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ABSTRACT 3. The Hierarchical Subsystem Controller (HSC) which
provides the generic framework for the intelligent con-
Today, sophisticated discrete-event systems (DES) are be- troller contained within each subsystem.

ing proposed and designed to operate under advanced com-
puter control. In most cases, the complexity of the overall 2 THE RECURSIVE OBJECT-ORIENTED
planning and control problem for managing these systems CONTROL HIERARCHY (ROOCH)
necessitates the use of distributed planning and comtrol a
chitectures. Currentlthere is little formalism guidingthe ~ The ROOCH was developed in collaboration with the
construction of these architectures. In this papenew Government Electronics Group at Motorola, Inc. and is
coordination architecture, called the Recursive Object-Ori- publishedn Tirpak et al. [1992] The ROOCH introduces
ented Control Hierarchy (ROOCH), is employed to address the coordinated object as the basic building block for mod-
the real-time management of these systems. In addition, aeling an FMS or other DESs, (see Figure 1). Each coordi-
new simulation approach, called Hierarchical Object-Ori- nated object represents a basic hierarchical element where
ented Programmable Logic Simulator (HOOPLS), is in- integrated scheduling and control is to be implemented. It
troduced for modeling the ROOCH. In order to demon- is assumed that each coordinated object contains one or
strate the benefits arising from both the ROOCH architec- more primary unit processe3, (n=1,...,N), whose opera-
ture and the associated HOOPLS modeling paradigm, thetions are to be scheduled in order to execute tasks upon
construction of the real-time control architecture for a jobs residing within the coordinated object. Both jobs and
physical emulator of a flexible manufacturing system supporting resources, (e.g. tools, part kits and processing
(FMS) will be discussed. information), enter the coordinated object through its in-
put port and will eventually exit through the output port.
The jobs and supporting resources are assumed to be un-
der the control of the coordinated object while they reside
) within the coordinated object.
Over the past decade, the Manufacturing Systems Labora-  As stated above, the coordinated object is the basic
tory (MSL) at the University of lllinois has developed @  pjerarchical element where scheduling and control occurs.
new conceptual framework for the integrated modeling, T this end, each coordinated object contains a Hierarchi-
scheduling and contr(_)I of FMSs and other DESs, (see Davis 5 System Coordinator (HSC) to perform the concurrent
etal. [1993] and Davis et al. [1997]Jhese developments  fynctions of scheduling the allocation of the subordinate
can now be summarized into three fundamental concepts: pyocesses and controlling the flow of the entities in order
) ) ) ) to implement the developed schedule. In order to manage
1. The Recursive Object-Oriented Control Hierarchy e fiow of entities, it is further assumed that each coordi-
(ROOCH) architecture which provides a means for pateqd object contains one or more material handling sys-
defining the component subsystems comprising the tems (MHSs) that are capable of moving entities among
overall system, _ _ the various queues contained within the coordinated ob-
2. The_ Hl_erarchlcal Object-Orle_nted_ Programmable ject. (The MHSs can be viewed as supporting unit pro-
Logic Simulator (HOOPLS) which simulates the de-  ¢agses since they do not execute processing steps that physi-
veloped system architecture by modeling the interac- ¢ly transform the product.) It is absolutely essential that
tions among the controllers contained within the com-  these MHSs exist within the coordinated objects as each
ponent subsystems, and coordinated object must be able fteet the entity move-
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ment required to implement its schedulée recursive
nature of the ROOCH arises from the fact that anyisubo
dinate subsystem within a coordinated object can also be
another coordinated objecthis recursive feature permits
the modeler to construct the ROOCH with as many hiera
chical levels as are needed to model the FMS or DES.
The HSC contained within a coordinated object rep-
resents only types of control objects that will be defined
for the ROOCH. In general, the controllers contained
within the ROOCH can be classified as one of three types
of control objectsA coordination node represents the HSC
associated with coordinated objedthe primary distinc-
tion here is that the coordinated object must contain unit
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3 THE HIERARCHICA L OBJECT-ORIENTED
PROGRAMMABLE LOGIC SIMUL ATOR
(HOOPLS)

