Proceedings of the 1997 Winter Simulation Conference

ed. S. Andradottir, K. J. Healy, D. H. Withers, and B. L. Nelson

INTRODUCTION TO THE VISUAL SIMULATION ENVIRONMENT

Osmen Balci
Anders |. Bertelrud
Chuck M. Esterbrook
Richad E. Nance

Orca Compute Inc.
Virginia Tech Caporate Research Center
1800 Kraft Drive, Suitd11
Blacksbug, Virginia 24060, U.S.A.

ABSTRACT

This paper introduces the Visual Simulation Environment
(VSE). V SE has been developed under research funding,
primarily from the U.S. Navy for over a decade. It
enables discrete-event, general-purpose, object-oriented,
picture-based, component-based, visual simulation model
development and execution. This advanced environment
can be used for solving complex problems in areas such
as ar traffic control and space systems, business
processes and workflows, computer networks, education,
health care, manufacturing, satellite communications,
supply chain management, and transportation.

1. INTRODUCTION

The research in building a discrete-event Simulation
Model Development Environment (SMDE) began in
June 1983 at Virginia Tech under funding from the U.S.
Navy (Balci and Nance 1987). Guided by the fundamen-
tal requirements identified by Balci (1986), incremental
development, evolutionary prototyping, and rapid proto-
typing approaches have been used to develop the proto-
types of SMDE tools. An overview of the SMDE
architecture and prototype tools is given by Balci and
Nance (1992). A Visua Simulation Support Environment
(V SSE) research prototype was completed in April 1992
(Derrick and Balci 1995, 1997).

Based on the experience gained from the use of the
SMDE and VSSE prototypes, development of the Visual
Simulation Environment® (VSEstarted inAugust 1992
unde the objectoriented software engineering environ-
ment of the Unix-based NEXTSTEP operating system. A
fully functional researchrptotype ¢ VSE was devel-
opel at Virginia Tech in Juy 1995 (Balci et al. 1995
Technology transfe enabled by th creation of Qca
Compute, Inc. (Balci et al 1997d), haproduced the first
commercial vesion of VSE in November 196 for the
NEXTSTEP operating system. SubsequendSE was

698

released for OPENSTHE, Windows NI 4.0, and
Windows 95 VSE will be released for tb new
Macintosh(Rhapsody operating system iearly 1998.

The purpose of teipaper is to introduce théSE
software product developeak a result of experimental
researchfor over a decade. Section 2 presents a brief
oveview of the object-oriented paradig Section 3
describes basic S modeling concepts. Sections 4
through 6 describette VSE tmlset. Conalding remaks
are given in Section 7.

2. THE OBJECT-ORIENTED PARADIGM

The VE is fully andtruly object-oriented andequies
understanding of the objeotiented paradig (OOP).
This setion presentsa brief overview of the OOP in
terms d the VSE concepts.

An object is anelemen of interest in a systefmeing
modeled. Each object possesses esaharacteristics,
performs sane services, ah exhibits some behavia.
Objects are the building block$ VSE models.

A class is a grouping or categorization of objects
with the same characteristics, services, and behaviors
class maybe extewled inb othe classesExterding a
class is calledubclassing and an extended class is called
asubclass. A subclass inherits lathe characterists, ser-
vices, andl behavias of the paent class It custamizes
what it inherits and/or provides more characteristics, ser-
vices, @ behaviors. The parent afsubclass is called the
superclass. The class at the flevel (having no super-
class) is called #aroot class.

The dandard built-in V& class library is called
VSLibrary. All VSE models are developed by slassng
from classes in the/SLibrary class hierargh A class
hierarchy of a simulatiomodel of a tréfic intersection in
Blacksburg,Virginia is partially shown irrigure 1. For
example, th selectd Enterintersection clasa Figure 1
is a usedefined class inheriting all characteristand
behavior of superclassArea which inherits rbm

Introduction to the Visual S

E]Classes - Enterintersection

Model
| vSshape

Edit Format Classes Tools Window Help

|VSComp0nent |P.rea

mulation Environment 699

ing the execution of that rtteod. On complébn
of a methodall local variable values atost.
VSE varidles canhave the 6llowing data

=[[Branch
ClearanceExit1
ClearanceExitz

WEComponent
W3Entrance
WSExit
W3Path TrafficLight
WSText

Enterintersection
LeffTurn
herge

=

types: boolean, charactelass refeence, object
referenceinteger numbe real number, and enu-
meration.

