
A DEMONSTRATION OF THE INTEGRATED SUPPORTABILITY ANALYSIS AND
COST SYSTEM (ISACS+)

Helena L. Weaks
James D. Barrett

NYMA, Inc.
Engineering Services Division

4027 Colonel Glenn Hwy., Suite 445
Dayton, OH 45431-1672, U.S.A.

e-mail: hweaks@earthlink.com, jbarrett@erinet.com
ABSTRACT

This paper describes the Integrated Supportability
Analysis and Cost System (ISACS+) and the features
which will be demonstrated. ISACS+ is a distributed,
client/server system for evaluating operation and support
characteristics of weapon systems and, in future builds,
commercial aircraft systems. This tutorial briefly
describes the ISACS+ Concept of Operations and how
Operation and Support studies are conducted using the
ISACS+ tool. This tutorial also describes the
architecture used to distribute the ISACS+ software over
multiple computing tiers in support of the concept of
operations.

1 INTRODUCTION

The Integrated Supportability Analysis and Cost System
(ISACS+) was originally developed for General Electric
Aircraft Engines (GEAE) to perform operation and
support analysis for the U. S. Air Force F-16 engine
program. ISACS+ is currently being rehosted and
extended under a Space Act Agreement between GEAE
and NASA Lewis Research Center.
 Both commercial and military system developers
know that there is a competitive advantage to improving
customer satisfaction through improved reliability and
supportability at minimum cost. Military systems must
comply with requirements for maintenance and
supportability in order to maximize system availability to
assure mission success. This concept was deemed so
critical that numerous standards have been developed to
assure that reliability, maintainability and supportability
are an integral part of the design process. Maximum
system availability at low cost and assured safety are a
must for commercial airlines as well, to ensure
continuing revenue generation.
 In general, weapon system customers require systems
that will operate for long periods of time with minimum
down time; in which any required maintenance actions
are quick, simple and inexpensive. However, such
maximum supportability does not come without a price.
In general, trade studies must be conducted to balance
the supportability requirement against other system
parameters, such as acquisition costs or performance.
 In order to ensure that supportability requirements are
met, the offering of warranties by manufacturers is a
common practice in both the military and commercial
environments. Like supportability, warranties incur a
cost of implementation, which is typically passed on to
the customer. The manufacturer’s ability to estimate
warranty cost determines whether or not a warranty will
be profitable; and the ability to minimize warranty costs
for the customer without incurring a loss is a competitive
advantage to the system manufacturer. When warranty
parameters and costs are well-defined and understood,
use of warranties can yield a win-win situation for both
the manufacturer and the customer.

2 THE SCOPE OF ISACS+

The ISACS+ model is a full life cycle model, which
supports studies conducted during concept exploration
(paper engine) and preliminary design phases through
full-scale production and fielding of weapon systems.
Figure 1 shows how the accuracy of weapon system data
increases as the design moves through these various
developmental phases.

A Demonstration of the Integrated Supportability Analysis and Cost System 625
Concept/
Exploration
Preliminary
Design:
- Paper Design
- Mission Analyses
- CERs
- Estimated R&M

Parameters.
- Preliminary
Hazard Analysis
- Specified Goals
for Performance,
R&M
- Preliminary
Basing Concept

Detailed
Design:

- Detailed Parts List
- Detailed Cost,
Vendor Quotes
- Detailed R&M
Assessments.
- Vendor R&M
Analyses
- Initial Manf
Estimates.
- Defined Support
Equipment Req.
- Updated Basing
Concept
- Update Goals

Increasing Model Accuracy

Prototype/
Low Scale
Production:
- Update Parts List
- Detailed Manf.
Estimates
- As Built
Configurations
- ECPs/TCTOs
- Delivery
Schedules
- Detailed Basing
Concept

Full Scale
Production,
O&S:
- As Built
Configurations
- Actual Usage
- Maintenance
History
- TCTOs
- Begin Tracking
Against Goals

Figure 1 - Data Accuracy within the Product Life Cycle

2.1 Concept Exploration and Preliminary Design

Supportability considerations begin during the concept
exploration/preliminary design phases since these phases
are when materials, complexity, durability, and
accessibility of hardware are defined. Changes made
during this phase are relatively inexpensive, since large
investments in equipment, hardware, and manufacturing
processes have not yet been incurred. Goals for
reliability and maintainability (R&M), acquisition cost,
performance, etc. should be set based on perceived or
directed customer requirements. These goals often
conflict with one another, requiring that on-going trade
studies should be conducted to ensure an optimal design
solution which best satisfies all customer requirements.
In order to support trade studies, high level information
is collected, such as preliminary hazard analyses, results
of cost estimating relationships (CER), and comparisons
to similar systems.

