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ABSTRACT

Coors Brewing Company’s 16 ounce can production
line was generating over $2 million annually in scrap
production.  Flow scrap is generated when a machine
stops because it is working faster or slower than its
adjacent machines.  The production line flow problem
was that the machines were not working together in
such a way to keep the flow of cans constant from the
start to the finish of the line.  This work demonstrates
an analysis process that minimizes the generation of
flow scrap in the context of the assembly line balancing
problem.  The process is 1)  develop a verified and
validated simulation model;  2)  design an experiment
to run using the simulation and to collect output data
from the simulation; 3)  using the experimental design
to determine values of the independent variables and the
output data as the dependent variable, develop a
metamodel; and 4)  optimize the metamodel using
response surface methodology.  Applying this process
to the Coors problem generated an annual savings of
$1.87 million in 1996 dollars.

1  GENERAL IMPORTANCE

Many manufacturing systems today are automatic, and
products are created at an amazing rate.  The assembly
line allows these products to be produced by a small
number of people.  In many instances the human factor
is nothing more than a maintenance function, fixing
problems when they arise.  Otherwise, the machines run
by themselves.  These machines do not have the
physical limitations that humans do and, therefore, can
operate at significantly higher speeds than a human.
     The goal of any assembly line is to continuously
generate throughput by keeping the flow of materials
constant from start to finish.  Generally, the back of the
assembly line pulls processes in the front.  More
specifically, each machine pulls production from the
machine immediately preceding itself.  In some
manufacturing situations, if a machine runs too fast or
too slow, it will cause other machines to stop.  When
these machines stop, objects currently being
manufactured may be scrapped because they fall off the
assembly line.  The items may be damaged when they
fall; budgets do not permit additional personnel to be
hired solely to place these objects back on the assembly
line.  The more objects that finish the production
process, the greater the throughput.  So a restatement of
the goal becomes, “maximize throughput and meet
production objectives by minimizing scrap.”
     The rapid rate at which the whole process is
occurring, the interaction between machines, and
different transition times between machines make it
increasingly more difficult for a human being to make
the correct decisions regarding how fast each machine
should be working to continue the pulling process,
while at the same time keeping scrap low and
throughput at an acceptable level.  Likewise, a casual
observer cannot just observe the system and make these
decisions.  Many times the system must be intensely
studied.
     It is possible to design experiments to test a system
by setting the machines at certain speeds and observing
what happens.  However, even this scientific approach
to studying a manufacturing system may not be
economically feasible.  It is difficult to comprehend and
anticipate the reaction of the system to certain
experimental conditions on the spot.  Requiring a
human to make these decisions has the potential of
creating catastrophic problems just to observe one level
of the experiment.  In addition, this process can take an
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inordinate amount of time.  These economic and time
constraints preclude actual experiments being run on
the system.  A more economic and timely approach
such as simulation is needed.

2  GENERAL SOLUTION

Once a simulation model is verified and validated,
experiments can be run that do not have any direct
impact on the system.  The only costs are the time to
develop the simulation and the computer resources to
run the experiments.
     Running the experiments correctly using the
simulation should be cost-efficient. Management may
need a timely response to their questions about the
system under study  which may preclude testing every
possible design point.  If the simulation is large and
complex, running it at different design points, let alone
replications at each design point, may be neither
economically feasible nor possible in the time allotted.
Experimental design is a field in and of itself, and much
effort has been put into developing designs that are the
best for certain situations.  Even though an efficient
design may reduce the number of runs, the amount of
output to analyze may still be large.
     Simulations have the potential of generating copious
amounts of output.  Once the experiments are run, a
methodology is needed to analyze the results and
synthesize them into a form that is presentable to the
decision maker.  As Arthur Geoffrion (1976) best put it,
“The purpose of analysis is insight, not numbers.”
Metamodeling and response surface methodology are
the analysis techniques that lead to the efficient use of
simulation output for studying the assembly line
optimization problem.
     Metamodeling approximates a relationship between
a dependent variable and one or more independent
variables by using a mathematical function (Banks,
Carson, and Nelson 1996, p. 514).  Once a metamodel
is developed, it can replace another model, e.g., a
simulation or linear program.  A metamodel allows the
data to be combined in a manner that is manageable and
provides the necessary insight to answer very specific
questions about the system under study.  Subsequently,
once a system is metamodeled, there is no longer a need
to run additional simulations to answer questions
regarding the dependent variable, given different levels
of the independent variables.  These types of “what if”
questions can be answered with a calculator.  Response
surface methodology can be used to optimize the
metamodel and to obtain the values of the system input
parameters, machine speeds in this example.
     A cost-effective method for studying rapid
manufacturing systems was needed in order to make
improvements to current operations.  It was decided to
use simulation modeling as a means to shed insights
into the current problem, incorporating efficient
experimental designs, metamodeling, and response
surface methodology, to answer questions about the and
determine the ideal operating conditions.
     The general plan for the system analysis is a series of
steps:  1)  develop a verified and validated simulation
model using the method outlined by Banks, Carson, and
Nelson (1996); 2)  design an experiment to run using
the simulation and to collect output data from the
simulation; 3)  using the experimental design to
determine values of the independent variables and the
output data as the dependent variable, develop a
metamodel; and 4)  optimize the metamodel using
response surface methodology.