Senices provided and behaors exhibited

K|

-

Specification Images

Category v| Method

by an object & specifiel in methods. Two
types of methods existclass methods and
instance methodsClass methods are used to

Class Parts |Instance Methods |N0tiﬂcati0n

provide services specific toclass. For example,

Class Documentation
Class Variahles
Class Methods
Instance Yariahles
Instance Methods

[

= [[dynObjanived:
thelightTurnedGreen

Documentation | Logic |

each VSLibrary class, by inheng from
VSObiject root class, providéise methd “new”
which creates an instance of that cldestance

smstet| MeEthods, givenin a classare used to specify the

returns
nothing

parameters
none

declarations
ohj ref nextPlace;
logic
if residentAutomobile <= nil then {
set nextPlace to [residentAutomohile nextArea);
if [nextPlace isEmpty] then {
tell nextPlace to setAreavacancy T ofalse;

tell residentAutomaobile to moveTonextPlace taking Time:MOWETIME;

sewices provided and behavior exhibited for
each objectinstantiated fran that class.Each
instance created as belongiio a class provides
the sevices aml behavior specified in the
instance methods of that class.

The method code is specifieonly one in
the class and is not replicated on each instantia-
tion of an object from that class. Therefore,
model maintainability is sigriéanty fadlitated
since a potential change is localizeddaly one
method when hundreds of objects mg exhibit
the methal behavior.

A VSE methodis composed of tk follow-

=

Figure T Class Hierarchy of @raffic Intersectim Model

VSComponent which inherits from VSShape which
inherits fran VSObjet¢ — the root classA VSE clasis
composedof the following parts: class documentation,
class variables, class methods, instance variables,
instan@ methods and classages ashown in Figure 1.

Creation ofan object belonging to a class is called
instantiation. The newobject inherits all characteristics
(instance variables) and be#wiors (instan@ methods)
specified in the class fromwhich it is instantiated.
Instance variables daf class are created for each object
instantiated as member of thaclass Instane methods
are inheited, but no method coderigplicated.

Three knds of variables exist unde VSE: class
variables, instarevariables,and local variables Class
variables are attributes o& class and are declared in the
class for use by the methods of that class and its
subclasses and by the objects instantiated fhat class
and its subclasselnistance variables, declared in &lass,

are used by the instance methods of that class and are

creaed for eachobjed instantiated s belonging to that
class or any of #subclasses, i.efor eat instance of a
class amd hene the designator “instancé Local
variables are declared within a methddr use only dur-

- ing partsas $own in Fgure 1 Returns: speci-
fies the value type terned by tle method, 1 arny.
Parameters: containsthe declaations ¢ the methods
input parameterdPeclarations: contains the declarations
of all local variablesLogic: contains the logic of the
method in the VSE objectoriented scripting larguage.

When an object is jaleclared as membef and(b)
assignedd a class, it inheritthe characteristics (instance
variables) and behavio(gistance method®of thatclass
aswell as tte characteristis and behaviorsf thatclasss
superclass, and any ancestral classes, tracing back to the
root classof the VSLibrary which is VSObjectl nherit-
ance significantly faglitates reusabity of earlier devel-
oped classes and decreases model development time.

All instantiated objects communicatéth eachother
via message passing. Sending a message to an object
implies the invocation of one of the receivinfjects
methods. Genelly, it is said that “sendnessag M to
object A” & opposed to “send a message to object A to
invoke itsmethod M.” VSE objects are identified by their
unigue addesses internallynaintained by VSEThey are
called theobject references. An object reference is used
to specify the object which receives the message.

