accomplished by means of a fork
statement.  The following code is used within a loading
dock active object to model the concurrent elapsing of
the 10-second cycle time before another carton can be
taken off the loop conveyor and placed on the loading
dock, and the elapsing of the 40-second time it takes a
carton to reach the end of the loading dock conveyor and
exit the system:

fork
{
advance 40.0; // box travel time;

“Remove load from loading dock.”

terminate;
}

advance 10.0; // Cycle time

In the above example, the fork statement creates a
second puck for the loading dock object.  The offspring
puck is placed on the Current Events Chain, poised to
execute the actions within the braces (“{…}”) following
the fork statement.  The parent puck continues its
execution with the advance 10.0 statement which
follows.  Thus the first 10 seconds of the offspring
puck’s 40-second time delay overlap with the parent
puck’s 10-second time delay.

Most transaction-flow simulation languages offer only
inter-object parallelism.  Most offer some form of
“cloning” operation which is superficially similar to
SLX’s fork statement.  When such an operation is
performed, a new transaction is created.  The new
transaction, by definition, has its own scheduling data,
and usually the user-defined attributes of the parent
transaction are copied into the offspring (clone).  Refer
back to Figure 2.  SLX’s fork statement creates a new
puck (scheduling data only) which shares the user-
defined attributes with other pucks.

If a language has only a transaction-cloning verb, and
no fork verb, certain types of system behavior are more
difficult (although certainly not impossible) to model.
Consider, for example, GPSS/H’s SPLIT block, which
creates a clone of an entire transaction.  If multiple
GPSS/H transactions need to share a single copy of data
describing a component of a system, the data must be
stored in global variables.  (In GPSS/H, transactions can



562 Henriksen
easily change their own attributes, but changing the
attributes of other transactions is difficult.  Thus, storing
the shared data in any given transaction is impractical.)
If more than one such component exists in the system
being modeled, separate collections of shared global
variables must be used, one collection for each such
component.  If the collection of system components
requiring such representation does not change during
model execution, the shared data can be statically
allocated.  However, if the collection of components
changes during model execution, some form of dynamic
data management must be implemented by the modeler,
since GPSS/H global variables are statically allocated at
the start of model execution; i.e., they cannot be created
and destroyed during model execution.

The fork statement, which enables intra-object
parallelism, is an extremely handy modeling tool.  Even
in the simple example shown above, it’s very helpful.
When the parent puck completes its 10-second delay, it
can continue its task (waiting for, and reacting to the
presence of another carton on the loop) without having to
“worry” about the offspring puck’s disposing of the
previous carton.  In more complex modeling situations,
intra-object parallelism can be indispensable. Suppose a
class of objects has a lot of local data (many attributes),
that members of the class are dynamically created and
destroyed during model execution, and that multiple
instances of the object exist at any given time.  Even in
such complex circumstances, the use of multiple pucks
offers easy shared access to object attributes among all
the pucks which belong to any given instance of the
object, while preventing access by pucks which belong to
a different instance.

4  SLX’s GENERALIZED WAIT UNTIL

As units of traffic flow through a model, they are subject
to two forms of delay, scheduled delays, and state-based
delays.  In SLX, state-based delays are modeled using
control variables and the wait until statement.  The
keyword “control” is used as a prefix on SLX variable
declarations:

control integer count;
control boolean repair_completed;

The “control” keyword tells the SLX compiler that at
each point at which the value of the control variable is
changed, a check must be made to see whether any pucks
in the model are currently waiting for the variable to
attain a particular value or range of values.  Such waits
are described using the wait until statement:

wait until (count > 10);
wait until (repair_completed);

Compound conditions are allowed as well:

wait until (count >= 10
or repair_completed
and not repairman_busy);

SLX also supports indefinite (user-managed) waits.
Three steps are required to implement an indefinite wait.
First, the puck which is going to wait must be made
accessible to other pucks.  This is usually done by
placing the puck into a set.  Second, the puck executes a
wait statement with no “until” clause.  Finally, at a
subsequent point in simulated time, another puck
executes a reactivate statement to reactivate the waiting
puck.