3  GENERAL PROBLEM DESCRIPTION

Coors Brewing Company is in a cooperative partnership
with Valley Metal Container that produces 16 ounce
and 12 ounce aluminum cans.  The 16 ounce can
production line produces 200 million cans for Coors
products annually.  In addition, they produce cans
having over 50 other additional labels for other
beverage companies.  The Coors Light ® label accounts
for 140 million cans of the 200 million of Coors
products.  Because of the simple design of its label, this
is the easiest and cheapest can to produce, and it
accounts for 56% of the annual production.  For this
reason, this label is of specific importance to Coors.
Since it is the easiest and most economical can to
produce, it should represent the lower bound on scrap
generation and the upper bound on production
throughput.
     In 1995, the 16 ounce can production line lost over
$2 million gross in production due to scrap.  If a can
falls down while on the production line, it becomes
scrap since manpower constraints do not allow the
positioning of personnel throughout the line to set the
fallen cans up.  The majority of the cans fall over when
the can-pack throughout the line is not tight.  While in
tightly packed groups, the cans lend each other support
to keep them from falling over.  The authors’ goal was
to demonstrate how to make the stages of the
production line work in concert in order to maintain a
tight pack of cans throughout the line and thereby
reduce the amount of annual scrap to at least an
acceptable level.

4  STEPS OF THE SIMULATION STUDY
At the beginning of the study, the perception was that a
flow scrap problem existed on the 16 ounce production
line.  The machines were not working together in a way
that minimized flow scrap and kept a constant flow of
cans from start to finish.  The line was too complex to
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use heuristics or common sense, and actual experiments
on the line were not economically feasible. Once built,
the model was used to  run experiments to determine
optimal settings of the machines to minimize flow
scrap.

4.1 Setting of Objectives and Overall Project Plan

The primary goal of the simulation project was to
develop a realistic simulation of the 16 ounce
production line.  The model needed to be general
enough to be easily extended to other labels, yet
specific enough to answer the following questions:  1)
what are the optimal settings of the machines to reduce
flow scrap, and 2)  where is the scrap being generated?

4.2  Model Conceptualization

Figure 1 contains a schematic of the 16 ounce
production line.  The Coors can manufacturing process
uses the following stages:
1)  A cup is formed from a sheet of aluminum at one of
four cuppers.
2)  The cup is stretched to the correct length and the
rough top edge is trimmed at one of fifteen body
makers.  The cup is now a can.
3)  The can is washed and dried in the washer to remove
the grease from the first two stages.
4)  A label is applied at the printer.
5)  The paint is dried and the bottom is coated.
6)  The inside of the can is coated at one of nine
coaters.
7)  The can is cured in an oven.
8)  The top of the can is prepared for a cover at the
necker/flanger.
9)  The can is checked for holes and flaws at the tester.
10)  The can is placed on one layer of a fourteen layer
pallet at the palletizer.
Each of these steps occurs at a rate of 1400 to 1600
cans per minute.  Scrap may be generated at any one of
these ten steps.  In order to focus on the controllable
flow scrap generation, the authors divided scrap into 3
distinct categories:  flow, break, and random.
     If the printer or the coaters stop because there are
not enough cans behind them or because there are too
many cans in front of them, flow scrap is generated.
The printer clears its wheels.  Thermal energy rising in
the oven knocks over the unsupported cans that are
standing on the outer edges of the group.
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Figure 1: Coors 16 Ounce Production Line

