
698 Balci, Bertelrud, Esterbrook, and Nance
INTRODUCTION TO THE VISUAL SIMULATION ENVIRONMENT

Osman Balci
Anders I. Bertelrud

Chuck M. Esterbrook
Richard E. Nance

Orca Computer, Inc.
Virginia Tech Corporate Research Center

1800 Kraft Drive, Suite 111
Blacksburg, Virginia 24060, U.S.A.
-
.

ef

r-
ABSTRACT

This paper introduces the Visual Simulation Environment
(VSE). VSE has been developed under research funding,
primarily from the U.S. Navy for over a decade. It
enables discrete-event, general-purpose, object-oriented,
picture-based, component-based, visual simulation model
development and execution. This advanced environment
can be used for solving complex problems in areas such
as air traffic control and space systems, business
processes and workflows, computer networks, education,
health care, manufacturing, satellite communications,
supply chain management, and transportation.

1. INTRODUCTION

The research in building a discrete-event Simulation
Model Development Environment (SMDE) began in
June 1983 at Virginia Tech under funding from the U.S.
Navy (Balci and Nance 1987). Guided by the fundamen-
tal requirements identified by Balci (1986), incremental
development, evolutionary prototyping, and rapid proto-
typing approaches have been used to develop the proto-
types of SMDE tools. An overview of the SMDE
architecture and prototype tools is given by Balci and
Nance (1992). A Visual Simulation Support Environment
(VSSE) research prototype was completed in April 1992
(Derrick and Balci 1995, 1997).

Based on the experience gained from the use of the
SMDE and VSSE prototypes, development of the Visual
Simulation Environment® (VSE) started in August 1992
under the object-oriented software engineering environ
ment of the Unix-based NEXTSTEP operating system
fully functional research prototype of VSE was devel-
oped at Virginia Tech in July 1995 (Balci et al. 1995).
Technology transfer, enabled by the creation of Orca
Computer, Inc. (Balci et al. 1997d), has produced the first
commercial version of VSE in November 1996 for the
NEXTSTEP operating system. Subsequently, VSE was
A

released for OPENSTEP, Windows NT 4.0, and
Windows 95. VSE will be released for the new
Macintosh (Rhapsody) operating system in early 1998.

The purpose of this paper is to introduce the VSE
software product developed as a result of experimental
research for over a decade. Section 2 presents a bri
overview of the object-oriented paradigm. Section 3
describes basic VSE modeling concepts. Sections 4
through 6 describe the VSE toolset. Concluding remarks
are given in Section 7.

2. THE OBJECT-ORIENTED PARADIGM

The VSE is fully and truly object-oriented and requires
understanding of the object-oriented paradigm (OOP).
This section presents a brief overview of the OOP in
terms of the VSE concepts.

An object is an element of interest in a system being
modeled. Each object possesses some characteristics,
performs some services, and exhibits some behavior.
Objects are the building blocks of VSE models.

A class is a grouping or categorization of objects
with the same characteristics, services, and behaviors. A
class may be extended into other classes. Extending a
class is called subclassing and an extended class is called
a subclass. A subclass inherits all the characteristics, ser-
vices, and behaviors of the parent class. It customizes
what it inherits and/or provides more characteristics, se
vices, or behaviors. The parent of a subclass is called the
superclass. The class at the top level (having no super-
class) is called the root class.

The standard built-in VSE class library is called
VSLibrary. All VSE models are developed by subclassing
from classes in the VSLibrary class hierarchy. A class
hierarchy of a simulation model of a traffic intersection in
Blacksburg, Virginia is partially shown in Figure 1. For
example, the selected EnterIntersection class in Figure 1
is a user-defined class inheriting all characteristics and
behavior of superclass Area which inherits from

t

d

,

e

s

tia-
re,

Introduction to the Visual Simulation Environment 699
Figure 1: Class Hierarchy of a Traffi c Intersection Model
,
le

d

t

e
it

 a

s

e

o the

.

ct

 to

d

VSComponent which inherits from VSShape which
inherits from VSObject — the root class. A VSE class is
composed of the following parts: class documentation
class variables, class methods, instance variab
instance methods and class images as shown in Figure 1.