2.2 Detailed Design

As the design becomes fixed, data accuracy increases.
Detailed parts lists, cost assessments, reliability/
maintainability analyses, support equipment
requirements and customer usage become better defined.
Low level hardware purchases are made for prototype
testing. Design changes during this phase should be
assessed using an integrated engineering approach, in
which all areas of impact are identified and assessed.
Figure 2 provides an example of the interrelationships
between design changes and supportability. Design
decisions related to an improvement in a performance
parameter may have an impact on the life or durability of
hardware; which in turn may impact scheduled and
unscheduled maintenance frequency. Changes in
maintenance frequencies would likely have an impact on
spares demand and provisioning requirements. Design
changes may also have an impact on repair or
maintenance procedures which affect skill level
specifications, materials used, or support equipment
requirements. ISACS+ baselines can be updated during
this phase to reflect this increased accuracy in data. The
model can then be used for making intelligent decisions
based on trade studies which analyze impacts of design
modifications or to assess impacts of various customer
usage scenarios.

Development
Cost Impact

Unit Cost
Impact

Design Change: Improve
Compressor Efficiency

Life/
Reliability

Impact

Scheduled
Maintenance

Frequency

Unscheduled
Maintenance

Frequency

Spares
Demand

Cost of Warranty

Acquisition Cost

Repair/Maint.
Procedure

Requirement

Skill Levels/
Time to
Repair

Consumables
/Expendables

Support
Equipment

Performance
Impact

Impact on
Fuel

Consumption

Cost of Fuel

Operation and Support Cost

Mission
Mods: e.g.

Longer Range

Figure 2 - Impact of a Design Change on Supportability

2.3 Prototype or Low Scale Production

As system designs becomes fixed and the pre-production
phase begins, maintenance and support programs must
be defined, including identification of maintenance
tasks, facilities, manpower requirements, support
equipment needs, and spares provisioning. ISACS+ can
help the logistician assure that the correct resources are
at the right location at the right time in order to support
the system being deployed. ISACS+ does this by
forecasting manpower, facility and equipment utilization;
as well as forecasting spares, consumables and
expendables demands at each of the facilities under
study.
 The customers may also wish to negotiate warranty
contracts. ISACS+ can provide the warranty analyst
with input to the cost drivers relative to warranty so that
the planners can provide justification for the cost of
warranty during warranty negotiations.

626 Weaks and Barrett
2.4 Full Scale Production/Operation and Support

Design changes can and do occur after systems have
been shipped. This being so, one must plan for
introduction and support of design changes to fielded
systems at a minimum cost and with minimum impact to
fleet operations. ISACS+ can aid the analyst in
determining the cost, system availability and resource
utilization impact of the introduction of new
replacement hardware into the field.
 Once a weapon system is fielded, field history data
may be collected to assess the effectiveness of system
design and maintenance programs in order to identify
safety hazards, improvements, or opportunities for cost
reductions. Warranted removals are monitored to assure
that warranty commitments are met without incurring a
loss to the manufacturer.

2.5 Organizational Roles

The disciplines within an organization that contribute to
operation and support studies are Reliability,
Maintainability, Logistics Support, Life Cycle Cost and
Warranty analysts. In general, these disciplines are
highly dependent on one another for information.
ISACS+ integrates these disciplines by providing a
common data source and analysis tool, thus reducing
Figure 3 - ISACS+ Co
data and application redundancy while enforcing
consistency in results. These disciplines typically follow
standard practices for military applications (SAE RM&S
Committee, 1989) which may be modified for the
commercial environment (Weaks, 1996).

3 ISACS+ CONCEPT OF OPERATIONS

The ISACS+ concept of operations supports the natural
flow of a typical analysis, as exhibited in Figure 3
(Weaks and Barrett, 1996). The basic steps for
conducting an analysis are as follows:

1. Development of a baseline;
2. Storage and retrieval of baselines by multiple users;
3. Duplication and modification of baselines for trade

studies and sensitivity analyses;
4. Automated downloading of the currently active

baseline for input to the simulator;
5. Execution of the simulator, using multiple iterations

to get a measure of variation for the output; and
6. Automated database storage of simulator output, for

analysis and flexible reporting.