Figure 1 shows thia a trdfic intersection area
belonging to Enterintersection class carséettheLight-
TurnedGreen messge upn which the foll owing mettrod

700

logic is executed. If a vehicle is waiting on the area that
receives thelightTurnedGreen message, then nextArea
message is sent to the resident vehicle and the returned
object reference is stored into the nextPlace local vari-
able. Then, isEmpty message is sent to the area pointed to
by the nextPlace object reference. If the returned value is
true, then setAreaVacancyTo: message is sent to
nextPlace with parameter false and moveTo:takingTime:
message is sent to the resident vehicle with parameters
nextPlace object reference and MOV ETIME constant.

The methods of an object, spéed in the objects
class describe the servicesrqvided and behaviors
exhibited by that object. Angbject belonging t@ sub-
classof the objects classcan access the attributefsthe
object directy. All other objects must request the objsct
senice or trigger its behavior lsgnding a mssage. How
an objectprovides a service or exhibitsa particular
behavior is completely hidden fromethest of the world.
Only throudh messag passingthe services oén object
can be requestedrhis feature of the OP is called
Encapsulation which means that the objebides its
implementationfrom the calle objects requésg its
services vimessag passing.

Polymorphism is the abiliyy of objects of diferent
classes to exhibitlifferent behavio in responsea the
same message. For exammending tle computeArea
messag to an object of the Circle clasgould invoke a
different algathm from one iwvoked when seading
computeArea to an object of the Square clashis means
that an algorithm thaoperates on a heterogeneousdae

Balci, Bertelrud, Esterbrook, and Nance

A component is a part of the model tatic
architectue or a patt of the structure of a dynamic object.
For example, the USA map can bbke top-level
component of amodel which is decomposed into 50
other components, each represanti;a state. A
componentrepresentinga state, e.g., Califoia, can be
further decomposed into componergpresenting cities.
Ead city component aa be decomposed into a
componentshowing & least one airport. Each airport
component can be decomposed into other components
such as the passengernténal, runways, and control
tower. (http://www.OrcaComputecom/VSE/Examples/
Examples.html)

VSE provides two kinds focomponents: shallow and
deep A shallow component is one hat has no Igout (or
no deconposition) A deep component is one that has a
layou (or a decomposition). Shallow components repre-
sent the leaf nodes @hodes which are not fther
decomposed) of the hierarchicdecomposition Deep
components representhose rdes of the hiearchy which
are decomposed furthe

A deep componeritas a graphical layout which has
a size and color, and may b composed of objestthat
may displayimages inEPS or TIFF formatsimages are
dragged an dropped into the @mmpaonent layait in the
VSE Editor, after which they can be resized and posi-
tioned. For example, an aerial photograph of the Prices
Fork Road andToms Creek Rod traffic intersection in
Blacksburg, Virginia is obtaned from the Town of
Blacksburg. Its scanned and cleaned TIFF image is

objects does not need to consider the classes to which thedragged ad dropped into the VSE Hitor as the gaphical

objects belong —tisimply sendsa messagjto perform
the desied actionand each object handles it as egpi-
ate dependigon its class.

Association is a property that ties an object in the
system to oain the model ofthat system. Té&Principle
of Associatim advocatesthat each system object of
importance, based on dtobjectives of the modeling
study, should have a direct correspndence to an object in
the model.

3. BASIC CONCEPTSOF VSE MODELING

The V&E model architecture consists of statiand
dynamic parts. Thanodel static architecture iscomposed
of hierarchicaly decomposedomponents (Balci et al.
1997a). Themodel dynamic architecture is made up of

dynamic objects A dynamic object is an entityof interest
which physically or logically movesfrom one point to
anotherin a model. Forexample, bus, ship, aircrafias-
serger, train, am computer job midnt be repesentd as
dynanmic objects. A dyamic objectmay be deomposed
into a herarchy of componentmilar to the modd static
architecture decomposition (Balet al. 1997b).

layou of the top level model component as shown in
Figure 3. Any prtion of the TIFF image can be desig-
nated asa deep compondr{decompositiohor a shallow
conponent.