Wait until expressions can include time-based
conditions. time is a reserved word in SLX, denoting the
simulator clock.  Let us consider the six possible forms
of time-based wait until expressions that could be used.
(Since time can occur either to the left or right of a
comparison operator, there are six mirror-image forms
with time on the right, which are not shown.)

wait until (time <   expression);
wait until (time <= expression);
wait until (time == expression);
wait until (time !=  expression);
wait until (time >   expression);
wait until (time >= expression);

The first two forms are not allowed, because the
simulation clock cannot run backwards.  If such
expressions were allowed, once they became false, they
could never become true, because time can only increase
during model execution.  This leaves four cases.  “Time
== expression” is handled by scheduling a hidden event
to occur at the specified time.  Using this form is
functionally equivalent to using an advance statement
(scheduled time delay), although it incurs a little
additional overhead for going through the wait until
mechanism.  If the value of time has already passed the
value specified in the expression, an execution error
occurs, since the clock cannot run backward, which
would be required to satisfy the condition.  “Time !=
expression” is handled by treating time as a control
variable.  This leaves two cases of interest.  “Time >=
expression” is treated in the same manner as “time ==
expression”, except that no error occurs if the value of
time has already passed that specified in the expression.
“Time > expression” is treated in two stages.  First, a
hidden event is scheduled to occur at the specified time.



An Introduction to SLX TM 563
Then, when this time is reached, the wait until is
completed by treating time as a control variable.

Wait until expressions can combine time-based terms
with other terms.  In our conveyor model, this feature is
very heavily used.  Let us consider a simplified version
of a subroutine designed to move a carton from point A
to point B along a conveyor.  In our model, a
“LoadStatus” object is created to describe each carton on
a conveyor.  The LoadStatus object contains a control
integer variable, called ChangeCount.  Each time another
object performs an action which affects a given
LoadStatus object, the object is responsible for
incrementing the LoadStatus’s ChangeCount.  For
example, if a LoadStatus object is inserted in front of
another LoadStatus object, the ChangeCount of the
LoadStatus object in front of which the new LoadStatus
object was inserted must be incremented.  In practice,
compliance with this discipline is easy.  In virtually all
cases when a change occurs to a given LoadStatus
object, only the upstream neighbor LoadStatus object
must be notified.

The following is a sketch of the heart of the subroutine
to move LoadStatus objects from point A to point B:

pointer(LoadStatus) Load;

“set Load’s current position to B.”

forever
{
wait until (ConveyorSpeed > 0.0);

Distance = B - CurrentPosition(Load);
ArrivalTime = Distance / ConveyorSpeed;
LocalCount = Load -> ChangeCount;

wait until (time == ArrivalTime
or Load -> ChangeCount != LocalCount);

if (Load -> ChangeCount == LocalCount)
break; // exit the forever loop

}

The code shown above goes around and around a
forever loop until its LoadStatus object reaches point B.
Let us consider the “outside” forces that can influence
the transit of a LoadStatus object within this loop.  The
speed of the conveyor on which the LoadStatus object is
being transported can be changed.  When the speed of a
conveyor is changed, the ChangeCount attributes of all
loads on the conveyor are incremented.  The forever loop
contains a wait until which waits until the speed of the
conveyor is greater than zero.  This prevents division by
zero in the body of the loop.  Each time through the loop,
a scheduled arrival time is computed for the load, given
its current position (returned by the CurrentPosition
function).  A wait until is executed waiting for either (1)
that time to be reached or (2) some change affecting the
LoadStatus object to occur.  The code is “bullet-proof.”
The only discipline that must be strictly adhered to is to
increment the ChangeCount of any LoadStatus objects
affected by system state changes.

5  EXTENSIBILITY FEATURES

SLX was designed to be an extensible platform on which
a wide variety of higher level simulation applications
could be built.  In this section we will present a small
example of how SLX’s statement definition facility was
used to build our conveyor modeling software.

In the process of developing the conveyor modeling
software, we eventually reached a point at which a
hierarchical collection of objects and subroutines had
been constructed, and the collection was capable of
nicely modeling systems of belt conveyors, accumulating
conveyors, loop conveyors, and sensors.  We could have
stopped at this point, documented the objects and
subroutines, and said to prospective users, “if you want
to model conveyors, these are the subroutines you need,
and this is how you use them.”  However, we wanted to
take things a step further, and build an easier-to-use,
statement-oriented interface on top of the collection of
objects and subroutines.  The complete collection of
statements is described in section 6.  In the paragraphs
which follow, we will consider one such statement,
CVR_Send.

The CVR_Send statement is used to send a
LoadStatus object to a destination on a conveyor.  If no
destination is specified, the downstream end of the
conveyor is assumed.  The puck which executes a
CVR_Send statement does not wait for the LoadStatus
object to reach its destination; however, it can
subsequently test for and/or wait for the LoadStatus
object to arrive at its destination.  An alternative
statement, CVR_Ride, does wait for a LoadStatus object
to reach its destination.  CVR_Send is an asynchronous
form, and CVR_Ride is a synchronous form of
LoadStatus object transport.  The following are examples
of CVR_Send:

pointer(LoadStatus) Load;

CVR_Send Load to 47.5;
CVR_Send Load;



Figure 3: The CVR_Send Statement Definition

statement CVR_Send #Load [@to #Destination] ;
  definition

if (#Destination != "")
expand (#Load, #Destination) "ConveyLoad(#, #);\n";

else
expand (#Load, #Load) "ConveyLoad(#, (#) -> LoadConveyor -> ConveyorLength);\n";

564 Henriksen
Note that the conveyor on which the LoadStatus
object is to be sent is not specified.  This is because the
LoadStatus object must have been previously placed on
the conveyor.  In fact, the placing of a carton onto a
conveyor creates the LoadStatus object which is used in
a CVR_Send statement.