Creation of an object belonging to a class is calle
instantiation. The new object inherits all characteristics
(instance variables) and behaviors (instance methods)
specified in the class from which it is instantiated.
Instance variables of a class are created for each objec
instantiated as a member of that class. Instance methods
are inherited, but no method code is replicated.

Three kinds of variables exist under VSE: class
variables, instance variables, and local variables. Class
variables are attributes of a class and are declared in th
class for use by the methods of that class and
subclasses and by the objects instantiated from that class
and its subclasses. Instance variables, declared in a class,
are used by the instance methods of that class and
created for each object instantiated as belonging to that
class or any of its subclasses, i.e., for each instance of a
class, and hence the designator “instance.” Local
variables are declared within a method for use only dur-
ing the execution of that method. On completion
of a method, all local variable values are lost.

VSE variables can have the following data
types: boolean, character, class reference, objec
reference, integer number, real number, and enu-
meration.

Services provided and behaviors exhibited
by an object are specified in methods. Two
types of methods exist: class methods an
instance methods. Class methods are used to
provide services specific to a class. For example
each VSLibrary class, by inheriting from
VSObject root class, provides the method “new”
which creates an instance of that class. Instance
methods, given in a class, are used to specify th
services provided and behavior exhibited for
each object instantiated from that class. Each
instance created as belonging to a class provide
the services and behavior specified in the
instance methods of that class.

The method code is specified only once in
the class and is not replicated on each instan
tion of an object from that class. Therefo
model maintainability is significantly facilitated
since a potential change is localized to only one
method when hundreds of objects may exhibit
the method behavior.

A VSE method is composed of the follow-
ing parts as shown in Figure 1. Returns: speci-
s,

s

re

fies the value type returned by the method, if any.
Parameters: contains the declarations of the method’s
input parameters. Declarations: contains the declaration
of all local variables. Logic: contains the logic of the
method in the VSE object-oriented scripting language.

When an object is (a) declared as member of and (b)
assigned to a class, it inherits the characteristics (instanc
variables) and behaviors (instance methods) of that class
as well as the characteristics and behaviors of that class’s
superclass, and any ancestral classes, tracing back t
root class of the VSLibrary which is VSObject. Inherit-
ance significantly facilitates reusability of earlier devel-
oped classes and decreases model development time

All instantiated objects communicate with each other
via message passing. Sending a message to an obje
implies the invocation of one of the receiving object’s
methods. Generally, it is said that “send message M to
object A” as opposed to “send a message to object A
invoke its method M.” VSE objects are identified by their
unique addresses internally maintained by VSE. They are
called the object references. An object reference is use
to specify the object which receives the message.

Figure 1 shows that a traffic intersection area
belonging to EnterIntersection class can be sent theLight-
TurnedGreen message upon which the following method

 t

e

f

nts

-

i-
es

is

n

-

700 Balci, Bertelrud, Esterbrook, and Nance
logic is executed. If a vehicle is waiting on the area that
receives theLightTurnedGreen message, then nextArea
message is sent to the resident vehicle and the returned
object reference is stored into the nextPlace local vari-
able. Then, isEmpty message is sent to the area pointed to
by the nextPlace object reference. If the returned value is
true, then setAreaVacancyTo: message is sent to
nextPlace with parameter false and moveTo:takingTime:
message is sent to the resident vehicle with parameters
nextPlace object reference and MOVETIME constant.

The methods of an object, specified in the object’s
class, describe the services provided and behaviors
exhibited by that object. Any object belonging to a sub-
class of the object’s class can access the attributes of the
object directly. All other objects must request the object’s
service or trigger its behavior by sending a message. How
an object provides a service or exhibits a particular
behavior is completely hidden from the rest of the world.
Only through message passing, the services of an object
can be requested. This feature of the OOP is called
Encapsulation which means that the object hides its
implementation from the caller objects requesting its
services via message passing.