     Break scrap is caused by a printer problem or the
necker/flanger jamming.  Random scrap is generated in
the washer, in the oven, and at the printer.  Cans fall
over in the washer when an edge of a group of cans is
exposed to the sprayers, and cans fall over in the oven
when an edge of a group of cans is exposed to thermal
energy.  Even if the washer and the oven are full, the
outside edges of the flow of cans are still exposed.
Random scrap at the printer is generated when a can is
not properly seated on a wheel.
     The reduction of flow scrap was the goal of this
work.  If the machines work together in such a way that
there are no gaps in the line from start to finish, then the
absolute amount of flow scrap will be minimized.  The
speed at which the line operates and the inability of any
human being to comprehend all of the possible
variables at once preclude a common sense approach
based on observation and a subjective decision.  This
problem needed extensive study, yet economic
constraints did not permit actual experiments to be
performed on the line.  A technique was needed that
allowed the system to be studied in a non-invasive
environment at no physical cost to the actual line.

4.3  Data Collection

A simulation model is only an empty shell without data
to drive it.  Based on the conceptualization, the
following data were needed:  travel times on the air
tables and mechanized conveyors, scrap generation
rates, time between machine breaks, and machine down
times.  BestFit (Palisade 1995) software package was
used to determine which probability density function
statistically best fits the collected data.  SLAM II
simulation language was used for this work.  A second
requirement imposed on the choice of density function
chosen was that is must be supported by SLAM II
(Pritsker 1996).  It is assumed here that the reader has a
basic familiarity with SLAM II.

4.4  Model Translation
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An abstract representation of each stage of the
production line was needed in order to make this
complex problem manageable.  Each stage of the can
line is a separate area where distinct operations and
queuing principles are applied.  The conceptual model
of Figure 1 was translated into the SLAM II simulation
language.
     In the model, cups are represented by entities.  These
same entities represent the cans when the cups are
processed into cans.  In order to keep the simulation
time at a reasonable length, 1 entity represents 16 cups
or cans.  This simplification does not cause a loss of
fidelity since several cups or cans normally travel
together.  All times are in seconds.
     Each machine on the line is modeled as a resource.
The cuppers, body makers, and coaters are aggregated
into one resource.  The speed of the resource is the
speed of one machine times the number of machines
running.  The machine’s air table or chutes act as
queues.  When an entity arrives at an air table, it waits
in a first-in-first-out queue until the resource is
available.  Resources can also be preempted, simulating
a broken machine.
     A machine break-down is modeled as a separate
entity arriving at a resource which moves to the front of
the queue.  The break entity then uses the resource until
it is fixed.  Resources can also balk and block.
     If the body maker resource queue is full, then the
entity balks to the track above the body makers where it
cycles until the body maker queue has room.  If the
necker/flanger queue is full, then the entity balks to the
blue table where it cycles until there is room in the
necker/flanger queue.
     If the printer queue, coater queue, tester queue, or
palletizer queue gets too full, then it will block the
preceding activity.  This causes entities to stop moving
through the system and to wait until the blocking queue
has enough room to proceed.
     Disjointed networks represent the control logic on
the line.  A diagnostic for each machine checks the
queue in front of it to be sure it is not too full.  The
diagnostic also checks to make sure its own queue is not
too low.  If either of these conditions exist, an entity is
sent to the resource and placed at the front of the queue.
This entity then holds the resource until the queue
length is at an acceptable level.
     Several statistics are calculated throughout the
simulation.  The amount of scrap at each location is
accumulated.  At the palletizer, the time for an entity to
move through the system is calculated.  The interarrival
time of pallets and the number of pallets are also
accumulated.  Since a label change is not an important
part of the study, the simulation is allowed to warm up
for an hour of simulation time, and then these statistics
are cleared.  Statistics are then kept for another eight
hours of simulation time.