A componeh can be ceated a patt of the model
static architectwr in the VSE Edita. It can also be
created maniplated, ad destoyed during model
execution by specifyimthe component astemplate. At
run-time, a component can be instantiatedmf a
template. For example, inGlobal Air Traffic simulation
model (http://wwv.OrcaComputecom/VSE/Examples/
AirTraffic.html), 200 deepcomponents representing
cities arinstantiated at run-time Ylreading tle city data
from an input text file) and placed on thendomap top-
levd component. Hence, parts of the stathodel
architecture can be created at runetias well as in the
VSE Editor atdesgn time.

A distinctive capallity of VSE is the flexibility
given to modeling with dynamic djects. For gample, a
dynamic object regsenting an aircraft can be decom-
posed into itsinside viev component which can be
further decomposed into compamts representing
cockpit, servie aea, passengarea and cago area The

Introduction to the Visual Smulation Environment 701

passenger area component can be decomposed into seats.
Pilots, attendants, and passengers can be represented as
dynamic objects. A passenger dynamic object can enter
into an aircraft dynamic object, move within its compo-
nent hierarchy, and occupy a seat component. All
dynamic objects which enter into an aircraft dynamic
object then move together with the aircraft to an airport
component of the model. In essence, their collective
behavior is represented by the enclosing dynamic object
(aircraft) but each passenger object retains its individual
representation. Balci et a. (1997b) presents more detail
about dynamic object decomposition in VSE.

A dynamic object can be created as part of the model
dynamic architecture in the VSE Editor to represent the
initial conditions at time zero. Typicaly, a dynamic
object is created, manipulated, and destroyed during
model execution by specifying it as a template and
instantiating it from that template.

Specification of dynamic object components is
carried out in exactly the same manner as the specifica
tion of model static architecture components.

4. VSE EDITOR

The VSE Editor is used to create a model specification
and to automaticaly
translate it into execut-
able code. It enables the
specification of a model

E]Traﬂiclnter.vse — CA\Users... &
Tools Window Help

Remove |

Classes - Enterintersection Ol .

Classes - ¥SCompanent by using the ten struc-
gg:g;:znmierarchy-Intersection tura model parts shown
Dependencies in Figure 2.

Documentation a . d
Enumerations Classes: Flgure_ 2
Paletie shows two class win-
ot dows active. The classes
Templates - Car E;I window is shownin Fig-

_) ue 1. The top part
Figure 2 VSE Editor Model shows the class hierar-
Main Window
chy browser. The
classes with names starting with VS prefix are built-in
standard V SE classes. They belong to the VSLibrary and
are unmodifiable by the user. The VSLibrary is the
library on which all VSE models depend. Users create
their own classes by subclassing from the VSLibrary or
from any other library a model is made to depend on by
using the Dependencies model part shown in Figure 2.
The lower part of the classes window is used for
documentation, declaration of class variables and
instance variables, logic specification of class methods
and instance methods, and specification of images used
in the class and its subclasses. Class methods and
instance methods are categorized for organizational
purposes. The category column lists the categories of
methods (Notification) for the corresponding class

(theLightTurnedGreen). The categorization has no
impact on the model logic and is created and named by
the user.

A method is specified in four sections: r et ur ns,
paranmeters, declarations, and | ogic. The
Returns section specifies the type of the value returned
by the method, if any. If no value is returned by the
method, not hi ng is specified. The Parameters section
is used to declare the methednput parameters. The
methoddynCbj Arri ved: in Figure 1 contains a colon
implying that it has onénput paramete This parameter
is an objet reference pointing to the dynamic object that
arrived in the component receivinthis message. The
declarations sectiors used ¢ declae local variables of
the method The logic section isuseal to specify the
method logic by usinghe VE ObjectOriented Script-
ing Langlage.