Polymorphism is the ability of objects of different
classes to exhibit different behavior in response to the
same message. For example, sending the computeArea
message to an object of the Circle class would invoke a
different algorithm from one invoked when sending
computeArea to an object of the Square class. This means
that an algorithm that operates on a heterogeneous set of
objects does not need to consider the classes to which
objects belong — it simply sends a message to perform
the desired action, and each object handles it as appropri-
ate depending on its class.

Association is a property that ties an object in th
system to one in the model of that system. The Principle
of Association advocates that each system object o
importance, based on the objectives of the modeling
study, should have a direct correspondence to an object in
the model.

3. BASIC CONCEPTS OF VSE MODELING

The VSE model architecture consists of static and
dynamic parts. The model static architecture is composed
of hierarchically decomposed components (Balci et al.
1997a). The model dynamic architecture is made up of
dynamic objects. A dynamic object is an entity of interest
which physically or logically moves from one point to
another in a model. For example, bus, ship, aircraft, pas-
senger, train, and computer job might be represented as
dynamic objects. A dynamic object may be decomposed
into a hierarchy of components similar to the model static
architecture decomposition (Balci et al. 1997b).
he

A component is a part of the model static
architecture or a part of the structure of a dynamic object.
For example, the USA map can be the top-level
component of a model which is decomposed into 50
other components, each representing a state. A
component representing a state, e.g., California, can be
further decomposed into components representing cities.
Each city component can be decomposed into a
component showing at least one airport. Each airport
component can be decomposed into other compone
such as the passenger terminal, runways, and control
tower. (http://www.OrcaComputer.com/VSE/Examples/
Examples.html)

VSE provides two kinds of components: shallow and
deep. A shallow component is one that has no layout (or
no decomposition). A deep component is one that has a
layout (or a decomposition). Shallow components repre
sent the leaf nodes (the nodes which are not further
decomposed) of the hierarchical decomposition. Deep
components represent those nodes of the hierarchy which
are decomposed further.

A deep component has a graphical layout which has
a size and color, and may be composed of objects that
may display images in EPS or TIFF formats. Images are
dragged and dropped into the component layout in the
VSE Editor, after which they can be resized and pos
tioned. For example, an aerial photograph of the Pric
Fork Road and Toms Creek Road traffic intersection in
Blacksburg, Virginia is obtained from the Town of
Blacksburg. Its scanned and cleaned TIFF image
dragged and dropped into the VSE Editor as the graphical
layout of the top level model component as shown i
Figure 3. Any portion of the TIFF image can be desig-
nated as a deep component (decomposition) or a shallow
component.

A component can be created as part of the model
static architecture in the VSE Editor. It can also be
created, manipulated, and destroyed during model
execution by specifying the component as a template. At
run-time, a component can be instantiated from a
template. For example, in a Global Air Traffic simulation
model (http://www.OrcaComputer.com/VSE/Examples/
AirTraffic.html), 200 deep components representing
cities are instantiated at run-time (by reading the city data
from an input text file) and placed on the world map top-
level component. Hence, parts of the static model
architecture can be created at run-time as well as in the
VSE Editor at design time.

A distinctive capability of VSE is the flexibility
given to modeling with dynamic objects. For example, a
dynamic object representing an aircraft can be decom
posed into its inside view component which can be
further decomposed into components representing
cockpit, service area, passenger area, and cargo area. The

t

i-

el

Introduction to the Visual Simulation Environment 701
u
s
c

Figure 2: VSE Editor Model
Main Window
passenger area component can be decomposed into seats.
Pilots, attendants, and passengers can be represented as
dynamic objects. A passenger dynamic object can enter
into an aircraft dynamic object, move within its compo-
nent hierarchy, and occupy a seat component. All
dynamic objects which enter into an aircraft dynamic
object then move together with the aircraft to an airport
component of the model. In essence, their collective
behavior is represented by the enclosing dynamic object
(aircraft) but each passenger object retains its individual
representation. Balci et al. (1997b) presents more detail
about dynamic object decomposition in VSE.