4.5  Verification

SLAM II makes verification easy.  The TRACE option
prints the entire event list allowing the entity to be
tracked through the system.  Because of the size of the
simulation and the number of entities being processed
each second, the networks were verified one at a time.
Each condition that causes a state change was tested.
The queue levels that the diagnostics check were also
reduced to smaller levels so the TRACE report could be
kept to a reasonable size.

4.6 Validation

Data were collected based on the number of pallets over
a four hour period.  Validation was based on the
number of pallets and uses the methodology in Banks,
Carson, and Nelson (1996).

4.7 Experimental Design

The first part of the design of the experiment is to
determine how many replications are necessary for
statistical significance using the method outlined in
Banks, Carson, and Nelson (1996).  It was determined
that five replications were needed for each run of this
simulation.
     At the beginning of each week, the production line
begins empty.  The first shift must fill the line with
cans, and then the remainder of the week there are cans
throughout the production line.  This start-up condition
must also be simulated.  Statistics during this part of the
simulation may negatively bias the final results since the
line takes time to “warm up” and begin operating
consistently in steady state.
     Once the simulation reaches steady state, the
statistics need to be reset to zero so unbiased statistics
may be calculated.  A machine break-down is a
significant random shock to the system which may
cause the simulation to never approach steady state;
therefore, the simulation was run for a nine hour period
where the machines were not allowed to break.  Filling
the line during the first hour is similar to a start-up after
a weekend or after a label change.  This system levels
off at fifteen pallets per hour after the first hour.  For
this reason, the simulation was then designed to clear
the statistics after a one hour warm-up period.  Then
statistics are calculated for one eight hour shift.
     Theoretically, the machine speed should be able to
increase to a certain point where the system is
overloaded and flow scrap gets worse instead of better.
This effect can be modeled as a quadratic effect;
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therefore, the experiment was run at three levels for
each machine in order to estimate this quadratic effect.
Since adjacent machines interact with each other by
checking the level of the queue in front of them, the
design also accounts for interaction effects.  For reasons
external to this study, it was necessary to design the
experiment in such a way that less than 48 hours of time
on a Pentium 100 MHz processor was required.
     The ultimate goal of the simulation was to estimate a
metamodel and optimize the response surface.  A design
for this type of analysis is a Box-Behnken design
(Schmidt and Launsby 1989, pp. 3-23).  This type of
design for six factors with three levels and five center
point runs requires 54 runs.  This is equivalent to 40
hours and 30 minutes, or less than 2 days on the same
computer.  This is definitely feasible and also models
the needed linear, quadratic, and interaction effects.
The Box-Behnken design also allows valid statistical
analysis with as few runs as possible.  Drawbacks of the
Box-Behnken design are 1)  corner points are not
tested, and 2)  there are enough runs to estimate all
interactions and quadratic effects whether the analyst
wants to or not (Schmidt and Launsby 1989, pp. 3-18).
Since the goal of the study is to minimize flow scrap,
the response for the experiment is the average number
of cans per hour of flow scrap

4.8  Analysis

In order to determine if the metamodel and response
surface optimization are beneficial, a baseline must be
established.  Table 1 shows the simulation results for
observed settings of the machines during the data
collection phase.

Table 1:  Baseline Simulation Output

The next step was use of the experimental data from the
simulation to determine the metamodel and calculate
the response surface.  The first metamodel for the
response surface includes linear, quadratic, and
interaction terms for all six machines.  Statistical
Analysis Software (SAS) was used to calculate the
parameters in the model, specifically, the procedure to
estimate a response surface using ordinary least squares,
SAS PROC RSREG.  In summary, this model did a
reasonable job of predicting flow scrap and could be
used as a proxy for the simulation to answer the “what
if” questions about the impact of different machine
speeds on flow scrap.
     Using all of the coefficients in the first metamodel,
the next step was to find the optimal combination of