HOOPLS is a simulation methodology based upon the be-
lief that in order to accurately model a system with a dis-
tributed control architecture, the interactions among the
controllers must be considered within the model. The single
most important characteristic of the HOOPLS methodol-
ogy, and what separates it from other object-oriented re-
search #orts in simulation, is its focus upon modeling the
flow of messages among the included contrallefhe
modeling of the controllers must also recognize the man-

processes that are capable of performing processing tasksier in which each element of the coordinated object can

upon the job entitiesA transportation node also repre-
sents the HSC within a coordinated object. Howewe
this case, the coordinated object contains transport pro-
cesses ogl An example of a transport node is the primary
controller to a MHS. Finall a process node can only ex-
ecute a processing or transport instruction.
process node does not perform planning.
In order to prevent confusion, let us reiterate the dif-
ference between a coordinated object and coordination
node The coordinated object is a modeling element for a
defined subsystem. It must contain a control object which

can either be a coordination node or a transportation node

depending on whether or not the coordinated object con-
tains subsystems (or processes) which can perform pro-
cessing steps.
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Figure 1. Schematic of the Coordinated Object:
The Basic Module for Planning and Control

modify the state of a given entitThe coordinated object,
itself, can reassign the ownership of an entity only by as-
signing it to a subordinate subsystem for the implementa-
tion of a specified set of taskthe MHSs (which may also
be coordinated objects) included within the coordinated

In general, aobject can only change the location of the gntiinally,

it is the primary unit processes which execute the assigned
processing tasks that physically modify the state of an en-
tity. HOOPLS explicitly considers these constraints when
it defines the state-transition mechanisms for the evolu-
tion of the DES.

4 THE FMS EMUL ATOR

In order to develop an educational and research laboratory
for the coordination of DESs, the Manufacturing Systems
Laboratory at the University of lllinois has constructed an
FMS emulator (see Davis et al. [1994])o insure safety
and econom all physical processing has been omitted.
We have also constructed physical analogs for the mate-
rial handling systems (MHSSs). In developing this emula-
tor, we have demonstrated the ability for HOOPLS to serve
as a computeaided tool for designing the emulé®con-

trol architecture.

The schematic for the constructed FMS emulator is
depicted in Figure 2. Figure 3 provides a photograph of
the emulata The emulator has four Processing Centers,
numbered 1 through 4. Each Processing Center (PC),
shown in Figure 4, is a coordinated object containing one
primary subordinate processing resource (the Unit Process)
and a dedicated MHS.

The PCs MHS is represented by a carousel with six
electromagnets which can hold the jobs (represented by
color-coded steel washers) that reside in either the input or
output queue of the P’he movement of the carousel is
controlled by a dedicated Programmable Logic Controller
(PLC). The PC's controller is a UNIX workstation which
is placed upon a rostrum atop each H@is controller is
connected to the MHS PLC via a dedicated RS 232 link,
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and its display provides the sum-

5ft. by 10 ft. Table

mary status for the MHS and the
subordinate unit process. Becaus|
each PC does contain a unit proceq
and is a coordinated object, the PC’
controller represents a coordinatior|
node.

Another subordinate subsysten
is the Fixturing Center (FC) which
also represents a coordinated objed
The structure and emulation of the
FC is very similar to that of a PC.
The FC has a dedicated MHS con
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Figure 3 A Photograph of the Physical Emulator

Figure 4. (right) Picure of the Processing Cenhdote that
the HO-scale train is parked in front of processing eente
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has two fixturing positions which represent the subordi-
nate unit processesA dedicated laptop UNIX worksta-
tion provides the real-time status information for each
fixturer. This same workstation also issues control mes-
sages to the dedicated PLC for the $®HS. Because
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the coordinated objects defined above and the controllers
for the basic unit and transport processes that are contained
with each coordinated object é&€able 1). Each control
object is implemented as an independent controller which
communicates with its supervisor and its subordinates us-

the FC contains two unit processes and is a coordinatediNd communication messages defined within HOOPLS.

object, the FC's controller represents another coordination
node.