A dynamic object can be created as part of the model
dynamic architecture in the VSE Editor to represent the
initial conditions at time zero. Typically, a dynamic
object is created, manipulated, and destroyed during
model execution by specifying it as a template and
instantiating it from that template.

Specification of dynamic object components is
carried out in exactly the same manner as the specifica-
tion of model static architecture components.

4. VSE EDITOR

The VSE Editor is used to create a model specification
and to automatically
translate it into execut-
able code. It enables the
specification of a model
by using the ten struc-
tural model parts shown
in Figure 2.

Classes: Figure 2
shows two class win-
dows active. The classes
window is shown in Fig-
re 1. The top part
hows the class hierar-
hy browser. The

classes with names starting with VS prefix are built-in
standard VSE classes. They belong to the VSLibrary and
are unmodifiable by the user. The VSLibrary is the
library on which all VSE models depend. Users create
their own classes by subclassing from the VSLibrary or
from any other library a model is made to depend on by
using the Dependencies model part shown in Figure 2.

The lower part of the classes window is used for
documentation, declaration of class variables and
instance variables, logic specification of class methods
and instance methods, and specification of images used
in the class and its subclasses. Class methods and
instance methods are categorized for organizational
purposes. The category column lists the categories of
methods (Notification) for the corresponding class
(theLightTurnedGreen). The categorization has no
impact on the model logic and is created and named by
the user.

A method is specified in four sections: returns,
parameters, declarations, and logic. The
Returns section specifies the type of the value returned
by the method, if any. If no value is returned by the
method, nothing is specified. The Parameters section
is used to declare the method’s input parameters. The
method dynObjArrived: in Figure 1 contains a colon
implying that it has one input parameter. This parameter
is an object reference pointing to the dynamic object tha
arrived in the component receiving this message. The
declarations section is used to declare local variables of
the method. The logic section is used to specify the
method logic by using the VSE Object-Oriented Script-
ing Language.

Images used in the class and its subclasses are spec
fied under the Images tab as shown in Figure 1.

Component Hierarchy: The model component
hierarchy window is shown in Figure 3. This is a split
window. The top part shows the browser which is used to
browse through the hierarchical graphical model archi-
tecture. Intersection is the name of the top level mod
component which is decomposed into deep and shallow
components. Only “Queue 8”, “Queue 9”, and “Traffic
Light” deep components are visible in Figure 3. A deep
component’s layout can be displayed by clicking its name
in the browser or by double clicking its graphical
representation in the layout.

The bottom part of the split window is called the
layout and is used to specify a graphical representation
for a deep component. The layout box is scrollable in x-y
directions and its type (deep or shallow), size and color
can be changed by using the Layout Inspector. The mini-
mum layout size is 10 by 10 pixel elements, maximum
layout size is 4,000 by 4,000 pixel elements, and the
default is 1,000 by 1,000 pixel elements.

Constants: A constant is a value which never
changes during simulation model execution. All
constants in a VSE model are specified in the Constants
window.

Dependencies: Earlier developed and tested model
components can be reused in building a new VSE model.
A repository of reusable model components is called a
library. A model is specified to depend on a library by
using the Dependencies model main window item. Each
library may be assigned a color so that its classes can be
visually distinguished in the classes window. When a
library is assigned a color, the names of its classes, class
parts, categories, and methods are all displayed in that
color. Balci et al. (1997c) presents more detail about
developing a library of reusable model components by
using VSE.

702 Balci, Bertelrud, Esterbrook, and Nance
Figure 3: VSE Editor Component Hierarchy Window
Selection Tool Show/Hide Dynamic Objects
Rectangle/Square Tool Show/Hide Paths

Ellipse/Circle Tool Show/Hide Doorways
Polygon Tool Show/Hide Components

Image Dragging Tool Show/Hide Background
Image Dropping Tool Lock All Shapes

Polyline Tool Display Parent Component
Class of Object Being Created

Resize
Knob

Layout

Browser
Documentation: A high-level model documentation
is specified using the Documentation window. The
classes window in Figure 1 also provides the capability to
document classes and methods. In-line and block docu-
mentations are also provided in methods.