Each of these steps is described in more detail in the
following sections.
A r c h i v e d
B a s e l i n e s

U s e r
W o r k i n g

F i l e

O u t p u t
F l a t f i l e s

R u n
S i m u l a t o r

I n p u t
F l a t F i l e s

L C C
D a t a B a s e

G e n e r a t e
R e p o r t s

R e p o r t
G e n e r a t o r
D a t a b a s e

B a s e l i n e 3

B a s e l i n e 2

B a s e l i n e 1

A r c h i v e

O n l i n e
S t o r a g e

S e l e c t
B a s e l i n e

M o d i f y
B a s e l i n e

L a u n c h
S i m u l a t o r

E v a l u a t e
R e s u l t s

S t o r e / A r c h i v e
R e s u l t s

U s e r V i e w

P r o c e s s V i e w
ncept of Operations

A Demonstration of the Integrated Supportability Analysis and Cost System 627
3.1 Development of Baselines

ISACS+ contains a flexible, object-oriented simulation
model that simulates the operation and support
environment for a fleet of aircraft (Weaks and Barrett,
1996). ISACS+ offers the user over one hundred features
for modeling a weapon system operation and support
environment, including the following:

1. The capability to model both military and commercial

‘basing’ structures where the user may identify
multiple locations with multiple facilities, where each
facility may have different maintenance capabilities
and capacities.

2. Modeling of multiple weapon system (aircraft)

configurations with different subsystems (engines,
electronic controls), where each subsystem may be
defined with unlimited levels of indenture. The
subsystems are allowed to dynamically change within
the simulation through the modeling of time
compliance technical orders(TCTOs).

3. Modeling of flight line activities such as fixed and

scheduled inspections, as well as scheduled removals
with the capability to “overfly” schedule limits.

4. In-shop activities, such as ‘workscoping’, may

identify opportunistic maintenance. Other
maintenance requirements may be discovered during
teardown and inspection of a system.

5. Failures are modeled using three parameter Weibull

distributions for durability failures, or using
parameters for reliability growth. Hardware may
have multiple failure modes of any type. Failures can
be modeled at any level of indenture.

6. Each hardware item may have life limit or other

scheduled removal activity requiring specific
maintenance actions.

7. System level failure modes such as performance

degradation based on the degradation of subsystems
can be modeled.

8. Maintenance tasks leading to scrap, repair or further

inspection may be modeled. Future enhancements
will include modeling of rework.

9. Warranty requirements may be modeled at the system

level.

Development of a baseline is a time-consuming process.

Each commercial or military organization typically has its
own data sources stored in heterogeneous systems and
formats. Data may also be provided by multiple groups
within an organization. The process of developing a
baseline may require extracting and manipulating large
amounts of such data, especially for fielded engine studies
where there is much historical data. Therefore,
preprocessing routines for automated import of data are
source-dependent.
 Older simulation models often mandate use of
application-unique files that require the user to count
fields or use delimiters to locate where the data should fall
for accurate load into the simulator. Often, there is no
indication of what the fields mean, and the user must
constantly refer to the user documentation to recall the
field names and lengths. This increases the tedium of an
already time-consuming process for setting up large data
files. ISACS+ uses a graphical user interface (GUI) that
provides an intuitive approach for viewing and modifying
simulator inputs, which requires minimal training of the
user. To verify the usability of the ISACS+ GUI, GEAE
analysts were provided with no user documentation and
received minimal training, yet there have been few
questions relative to the input of the simulator using the
GUI.

 ISACS+ uses the relational data base engine, Oracle,
for storing input data. Relational data bases allow the
developer to set up intuitive relations between entities that
are easy to understand by the user. For example, an entity
such as a “component” could have multiple “inspection
requirements” or multiple “failure modes” associated
with that “component”. The relational data base works in
conjunction with the GUI framework to allow the user to
enter data in a manner best suited to the user’s work
habits, without understanding the developer-defined
relationships being implemented and enforced by the
GUI. Additionally, the use of a relational data base
engine allows the user to create ad hoc reports from the
input data, eliminating reliance on hard coded reporting
features often found in simulation models. Relational data
bases are also relatively easy to load from other external
data sources. For example, much of the test data
generated for ISACS+ was originally prepared on a PC in
FoxPro, down loaded to comma-delimited ASCII text
files using FoxPro features, and then uploaded into Oracle
using simple Oracle SQL*Loader scripts. The GUI was
then used to review the results.