Imagesused in tle class and its subclasses are speci-
fied unde thelmages tab as shown in Frgul.

Component Hierarchy: The model component
hierachy window is show in Figue 3 This is a split
window. The top part shows the browseriathis tsed to
browse through # hierarchi@ graphical modk archi-
tedure. Intersection is the name of the top level model
component whik is decomposed into deep and shallow
components. Only “Queue 8", “Queue 9", antt&ffic
Light” degp components are visible Figure 3. A deep
component’s layout can be displayed by clicking its name
in the bowse or by double clicking its gaphical
represetetion in the layout.

The bottom part of the split window is callatie
layout and is usedaotspecify a graphicalrepresentation
for a deep componerithe layot box is scrollable in x-y
directionsand its type (deep or shallovgize and color
can be changed by using the Laydaospecto. The mini-
mum layout size is10 by 10 pixel elements, mdamum
layout size is 4,000 by 4,000 pixel elemats, and the
default is 1,000 by 1,000 pixel elemets.

Constants: A constant is a value which never
changes during simulation modé execution. All
constants ira VSE model are specifiechithe Constants
window.

Dependencies. Earlier developd and testednodel
componerg can bereused in buildig a new VSE model.
A repositoy of reusabe model components is called a
library. A modelis specified to depend onlirary by
using the Dependenci@sodel main window item. Each
library may le assignd a color ® that itsclasses aabe
visually disthguished in the classes wirmv. When a
library is assigné a cola, the names of itslasses, class
parts, categories, andethods are all displaydd that
color. Balci et al. (1997c) ngsents more detail about
devebping a library of reusablemodel components by
using VSE.

702 Balci, Bertelrud, Esterbrook, and Nance

Selection Tool
4 Rectangle/Square Tool
4 Ellipse/Circle Tool
Polygon Tool
Image Dragging Tool

Image Dropping Tool
t Polyline Tool

{#|Component Hierarchy - Intersection
Model Efit Forrrjat [Shapes Tools Window Help

Class of Object Being Created

Show/Hide Dynamic Objects

Show/Hide Paths 4

Show/Hide Doorways 4

Show/Hide Components

Show/Hide Background 4

Lock All Shapes A

Display Parent Component

|Elr0wser Intersection

Intersection «||Glueue 5
Clueue 9

1
— 1

b | |5

[| || Traffic Light
|
|
|

—kl.l.lllalglﬂl YE5hape

v 'RAY
Browser
Wi
\' { .‘
s B
Layout—

Resize
Knob

i

Figure 3: V SE Editor Component Hierarchy Window

Documentation: A high-level model documentation
is specified using the Documentation window. The
classeswindow in Figure 1 also provides the capability to
document classes and methods. In-line and block docu-
mentations are also provided in methods.

Enumerations: are unique types that have a set of
constant values. Similar to i nt eger, real or bool -
ean variable types, a variable can be created to be of an
enumeration type named by the user with its set of con-
stant values. All enumeration types and their associated
set of constant values are specified in the Enumerations
window. Appropriate use of enumerations increases the
readability and understandability of amodel.

Palette: provides reusable model components
(objects). Whenever an object is created in the Templates
window, that object automatically appears on the
reusable objects palette. Any object shown in the palette
can be dragged and dropped into a layout or a template.
The Paletteis provided for the sole purpose of reusability.

Preparation: provides four services for a model:
simulate, prepare only, simulate only, and clean.

Settings: is used to specify model settings.

Templates: This window is used to create dynamic
object and component templates from which objects can
beinstantiated at design time or run time. Thiswindow is
similar to the component hierarchy window.

Introduction to the Visual Smulation Environment

5. VSE SIMULATOR

The VSE Simulator provides an environment for execu-
tion, animation and experimentation. It is a stand-alone
application created to run the simulation models
developed using the VV SE Editor. The user can modify the
values of instance varils using the VSE Simulats
Inspector andperform expements under dferent
experimental conditions. Thdmre, a model ca be
developedand sdéd/distibuted toother uses requiring
only the VSE Simlator to performexperiments and
obtain results by changirthe values of model parame-

703

specification. Double clicking a metha name inthe
method trace window launches the VSE Etdlibpens the
model, and displays ¢hmethod whes the eror was
detected.