Enumerations: are unique types that have a set of
constant values. Similar to integer, real or bool-
ean variable types, a variable can be created to be of an
enumeration type named by the user with its set of con-
stant values. All enumeration types and their associated
set of constant values are specified in the Enumerations
window. Appropriate use of enumerations increases the
readability and understandability of a model.
Palette: provides reusable model components
(objects). Whenever an object is created in the Templates
window, that object automatically appears on the
reusable objects palette. Any object shown in the palette
can be dragged and dropped into a layout or a template.
The Palette is provided for the sole purpose of reusability.

Preparation: provides four services for a model:
simulate, prepare only, simulate only, and clean.

Settings: is used to specify model settings.
Templates: This window is used to create dynamic

object and component templates from which objects can
be instantiated at design time or run time. This window is
similar to the component hierarchy window.

 the

g

Introduction to the Visual Simulation Environment 703
Figure 4: Simulation Control During Animation
Both

e

5. VSE SIMULATOR

The VSE Simulator provides an environment for execu-
tion, animation and experimentation. It is a stand-alone
application created to run the simulation models
developed using the VSE Editor. The user can modify the
values of instance variables using the VSE Simulator’s
Inspector and perform experiments under different
experimental conditions. Therefore, a model can be
developed and sold/distributed to other users requiring
only the VSE Simulator to perform experiments and
obtain results by changing the values of model parame-
ters (instance variables). The VSE Simulator is sold as
stand-alone product for this purpose.

The VSE Simulator model main window is shown in
Figure 5 (the small window with title “TrafficInter.vse”)
and contains five window types as described below.

Simulation Control: window is shown in Figure 4.
An experiment is designed using this window. It enables
the specification of a variety of strategies for data collec-
tion from a model including the method of replications,
method of batch means, and the regenerative method.

Runtime Error: When a runtime error occurs, the
Runtime error window is displayed and the model execu-
tion halts. A description of the problem is given. The
name of the method where the error occurred is listed
together with its class name and line number. The name
of the method that called the method where the error
occurred is also given together with its class name and
line number of the call. The object that produced the error
is highlighted with a red box.

Method Trace: Method tracing is provided for
model verification and validation purposes. During
debugging, it can be enabled to trace message passing
method tracing is enabled and a runtime error occurs, the
method trace window shows the last method invocations,
one of which causes the problem. VSE Simulator
provides the mapping of runtime errors back to the model

Stop Play Pause Sliding bar for animation speed
a

. If

specification. Double clicking a method name in the
method trace window launches the VSE Editor, opens the
model, and displays the method where the error was
detected.

Transcript: window shows the output generated by
print statements in the model. It is used for model verifi-
cation, validation and testing. Specifically, during debug-
ging, the model may be instrumented, i.e., a piece of code
(trap code, probe) is inserted at different logical points in
the model for the purpose of writing out intermediate
results to the Transcript in order to trace the control flow
and/or data flow of the model. Then the user analyzes the
Transcript contents to identify the sources of execution
problems.

Component Viewer: Figure 5 shows the animation
of a traffic intersection in Blacksburg, Virginia. Only one
component viewer is shown in this animation. By click-
ing the New Viewer command button in the model main
window, more viewers can be created and displayed on
the screen. An unlimited number of component viewers
can technically be displayed enabling the user to see
animations of many different components of a model
simultaneously. However, monitor size and main mem-
ory restrict the number of viewers. It is technically
possible to connect 2 or more monitors to the same PC to
open more viewers. Orca has an Intel-based PC with two
17” color monitors providing continuous screen space
from one monitor to the other so that more viewers can
be displayed during animation.