flow scrap/hour 219 cans
pallets/hour 13.1
machine speeds that minimized this metamodel by using
response surface methodology.  This was done by
taking partial derivatives of the first metamodel with
respect to every variable and setting the result equal to
zero.  This system of equations was then solved to
determine the optimal point of the metamodel.
     Eigenvalues and eigenvectors are used in a
multidimensional model to determine if the stationary
point is a maximum, minimum, or a saddle point.  If the
eigenvalues are all positive, the stationary point is a
minimum.  If the eigenvalues are all negative, the
stationary point is a maximum.  If there are positive and
negative eigenvalues, the stationary point is a saddle
point. (Schmidt and Launsby 1989, pp. 5-15).
     Since there were both positive and negative
eigenvalues in the first metamodel, the stationary point
was a saddle point.  Additional experimentation was
needed in order to locate the local optimum.
Additionally, the printer and the body maker were very
significant in the first metamodel.  Therefore, additional
experimentation using these two inputs while keeping
the others constant was done in the hope of finding the
minimum. Using  SAS PROC RSREG, a gradient
search along the path of steepest descent was performed
to determine at which values to fix the other variables
and where to center the two variables of interest.  It was
decided that the cupper, coater, and necker should be
set at a middle value, while the tester should be set at a
high value.  Finally, additional testing was done with
the body maker and printer around their middle values.
Since the problem was reduced to only two factor with
three levels, a full factorial model was feasible.  The
next step was to use the experimental data to determine
the final metamodel and calculate the response.
     This model included all linear effects, quadratic
effects, and interaction effects for these two factors.
Using SAS PROC RSREG, the parameters were
calculated.  The second metamodel had much better
results and may be used as a proxy for the simulation to
answer the “what if” questions about different machine
speeds, provided the cupper, coater, and necker are at a
middle value, and the tester is set at a high value.  The
second metamodel was also significantly less
complicated than the first in regards to the number of
terms.  The next step was to find the optimal
combination of machine speeds that minimizes this
metamodel by using response surface methodology.
Since both eigenvalues were positive, this would be a
minimum.  Using the optimal settings, the first
metamodel predicted 82 cans of flow scrap, the second
metamodel predicted 128 cans of flow scrap, and the
simulation estimated an average of 140 cans of flow
scrap per hour while increasing to 13.4 pallets per hour.
This is a 36% reduction in scrap while increasing the
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line’s throughput and shows the improvement in
predictability from the first to the second metamodel.

4.9  Documentation and Reporting

A formal report and briefing were given to the plant
manager at Coors, who accepted the results
enthusiastically.  The credibility gained by the authors
actually working the line and taking data, along with
their intuitive understanding of the line, were extremely
beneficial.  The results were understandable and
believable.  The plant manager took the results for
action and is ready for another study to be done on
another label.  He is interested in extending the study to
the 12 ounce production lines as well.

4.10  Implementation

This study resulted in the reassignment of several
personnel and machine speeds were changed to reflect
the analytical results, e.g. 8 coaters are now run instead
of 7.  Several months after completing the study, Coors
verified an annual savings of $1.87 million in 1996
dollars.

5  SYNOPSIS

The most difficult portions of this simulation study were
the data collection and the model translation steps.
They were also the most time consuming.  Over 200
hours were spent on data collection, and over 100 hours
were spent on model translation, accounting for over
80% of the total project hours.  The efficient
experimental design was crucial to keeping the
computer time to a minimum while producing the
desired result--a balanced line.
     Experimental design, metamodeling, and response
surface methodology make an extremely powerful
analysis toolbox.  Solving a problem from this point of
view significantly reduces the complexity found in this
manufacturing system.

6  CONCLUSIONS

If the resources are available, metamodeling of a
production line through simulation is extremely
insightful.  Not only does it point out the key inputs of
the line, but it also provides a simple algebraic equation
for the response under study.  The benefit of the
metamodel is that anyone with a calculator can
determine the level of the response given certain inputs.
No knowledge of simulation, simulation languages, or
computers is required.  The metamodel is also
significantly faster than running the simulation, a few
seconds versus forty five minutes on a Pentium 100
MHz processor.
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