The definition of the CVR_Send statement is shown in
Figure 3.  The first line of the definition is a prototype
which specifies the components of the CVR_Send
statement.  Names preceded by a pound sign (“#”)
represent components that are supplied by the user for
each use of the statement.  Brackets (“[]”) are used to
enclose a group of optional specifications.  The “@” in
front of the “to” keyword tells SLX to ignore the usual
meaning of “to” and treat it as a keyword of the
CVR_Send statement.  (“to” is a reserved word in SLX.)

The definition section specifies the mapping of the
CVR_Send statement into lower-level SLX statements.
Within the definition section, the expand statement is
used to specify the lower-level SLX code that is to carry
out the retrieval operation. The expand statement
specifies one or more lines of output which is injected
into the SLX compiler’s input stream.  A list of
expressions can be supplied to be edited into the
generated lines of output.  Within an output line, groups
of adjacent “#” symbols are replaced by edited values.

With one very important exception, this approach is
similar to the use of macros in many languages.  In most
languages, the statements which are available to specify
the internal logic of a macro are either very limited and
use a syntax different from the host language, or they
comprise a comparatively weak subset of the host
language.  In SLX, the “macro language” is SLX itself.
Only a handful of statements are excluded from use
within an SLX statement definition.  For example,
simulation constructs such as wait until or advance have
no meaning during compilation of a program.  Apart
from these obvious restrictions, most of the rest of the
SLX language can be used.  For example, it is even
possible to read a file as part of the process of expanding
a statement!  In CVR_Send, the form of expansion used
depends on whether or not a “to” clause is supplied.  In
either case, a call of ConveyLoad, a lower-level run-time
routine, is generated.
6  THE LAYERED APPROACH

Our system for modeling conveyor systems was
constructed as follows:

A.  Data structures were designed for representing
conveyors, sensors, and loads.  While the data structures
are unremarkable, one feature should be pointed out.
Early on, it became apparent that the status of objects
being conveyed should be stored in separate LoadStatus
objects which were independent from, but connected to,
the “user-level” objects being conveyed (cartons in our
little example).  This approach offered several
advantages.  First, it allowed the hiding of lower-level
details from higher-level code.  Second, it allowed the
writing of lower-level routines in a load-independent
style.  Third, it allowed a many-to-one relationship
between LoadStatus objects and user-level objects being
conveyed.  When an object is transferred from one
conveyor to another, if the transfer is not instantaneous,
during the period in which the transfer takes place,
LoadStatus objects exist  for both conveyors.  Thus, if
the second conveyor is stopped before an object has
moved completely off the first conveyor, appropriate
actions can be taken; e.g., the first conveyor can be
stopped, if necessary.

B.  A number of low-level functions were written to
perform object position accounting, e.g.,

CurrentPosition(Load).

C.  Functions were written to scan conveyor data
structures to find loads that were located within zones of
a conveyor, e.g.,

FindFirstLoadInZone and
FindLastLoadInZone.

D.  Four functions were developed to wait for the
following zone statuses to arise:

WaitForZoneFull
WaitForZoneNotFull
WaitForZoneEmpty
WaitForZoneNotEmpty



An Introduction to SLX TM 565
WaitForZoneFull returns a pointer to the LoadStatus
object for the load which is furthest downstream in a
zone, and WaitForZoneEmpty returns a pointer to the
LoadStatus object for the next load which is scheduled to
enter a zone.

The availability of WaitForZoneEmpty allows trivial
implementation of random placement of loads.  One
needs only to specify a conveyor zone which allows
sufficient clearance before and after a load, and issue a
call to WaitForZoneEmpty.  The availability of
WaitForZoneFull allows trivial implementation of
sensors.  A sensor can be modeled as a very narrow
zone, corresponding to a light beam.  WaitForZoneFull
can be used to wait for the beam to be broken, and since
this function returns a pointer to the furthest downstream
load in the zone, the identity of the load which has
broken the beam can be ascertained.

E.  The following statements were defined for modeling
conveyors:

CVR_Conveyor
CVR_Sensor
CVR_LoadClass
CVR_ConveyorSpeed(c) = s;
CVR_LoadSpeed(l) = s;
CVR_Place … on
CVR_Remove … from
CVR_Send
CVR_Ride

The first three statements are used to define elements
of a conveyor system.  The next two are used for setting
load and conveyor speeds.  The final four are used for
placing, removing, and transporting loads.