6. VSE OUTPUT ANALYZER

The VSE Output Analyzer is used to obtain general
statistics and to construct confidence intervals for simula-
tion output data. The Output Analyzer can open: VSE
model files (with extension “.vse”), VSE output data files
(with extension “.vseout”), RTF (Rich Text Format) files,
or text files. A new data file can be created or an existin
one can be opened. In creating a new data file, the data
values must be separated by at least one space.
integer and real values can be entered. Comments are
entered starting with “//”. Anything between “//” and the
next line break is ignored in the processing of the data
file. Different font families, styles, and sizes can b
selected using the Font Panel dialog box. Anything in the
data file can be colored using the Colors dialog box.

7. CONCLUDING REMARKS

The VSE technology enables discrete-event, domain-
independent, object-oriented, picture-based, component-
based, visual simulation model development and execu-
tion. This advanced environment can be used for solving
complex problems in areas such as air traff ic control and
space systems, business processes and workflows,

704 Balci, Bertelrud, Esterbrook, and Nance
Figure 5: Visual Simulation of Prices Fork Road and Toms Creek Road Traffic Intersection in Blacksburg, Virginia
computer networks, education, health care, manufactur-
ing, satellite communications, supply chain management,
and transportation. VSE can be used to represent differ-
ent areas, such as supply chain management, manufactur-
ing, and business processes, all in the same model due to
its general-purpose nature.

The VSE technology enables the componentization
of visual simulation model development with its fully
and truly object-oriented capability inherent to its con-
ceptual framework. Model factories can be established
that manufacture model components that can be reused
by others in the development of a VSE model. (Balci et
al. 1997c)

The VSE technology enables the establishment of
component-based simulation modeling marketplace so
that the customers of the simulation industry can observe
large economic benefits such as reduced costs, increased
quality, and interoperation.

The VSE technology increases automation and pro-
ductivity in simulation model development by enabling:
(a) quality and reliability improvements in simulation
models, (b) reduced time to develop and test simulation
models, and (c) cost amortization through simulation
model component reuse.

The VSE technology increases the productivity of
simulation modelers by enabling increased quality
through specialization and improved focus on problem
solving instead of simulation programming.

The VSE technology broadens simulation markets
for model producers by enabling: (a) creation of system-
atically reusable simulation model components, (b)
increased simulation model and other software interoper-
ation, and (c) easy adaptation for use in international
markets. (Balci et al. 1997c)

ACKNOWLEDGMENTS

The research that has led to the creation of the Visual
Simulation Environment technology since 1983 has been
sponsored in part by the U.S. Navy under research grants
totaling $1.2 million. Visual Simulation Environment is a
registered trademark of Orca Computer, Inc. (http://
www.OrcaComputer.com)

-

Introduction to the Visual Simulation Environment 705
REFERENCES

Balci, O. 1986. Requirements for model development
environments. Computers & Operations Research
13:53-67.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1995. A picture-based object-oriented visual
simulation environment. In Proceedings of the 1995
Winter Simulation Conference, ed. W. R. Lilegdon,
D. Goldsman, C. Alexopoulos, and K. Kang, 1333-
1340. IEEE, Piscataway, NJ.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997a. The visual simulation environment. In
Proceedings of the 11th European Simulation Multi-
conference, ed. A. R. Kaylan and A. Lehman, 61-68.
SCS, San Diego, CA.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997b. Dynamic object decomposition in the
visual simulation environment. In Proceedings of the
11th European Simulation Multiconference, ed. A. R.
Kaylan and A. Lehman, 69-73. SCS, San Diego, CA.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997c. Developing a library of reusable
model components by using the visual simulation
environment. In Proceedings of the 1997 Summer
Computer Simulation Conference, to appear. SCS,
San Diego, CA.

Balci, O., A. I. Bertelrud, C. M. Esterbrook, and R. E.
Nance. 1997d. The visual simulation environment
technology transfer. In Proceedings of the 1997
Winter Simulation Conference, ed. S. Andradóttir, K.
J. Healy, D. Withers, and B. L. Nelson. IEEE,
Piscataway, NJ.