628 Weaks and Barrett
3.2 Modification of Baselines for Trade Studies

Trade studies typically involve making small changes to a
specific element of a baseline to determine the impact on
system behavior. ISACS+ allows the user to select and
load a baseline into a working space owned and password
protected by the user. As the baseline is being modified,
the ISACS+ system ensures that the business rules and
data constraints required by the simulator are adhered to.
The user’s ability to enter bad data (i.e., data that might
cause the simulator to “crash”) is minimized through the
use of warnings, data constraints, integrity checks, and
provision of acceptable defaults.

3.3 Download to the Simulator

Once the user is satisfied with the baseline or baseline
modifications, the data may be automatically downloaded
to files required by the simulator. The user’s desired view
of the data differs a great deal from the needs of the
simulator. The user wishes to see the data in terms of
characters and intuitive, meaningful relationships.
However, character representation within the simulation
environment reduces available memory, in turn restricting
the size of the model itself and increasing the complexity
of the algorithms within the simulation model.
Integerized data is used within the simulator to reduce
memory requirements, enhance performance and simplify
algorithms.
 The simulator is a stochastic model using Monte Carlo
techniques to randomly generate events. Each time an
event occurs, a comma delimited record is written to a text
file to record that event; such event recording is designed
to ensure that desired user views of the output could be
supported. Each iteration of the simulator is identified by
recording a time stamp and the random number seed used
to initiate the iteration with each of the output records.
This provides the necessary information for calculations
of means and variances across multiple iterations of the
simulation outputs.

3.4 Simulator Execution

There are currently sixty-six (66) relational tables used to
define the maintenance environment and hardware items
for the ISACS+ model. The user only needs to load data
for a small subset of those (typically 15 to 18 tables),
depending on whether the system is a paper engine or a
fielded system. The remainder of the tables are filled in
based on the modeling needs of the user and increase the
complexity of the environment being modeled. The
simulator “knows” which features are being modeled
based on whether or not a given table has data.

 Once

3.5 Storing Simulation Results in a Reporting
Database

the simulator has completed execution, the comma
delimited output files produced by the simulator are
loaded into a relational database, where the user can
analyze the results and generate reports in a secure
environment. The use of a relational database facilitates
report generation and modification using the many
available reporting tools. The user is able to create ad-
hoc reports by using the existing report data, without
modifying or rerunning the simulator. A reporting
database offers numerous views of the data, and allows
the user to drill down into the data to investigate, in detail,
numerous patterns. The user is also able to relate output
data to external information. For example, maintenance
events generated by the simulator can be related to
support equipment usage, skill levels, manpower
requirements, cost parameters, or usage of consumables
and expendables.

4.0 THE ISACS+ TECHNICAL ARCHITECTURE

ISACS+ was originally hosted on a UNIX platform using
X Windows/Motif, Ingres Relational Database
Management System, Ingres Windows/4GL, and C++ for
the simulator module. It was necessary to keep these
considerations in mind while defining a technical
architecture which would prove more cost effective, and
would yield a flexible, extensible system.

4.1 An Approach for Software Distribution.

The environment defined for ISACS+ is one in which a
user at a desktop workstation can attach to the ISACS+
system to perform database maintenance, initiate the
simulator to run trade studies, generate reports from
simulator output, and archive study results to a backup
medium. To avoid the problem of bogging down a single
server with application, GUI, and database processing, a
client/server implementation was selected. This supports
distributing system functions over multiple computing
platforms while allowing access to a central data
repository (Vaughn, 1994). All of this is largely
transparent to the end user, who is free to perform tasks
without regard to where the various system components
are being vended.

4.2 Open Systems Guidelines

The architectural approach followed for implementation
of ISACS+ was facilitated by adopting the principles
defined in the National Institute of Standards and
Technology (NIST) Application Portability Profile (APP)
(NIST Special Publication 500-210, 1993). The NIST

A Demonstration of the Integrated Supportability Analysis and Cost System 629
APP is, in turn, based upon the Institute of Electrical and
Electronic Engineers (IEEE) Open Systems Environment
Reference Model (OSE/RM), defined by the IEEE
Portable Operating System Interface for Computer
Environments (POSIX) Working Group P1003.0 (IEEE
P1003.0, 1992).