Transcript: window $owsthe aitput geneated by
print statement#n the model. It isisedfor model verifi-
cation, validation and testing. Specifically, during delug-
ging, the model may be insimented, i.e.apiece of code
(trap ode, pobé is inseted atdifferent logical pints in
the modd for the purpose of \iting ou intermediate
results to th&@rangript in order to trace the control flow
and/or datdlow of the model Then the useanalyzes the

ters (instance variables). The VSE Simulator is sold as a Transcript contents to identifihe sources of execution

stard-alore productfor this purpose.

The VSE Sinulatar model main wirdow is siown in
Figure 5 (the small window with titleTtafficinter.vse”)
and contains five window tygas desibed belav.

Simulation Control: window is sown in Figure 4.
An expeiment isdesgned using this windw. It enables
the specificationof a variety of strategies falat collec-
tion from a model including the method of reptioas,
method of batch meas, and the regeneratie methal.

Stop Play Pause

Sliding bar for amation gpeed

& Simulation Control
Model Hdit Togols
Simulation Clock:

r r r
| | [| 1l |
MNumber of DynChjs Departed:

Animation mode: Periodic ¢| Interval:
m Replications Run length
1

Experiment 1 0o =
Experiment 2 20

Window Help

Replication Mumber:

5000 @

Create... | rodify... | Remove |

Figure 4: Simulation Contol During Animation

Runtime Error: Whena runtime error occursthe
Runtime eror window is displayed and the model execu-
tion halts. A descriptiorof the poblem isgiven. The
name of the method whethe error occurred is listed
together with its class nanand line numbe The name
of the method that calle® the method where éherror
occurred is als given together wih its class name and
line number bthe call. Tle object that produced the error
is highlighted with a red box.

Method Trace: Method tracirg is provided for
model verification and validation purposes During

debugging, it can be enabled to trace message passing. |

method tacing is enabled and a runtime error occtirs
methal trace window shows #last methal invocations,
one of which causeghe poblem. VE Simulator
providesthe mapping bruntime erors back® the model

problems.

Component Viewer: Figure 5 shars the animation
of atraffic intersectim in Blacksburg Virginia. Onlyone
component viewer is show in this animation. By click-
ing the NewViewer command btadn inthe model main
window, more viewes can be created and displayed
the screen. An unlimited nurabof component views
can technically be displayed enabling the user to see the
animations of mary different components of a model
simultaneous). Howeve, monita size and main mem-
ory restrict the number of viewers. It igchnically
possible to conné@ or more monitors to #same PC to
openmore viewersOrca ha an Intel-basedC withtwo
17" color monitors providing contiruous screa space
from ore monita to the othe so tha more viewes can
be dsplayed during animation.

6. VSE OUTPUT ANALYZER

The VE Outpu Analyzer is used to obtaigeneral
statistics and toconstruct confidence interksafor Smula-
tion outputdata. The Output Analyzer can op&nSE
model files (ith extension “.vse”), VSE output tiiles
(with extensbn “.vseout”) RTF (Rich Text Famat)files,

or text files.A new data fié can be created or an existing
one can be openeth creating a ne dat file, the data
values must be separated by at least one space. Both
intege and reh values can & entered. Commentare
entera startirg with “//". Anything between “// and the
nextline break is ignored ithe processing of the data
file. Different font familes, styles, and sizes can be
selected sing the Font Panel diag box. Anything in the
data file can be colored usjthe Colors dialog box.