7  TAKING THINGS A STEP FURTHER

The sample system was animated, using Proof Animation
(Henriksen 1997).  The animation was accomplished by
using statements built using the SLX statement feature.
Animating the model added 14 statements to the model.
This number could have been smaller, had we chosen to
imbed animation statements within our various CVR_…
statements.  This approach was not taken, because we
wanted to maintain a degree of independence between
animation and simulation.  If we had “hard-wired” the
animation capabilities into our conveyor routines,
tailoring the animation to specific needs would have
become more difficult.

One of the users of SLX and Proof Animation has
constructed SLX code which is capable of reading Proof
Animation layout files and extracting information about
path (conveyor) lengths, sensor positions, etc.  This
allows the use of Proof Animation as a visually-based
design tool for conveyor systems.  If a conveyor needs to
be lengthened, or sensor positions need to be changed,
it’s much easier to do this sort of thing visually and use a
computerized interface for automatically incorporating
system geometry changes in a model.  Manually entering
data such as conveyor lengths and sensor positions is a
tedious, error-prone task.

8  CONCLUSIONS

SLX is a well-conceived, layered simulation system.
Users of the upper layers can ignore lower layers.
However, if their requirements are not met at a given
level, they can move down one or more levels, without
exerting extraordinary effort and without losing
protection against  potentially disastrous errors.  The
conveyor modeling package we have discussed in this
paper demonstrates the efficacy of the SLX approach.
The prototype system developed is itself applicable to a
wide range of conveyor systems.  More importantly, the
layered fashion in which it was constructed allows the
convenience of a high-level package and the confidence
that if a new application falls outside the built-in
capabilities of the software, the software can be readily
extended by dropping down a layer or two.

REFERENCES

Crain, R.C.  1997.  Simulation Using GPSS/H.  In
Proceedings of the 1997 Winter Simulation
Conference, eds. S. Andradóttir, K.J. Healy, D.H.
Withers, B.L. Nelson. Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Henriksen,  J.O.  1997.  The Power and Performance of
Proof Animation.  In Proceedings of the 1997 Winter
Simulation Conference, eds. S. Andradóttir, K.J.
Healy, D.H. Withers, B.L. Nelson. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.

Henriksen,  J.O.  1996.  An Introduction to SLX.  In
Proceedings of the 1996 Winter Simulation
Conference, eds. J.M. Charnes, D.M. Morrice, D.T.
Brunner, J.J. Swain,  468-475.  Institute of Electrical
and Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O.  1995.  An Introduction to SLX. In
ceedings of the 1995 Winter Simulation Conference,
eds. C. Alexopoulos, K. Kang, W.R. Lilegdon, and D.
Goldsman,  502-509.  Institute of Electrical and
Electronics Engineers, Piscataway, New Jersey.

Henriksen, J.O., and R.C. Crain.  1996.  GPSS/H
reference manual, fourth edition.  Annandale, VA:
Wolverine Software Corporation.



566 Henriksen
Henriksen,  J.O.   1986.    You Can’t Beat the Clock.  In
Proceedings of the 1986 Winter Simulation
Conference, eds. J.R. Wilson, S.D. Roberts, J.O.
Henriksen,  713-726.  Institute of Electrical and
Electronics Engineers, Atlanta, Georgia.

Schriber, T.J., and D.T. Brunner.  1997.  Inside
Simulation Software: How It Works and Why It
Matters.  In Proceedings of the 1997 Winter
Simulation Conference, eds. S. Andradóttir, K. J.
Healy, D. H. Withers, B. L. Nelson. Institute of
Electrical and Electronics Engineers, Piscataway, New
Jersey.
AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation.  He is a frequent contributor to
the literature on simulation and has presented many
papers at the Winter Simulation Conference.  Mr.
Henriksen served as the Business Chairman of the 1981
Winter Simulation Conference and as the General
Chairman of the 1986 Winter Simulation Conference.
He has also served on the Board of Directors of the
conference as the ACM/SIGSIM representative.


	AN INTRODUCTION TO SLX 
	ABSTRACT
	1 INTRODUCTION
	2 A SAMPLE PROBLEM
	3 MODELING PARALLELISM IN SLX
	3.1 Active Objects and Pucks
	3.2 Active Objects and Pucks vs. Transactions
	3.3 Inter-Object and Intra-Object Parallelism

	4 SLX’s GENERALIZED WAIT UNTIL
	5 EXTENSIBILITY FEATURES
	6 THE LAYERED APPROACH
	7 TAKING THINGS A STEP FURTHER
	8 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHY

	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson
	page1: 559