4.3 The IEEE OSE/RM.

The IEEE POSIX Working Group OSE/RM defines a
layered architecture that divides system components into
three general areas.

1. Application Software - data, documentation, training
and application programs;

2. Application Platform - hardware and software
components that provide system services used by the
Application Software layer; and

3. External Environment - system elements external to
the application software and platform (human
interface and interface to other application
platforms).

 These layers are joined together by two layers of
interfaces.

1. Application Program Interface (API) - the interface
between the application software and application
platform layers which supports portability of the
application software;

2. External Environment Interface (EEI) - the interface
between the application platform and platform
external environment layers which supports data
interchange between human users, external data
stores, and other application platforms.
4.4 The NIST APP Profile Applied to the OSE/RM.

The NIST APP modifies the IEEE OSE/RM by applying
standards that are of interest to the U.S. Government and
defining services at the various layers and interfaces. The
following description of the IEEE OSE/RM has been
extracted from the NIST APP.
 “The services defined in the APP tend to fall into
seven broad service areas:

• operating system services
• human/computer interface services
• data management services
• data interchange services
• software engineering services
• graphics services
• network services

 “Each of the APP service areas addresses specific
components around which interface, data format, or
protocol specifications have been or will be defined.
Security and management services are common to all of
the service areas and pervade these areas in one or more
forms.”
 The APP Service areas, as applied to the IEEE
OSE/RM, are displayed in Figure 4.

4.5 Applying the NIST/APP & IEEE OSE/RM to the
ISACS+ Problem Domain

In general, it is desirable to follow the NIST APP and the
IEEE OSE/RM models to the greatest extent possible
(Department of Defense Joint Logistics Systems Center,
1995). Doing so will minimize dependence on
proprietary platforms, operating systems, and
telecommunications protocols by establishing an
application which is portable
FIGURE 4 - NIST APP Service Areas Applied to the IEEE OSE/RM

A P P L I C A T I O N S O F T W A R E E N T I T Y

A P P L I C A T I O N P L A T F O R M E N T I T Y

E X T E R N A L E N V I R O N M E N T

C O M M U N I C A T I O N
S E R V I C E S

I N F O R M A T I O N
S E R V I C E S

H U M A N / C O M P U T E R
I N T E R F A C E S E R V I C E S

N E T W O R K
S E R V I C E S

D A T A
M A N A G E M E N T
S E R V I C E S

 H U M A N / C O M P U T E R
I N T E R F A C E
S E R V I C E S

G R A P H I C S
S E R V I C E S

A P P L I C A T I O N
P R O G R A M

I N T E R F A C E (A P I)

E X T E R N A L
E N V I R O N M E N T

I N T E R F A C E ((E E I)D A T A
I N T E R C H A N G E
S E R V I C E S

C O M M U N I C A T I O N
S E R V I C E S

I N F O R M A T I O N
S E R V I C E S

H U M A N / C O M P U T E R
I N T E R F A C E S E R V I C E S

S Y S T E M
S E R V I C E S

N E T W O R K
S E R V I C E S

 H U M A N / C O M P U T E R
I N T E R F A C E
S E R V I C E S

G R A P H I C S
S E R V I C E S

D A T A
M A N A G E M E N T
S E R V I C E S

O P E R A T I N G
S Y S T E M
S E R V I C E S

630 Weaks and Barrett
across various platforms and databases. However, in
reality, various platforms, operating systems, and vendor
extensions to “standard” languages such as C++ and
SQL often result in applications that are only portable in
a very narrow context, or require extensive rework to
port. While it is desirable to isolate various layers as per
this model, it is also worth noting that vendor-unique
extensions usually provide value-added capabilities for
which the tool in question is chosen. The problem, then,
is to evaluate the degree of adherence to standards
against the available toolsets.