7. CONCLUDING REMARKS

The VSE technology enables discrete-eventnalo-
independent, object-oriented, pcture-baed, ®mponent-
based, visuasimulationmodel development anekecu-
tion. This advanced envonmert can be usgfor solving
comple problems in areas such as maffic contrd and
space systems, business processes and wesflo

704 Balci, Bertelrud, Esterbrook, and Nance

E’ + Component "Intersection”
b= Model Edit Tools

Dalphin ﬁl

Trafficintervse — C\Users... [H[=]E3
s Window Help
Remove viewer |

Simulation Control
Runtime Errar
Method Trace
Transcript
Component “Intersection”

+* Simulation Control
Model Edit Tools ‘Window Hel
5

El [l MNumber of Dyr

Animation mode: Periodic ¢| Inter
|___name | Repiications
L3

M

Create... | rAodify... | Remove |

Repl &S

. ~
Kl

Window Help

Frices Fork — Toms Creek Traffic Intersection, Elackshurg, Virginia, US4

iR Startl (2] Exploring —Traﬁic...l il Snaglt/a2

”.Traﬂiclnter.vs_._ [Sirulation Contral | .Component“lnter...l

el 510 P

Figure 5: Visual Simulation of Prices Fork Road and Toms Creek Road Traffic Intersection in Blacksburg, Virginia

computer networks, education, health care, manufactur-
ing, satellite communications, supply chain management,
and transportation. VSE can be used to represent differ-
ent areas, such as supply chain management, manufactur-
ing, and business processes, al in the same model due to
its general-purpose nature.

The VSE technology enables the componentization
of visual simulation mode development with its fully
and truly object-oriented capability inherent to its con-
ceptual framework. Model factories can be established
that manufacture model components that can be reused
by others in the development of a VSE model. (Balci et
al. 1997¢c)

The VSE technology enables the establishment of
component-based simulation modeling marketplace so
that the customers of the simulation industry can observe
large economic benefits such as reduced costs, increased
quality, and interoperation.

The VSE technology increases automation and pro-
ductivity in simulation model development by enabling:
(& quality and reliability improvements in simulation

models, (b) reduced time to develop and test simulation
models, and (c) cost amortization through simulation
model component reuse.

The VSE technology increases the productivity of
simulation modelers by enabling increased quality
through specialization and improved focus on problem
solving instead of simulation programming.

The VSE technology broadens simulation markets
for model producers by enabling: (a) creation of system-
atically reusable simulation model components, (b)
increased simulation model and other software interoper-
ation, and (c) easy adaptation for use in internationa
markets. (Balci et al. 1997c)

ACKNOWLEDGMENTS

The research that has led to the creation of the Visual
Simulation Environment technology since 1983 has been
sponsored in part by the U.S. Navy under research grants
totaling $1.2 million. Visua Simulation Environment isa
registered trademark of Orca Computer, Inc. (http://
www.OrcaComputer.com)

Introduction to the Visual Smulation Environment 705

REFERENCES

Balci, O. 1986. Requirements for model development
environments. Computers & Operations Research
13:53-67.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1995. A picture-based object-oriented visual
simulation environment. In Proceedings of the 1995
Winter Smulation Conference, ed. W. R. Lilegdon,
D. Goldsman, C. Alexopoulos, and K. Kang, 1333-
1340. |EEE, Piscataway, NJ.

Balci, O., A. |. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997a. The visual simulation environment. In
Proceedings of the 11th European Smulation Multi-
conference, ed. A. R. Kaylan and A. Lehman, 61-68.
SCS, San Diego, CA.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997b. Dynamic object decomposition in the
visual simulation environment. In Proceedings of the
11th European Simulation Multiconference, ed. A. R.
Kaylan and A. Lehman, 69-73. SCS, San Diego, CA.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997c. Developing a library of reusable
model components by using the visual simulation
environment. In Proceedings of the 1997 Summer
Computer Smulation Conference, to appear. SCS,
San Diego, CA.

Bdlci, O., A. |. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997d. The visual simulation environment
technology transfer. In Proceedings of the 1997
Winter Smulation Conference, ed. S Andradottr, K.
J. Heay, D. Withers, and B. L Nelson. IEE,
Piscatawg, NJ.