Balci, O., and R. E. Nance. 1987. Simulation model
development environments: a research prototype.
Journal of Operational Research Society 38:753-
763.

Balci, O., and R. E. Nance. 1992. The simulation model
development environment: an overview. In Proceed-
ings of the 1992 Winter Simulation Conference, ed.
R. C. Crain, J. R. Wilson, J. J. Swain, and D.
Goldsman, 726-736. IEEE, Piscataway, NJ.

Derrick, E. J., and O. Balci. 1995. A visual simulation
support environment based on the DOMINO con
ceptual framework. Journal of Systems and Software
31: 215-237.

Derrick, E. J., and O. Balci. 1997. DOMINO: a multifac-
eted conceptual framework for visual simulation
modeling. INFOR – Canadian Journal of Opera-
tional Research and Information Processing 35.
AUTHOR BIOGRAPHIES

OSMAN BALCI is an Associate Professor of Computer
Science at Virginia Tech and President of Orca
Computer, Inc., developer of the Visual Simulation
Environment. He received B.S. and M.S. degrees from
Bogazici University in 1975 and 1977, and M.S. and
Ph.D. degrees from Syracuse University in 1978 and
1981. Dr. Balci is the Editor-in-Chief of two international
journals: Annals of Software Engineering and World Wide
Web; Verification, Validation and Accreditation (VV&A)
Area Editor of ACM Transactions on Modeling and
Computer Simulation; Simulation and Modeling
Category Editor of ACM Computing Reviews; Associate
Editor of INFORMS Journal on Computing; and serves
on five other editorial boards. He is currently a member
of the Defense Modeling and Simulation Office (DMSO)
VV&A technical working group. Dr. Balci has been a PI
or Co-PI on research grants and contracts sponsored by
the U.S. Navy with a total funding of $1.2 million. His
current research interests center on software engineering,
visual simulation and modeling, and world wide web. Dr.
Balci is a member of Alpha Pi Mu, Sigma Xi, Upsilon Pi
Epsilon, ACM, IEEE CS, INFORMS, and SCS.

ANDERS I. BERTELRUD is a Vice President of Orca
Computer, Inc., developer of the Visual Simulation Envi-
ronment (VSE). He received B.S. and M.S. degrees in
Computer Science from Virginia Tech in 1993 and 1995.
He is a member of Phi Beta Kappa, Upsilon Pi Epsilon,
and ACM. He has been working on the development of
VSE since September 1992.

CHUCK M. ESTERBROOK is a Vice President of
Orca Computer, Inc., developer of the Visual Simulation
Environment (VSE). He received a B.S. degree in Com-
puter Science from Virginia Tech in 1996. He has been
working on the development of VSE since September
1992.

RICHARD E. NANCE is the RADM John Adolphus
Dahlgren Professor of Computer Science and the Direc-
tor of the Systems Research Center at Virginia Tech. He
is also Chairman of the Board of Orca Computer, Inc. He
received B.S. and M.S. degrees from N.C. State Univer-
sity in 1962 and 1966, and a Ph.D. degree from Purdue
University in 1968. Dr. Nance was the founding Editor-
in-Chief of the ACM Transactions on Modeling and
Computer Simulation (1990-96). He served as Program
Chair for the 1990 Winter Simulation Conference. Dr.
Nance has received awards from the TIMS College on
Simulation and ACM SIGSIM. He is a member of Alpha
Pi Mu, Sigma Xi, Upsilon Pi Epsilon, ACM, IIE, and
INFORMS.

	INTRODUCTION TO THE VISUAL SIMULATION ENVIRONMENT
	ABSTRACT
	1. INTRODUCTION
	2. THE OBJECT-ORIENTED PARADIGM
	3. BASIC CONCEPTS OF VSE MODELING
	4. VSE EDITOR
	5. VSE SIMULATOR
	6. VSE OUTPUT ANALYZER
	7. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 698
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