4.6 The ISACS+ Development and Deployment
Environments.

In order to best define and examine tradeoffs for tool
selection, it is first necessary to define the environment
in which the ISACS+ application will be run. The
definition of such an environment has at once been
simplified by advances in computing technology and
complicated by the large number of choices available
for developing distributed systems (Wheeler, 1992). The
use of C++, without extensions, makes the ISACS+
Simulation Module portable to virtually any operating
environment with a native C++ compiler. Likewise, use
of the Ingres SQL database engine, and therefore any
truly standard relational database manager, makes the
database table definitions largely portable, with a
moderate level of modification. However, the original
GUI code is largely written in a proprietary language,
Ingres Windows/4GL, and induces dependence on the
Ingres engine. The GUI code turns out to be the least
portable component, and must be replaced. This
replacement is complicated by the fact that there are at
least two “competing” de facto industry standards for
GUI development - the MS Windows Software
Developers Kit (SDK) and the X-Window/Motif tool kit.
 The development and deployment runtime
environments and tools ultimately selected for
development of ISACS+ are defined in Table 1. These
tools were selected to best meet the needs of the ISACS+
architecture as defined by the ISACS+ Technical
reference Model (TRM). Specifically, the ISACS+
TRM is a derivative of the NIST APP and focuses on
nine major service areas required to support existing and
planned ISACS+ functionality (Barrett, 1995). These
are given below.

1. Operating System Services
2. Application Platform
3. Software Engineering Services (Development and

Maintenance)
4. Data Management Services
5. Data Interchange Services
6. User Interface Services
7. Distributed Computing Services
8. Network Services
9. System Management Services.

Table 1 - Tool Selection and the ISACS+ TRM

Client Application Server
Application

Application
Platform -

Development

120 MHz Pentium
Laptop, 40 MB RAM

120 MHz Pentium
Laptop, 40 MB

RAM
Application
Platform -

Deployment

120 MHz, 32 MB
RAM

166 - 200 MHz
Pentium Pro

Processor, 64+ MB
RAM

Operating System
Services

Windows NT 3.51
Workstation or
Windows 95

Windows NT 3.51
or 4.0 Server

Software
Engineering

Services

 Delphi 2.0
Client/Server

Development Suite &
Borland C++ 5.0

Development Suite

N/A (Maintenance
only)

Data Management
Services

Oracle SQL*Plus 3.2
and Personal Oracle

7

Oracle 7.2
Workgroup Server
for Windows NT

Data Interchange
Services

Borland SQL Links
for Oracle & Oracle
SQL*Net Client V2.2

Oracle SQL*Net
Server V2.2

User Interface
Services

Win 32 Win 32

Distributed
Computing Services

Windows 32 TCP/IP
Stack

Windows NT 3.51
or 4.0 TCP/IP

Stack
Network Services Windows 32 TCP/IP

Stack & Oracle
SQL*Net Client V2.2

Windows NT 3.51
or 4.0 TCP/IP

Stack & Oracle
SQL*Net Server

V2.2
System

Management
Services

N/A (Managed from
NT & Oracle Servers)

Windows NT 3.51
or 4.0 Server &

Oracle 7.2
Workgroup Server

for NT

4.7 Distributing the Application

The planned distribution of the ISACS+ components
over computing tiers has evolved with time. After
several large trial runs, the development team decided
that the Simulation Module, initially targeted for
implementation on the server machine, would disrupt a
workgroup much less if vended to each individual client
machine. With this change, it seemed reasonable to run
the Simulation Module as a 32-bit DLL and assign it an
API signature. Pushing large loads through embedded
calls to the database (in both C++ and Object Pascal)
turned out to be orders of magnitude slower than direct
calls to the Oracle engine to natively load the output of
the simulation runs for the Report Generator, and so a
Remote Procedure Call (RPC) Server was developed to

)

A Demonstration of the Integrated Supportability Analysis and Cost System 631
perform this task. Like the simulation module, the RPC
server is invoked as a Win32 DLL from the client
machine. The Report Generator application relies
heavily on the use of Triggers and Stored Procedures,
and the processing is split between the database and the
GUI. The GUI which provides all of this capability to
the user runs on the user’s machine. This distributes the
ISACS+ capabilities logically over computing tiers,
providing functionality where it is needed as it is needed.
Finally, by providing the user with a logical view which
treats the entire network of PC’s as a single system,
ISACS+ allows users to retrieve and store data from any
machine, thus allowing the data to be distributed as best
meets the needs of the users of ISACS+.
 Figure 5 shows the final distribution of components
over computing tiers as the model is currently built.