Balci, O., ad R E. Nance 1987. Simulation model
development enwbnments: a resaah prototype.
Journal of Operational Research Society 38:753-
763.

Balci, O, and R. E. Nance. 1992. Thensiation model
develgpment envionment: an oveview. In Proceed-
ings of the 1992 Winter Smulation Conference, ed.
R. C. Crain, J. R. Wilson, J. J. Swain, and D.
Goldsman, 724 36. IEEE, Piscatawga NJ.

Derrick, E. J., and O. Balcil995. A visual simulation

suppot environment based on the DOMINO con-

ceptual famework Journal of Systems and Software
31: 215-237.

Derrick, E. J., and O. Balci. 1997aMINO: a multifac-
eted conceptual framerk for visual simulation
modeling. INFOR — Canadian Jourral of Opera-
tional Reseech andinformation Rocessing35.

AUTHOR BIOGRAPHIES

OSMAN BALCI isan Associate Professor of Computer
Science a Virginia Tech and President of Orca
Computer, Inc., developer of the Visua Simulation
Environment. He received B.S. and M.S. degrees from
Bogazici University in 1975 and 1977, and M.S. and
Ph.D. degrees from Syracuse University in 1978 and
1981. Dr. Balci isthe Editor-in-Chief of two international
journas: Annals of Softwe Engineeringnd World Wide
Web; Verification, Validation and Accreditation (VV&A)
Area Editor of ACM Transactions on Mdeling and
Computer Smulation; Simulation and Modeling
Category Editor of ACM ComputingReviews;Associate
Editor of INFORMS Jarnal on Conputing; and serves
on five other editorial boards. He is currently a member
of the Defense Modeling and Simulation Office (DM SO)
VV&A technical working group. Dr. Balci has been a Pl
or Co-Pl on research grants and contracts sponsored by
the U.S. Navy with atotal funding of $1.2 million. His
current research interests center on software engineering,
visual simulation and modeling, and world wide web. Dr.
Balci isamember of Alpha Pi Mu, Sigma Xi, Upsilon Pi
Epsilon, ACM, IEEE CS, INFORMS, and SCS.

ANDERS |I. BERTELRUD is a Vice President of Orca
Computer, Inc., devel oper of the Visual Simulation Envi-
ronment (VSE). He received B.S. and M.S. degrees in
Computer Science from Virginia Tech in 1993 and 1995.
He is a member of Phi Beta Kappa, Upsilon Pi Epsilon,
and ACM. He has been working on the development of
V SE since September 1992.

CHUCK M. ESTERBROOK is a Vice President of
Orca Compuiter, Inc., developer of the Visual Simulation
Environment (VSE). He received a B.S. degree in Com-
puter Science from Virginia Tech in 1996. He has been
working on the development of VSE since September
1992.

RICHARD E. NANCE is the RADM John Adolphus
Dahlgren Professor of Computer Science and the Direc-
tor of the Systems Research Center at Virginia Tech. He
is also Chairman of the Board of Orca Compuiter, Inc. He
received B.S. and M.S. degrees from N.C. State Univer-
sity in 1962 and 1966, and a Ph.D. degree from Purdue
University in 1968. Dr. Nance was the founding Editor-
in-Chief of the ACM Transactions a Modeling and
Computer $mulation (1990-96). He served as Program
Chair for the 1990 Winter Simulation Conference. Dr.
Nance has received awards from the TIMS College on
Simulation and ACM SIGSIM. He is a member of Alpha
Pi Mu, Sigma Xi, Upsilon Pi Epsilon, ACM, IIE, and
INFORMS.

	INTRODUCTION TO THE VISUAL SIMULATION ENVIRONMENT
	ABSTRACT
	1. INTRODUCTION
	2. THE OBJECT-ORIENTED PARADIGM
	3. BASIC CONCEPTS OF VSE MODELING
	4. VSE EDITOR
	5. VSE SIMULATOR
	6. VSE OUTPUT ANALYZER
	7. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 698
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