Borland Database Engine (BDE)

Delphi 2.0 GUI Framework
(Paramater DB,

Simulator Initiation, Report DB)

Oracle RDBMS 7.2

Simulation Module
 Parameter DB,

Report Generator DB,
 Report Generator Processing
(Triggers & Stored Procedures

TCP/IP over Ethernet

Borland C++ 5.0 Development Suite
(Simulation Module - 32-Bit DLL)

Oracle SQL*Net Server V2.2

Windows NT Server (OS)

Client Workstation Server Workstation

Windows NT Workstation (OS) or
Windows 95 (OS)

Borland SQL Links for Oracle

Oracle SQL*Net Client V2.2

Figure 5 - Distribution of ISACS+ Components Over
Computing Tiers

REFERENCES

Barrett, James D. 1995. ISACS+ Concept of Operations
- Technical Reference Model. NYMA, Inc. for
NASA Lewis Research Center, Cleveland, OH.

Department of Defense Joint Logistics Systems
Center(JLSC). 1995. JLSC Integrated
Technical Architecture and Common Operating
Environment. Wright-Patterson Air Force
Base, Dayton, OH.

International Electrical and Electronics Engineers, Inc.
1992. Guide to the POSIX Open Systems
Environment. Draft 15. IEEE P1003.0,
Washington, DC.

National Institute of Standards and Technology (NIST).
1993. NIST Special Publication 500-210
Application Portability Profile. Systems and
Software Technology Division, Computer
Systems Laboratory, Gaithersburg, MD.

SAE RM&S Committee .1989. Reliability,
Maintainability, & Supportability Guide Book,
First Edition (Draft), Society of Automotive
Engineers Continuing Education, Committee
(G-11).

Vaughn, Larry T. 1994. Client/Server System Design &
Implementation. McGraw-Hill, New York, NY

Weaks, Helena .1996. Requirements Analysis Plan,
Integrated Supportability Analysis Cost System
(ISACS); NYMA, Inc. for NASA Lewis
Research Center, Cleveland, Ohio.

Weaks, Helena and James D. Barrett .1996. Build 1
System/Software Requirements Document
Enhanced Integrated Supportability Analysis
and Cost System (ISACS+); NYMA, Inc. for
NASA Lewis Research Center, Cleveland,
Ohio.

Wheeler, Tom. 1992. Open Systems Handbook.
Bantam Books, Inc., New York, NY.

AUTHOR BIOGRAPHIES

JAMES D. BARRETT is an Engineering Specialist
with NYMA, Inc., in Dayton, Ohio. He is responsible
for selecting and installing the ISACS+ development
environment and for development of the Simulation
GUI, the Parameter Database GUI, the Main Menu GUI,
and all C++ development. In addition to ISACS+, he has
developed simulation models for factory and laboratory
facilities planning. He is currently a member of the
IEEE, IEEE Computer Society, the Association for
Computing Machinery, and the Society for Computer
Simulation.

HELENA L. WEAKS is an Engineering Specialist with
NYMA, Inc. in Dayton, Ohio, under contract with
NASA to support a Space Act agreement between NASA
and GEAE to develop the ISACS+ system. She is one of
the original developers of the ISACS+ system. The
original effort took place at Belcan Engineering, from
1992 to 1994, as development of a software prototype
based on requirements defined by General Electric
Aircraft Engine (GEAE) systems. She received her Ph.D.
in operations research from the University of Toledo in
1986. She received her masters in mathematics in 1979,
and bachelors in mathematics in 1977, both from the
University of Toledo.

	A DEMONSTRATION OF THE INTEGRATED SUPPORTABILITY ANALYSIS AND COST SYSTEM (ISACS+)
	ABSTRACT
	1 INTRODUCTION
	2 THE SCOPE OF ISACS+
	2.1 Concept Exploration and Preliminary Design
	2.2 Detailed Design
	2.3 Prototype or Low Scale Production
	2.4 Full Scale Production/Operation and Support
	2.5 Organizational Roles

	3 ISACS+ CONCEPT OF OPERATIONS
	3.1 Development of Baselines
	3.2 Modification of Baselines for Trade Studies
	3.3 Download for the Simulator
	3.4 Simulator Execution
	3.5 Storing Simulation Results in a Reporting Database

	4.0 THE ISACS+ TECHNICAL ARCHITECTURE
	4.1 An Approach for Software Distribution
	4.2 Open Systems Guidelines
	4.3 The IEEEE OSE/RM
	4.4 The NIST APP Profile Applied to the OSE/RM
	4.5 Applying the NIST/APP & IEEE OSE/RM to the ISACS+ Problem Domain
	4.6 The ISACS+ Development and Deployment Environments
	4.7 Distributing the Application

	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 624
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