The final subordinate process is the Cell MHSh
Automated Guide Vehicle (AGV) system is employed as
the cells MHS, and thAGVs are emulated with HO-scale
electric trains. (A train is shown in front of the PC pic-
tured in Figure 4.The train layout is diagrammed in Fig-
ure 2 and pictured in Figure 3. In this layout, there are
over forty track segments which can be individually pow-
ered. Sensory switches, also shown in Figure 4, are pro-

vided on each track segment in order to detect the pres-

ence of aAGV. A Petri net has been developed to insure
that no more than @AGV ever occupies a single track
segment at a time.

A dedicated PLC receives directives from the MHS
controller to move a giveAGV from one location to an-
other using the incorporated Petri net lodibe dedicated
PLC returns the location of da&GV as it enters each
track segment to the MHS contrall@he MHS controller
is also responsible for determining the order in which the
pending material handling transfers will be processed and
which AGV will be assigned to complete each requested
transfe. Although the MHS is a coordinated object, it

The communication employs a local area network (LAN)
connecting seven computer§he cell controller is situ-
ated on one computer while each of the'sdlix subordi-
nate coordinated objects' controllers is situated on its own
compute.

Each controller was implemented using a simulation
software tool that we have developed (see Gonzalez
[1996]). The software tool provides a collection of C++
objects whose integration with the controller obgotodel
permits each controller to be executed as an independent
distributed object Thus, each of the 25 controller objects
has its own instantiation of the simulation todhis im-
plies that there are 25 independent copies of the simula-
tion tool, each executing its own model concurrently with
the others. The only thing that coordinates the controllers'
actions into a unified control architecture is the communi-
cation that occurs during their interactions.

Figure 5 shows the ROOCH decomposition of the
model. Note that when the developed model is employed
to control the FMS, the supervisor represents an indepen-
dent agent that assigns tasks to the cell contrdliés not
part of the modeled control architecture per e PLC
controllers that are shown at the bottom level are notimple-
mented in the control model either because they are imple-

does not contain unit processes that are capable of executMented by the actual PLCs within the emulaidthough

ing processing instructions upon a job sntitherefore,
the MHS controller represents a transport node.

The cell controller is implemented by another UNIX
workstation. It is connected to each of the subordinate
PCs, FC and MHS controllers (and a network server) via
an ether networkVarious commands and feedback mfo
mation flow across this netwarR he role of the cell Con-
troller is to orchestrate the flow of all entities types (jobs

as well as supporting resources) among the subordinate

processes within the celllThe cell, in this case, represents

logically they work the same way as the other controller

models, the PLC does not support our software tool. In-
stead, the controllers must be implemented in Dynamic C,
the C compiler that resides in the PLC. Since the actual
code used to build the models in the PLC cannot be run on
the workstations, their actions had to be modeled for simu-
lation purposes.

In summay, the submodels that are presented between
the two horizontal lines in Figure 5 are the employed con-
trollers for the FMS emulato When the model is being
employed to control the FMS, the process controllers at

another coordinated object whose subsystems are also cOine potiom of Figure 4 will be implemented by the control

ordinated objects. Five of these subsystems, the four PCs;qde contained within the dedicated PLCs that are man-
and the FC, are capable of executing processing tasks.aging the processes. When the model is being employed
Therefore, the cell controller represents a coordination in the simulation mode, additional models for the control
node. objects representing the PLCs will be added to the model.
Finally, during the control mode, a supervisor for the cell
will be provided where tasks can be inputted into the cell.
In the simulation mode, we employ a typical creation pro-
The model for the physical emulator has now been decom- cess which models the arrival of job entities into the cell.

5 THE CONTROL ARCHITECTURE

posed into a set of coordinated objects using the ROOCH
decomposition architectur@he complete model consists
of 25 control objects which includes control objects for

Hence, the HOOPLS simulation model for the basic
ROOCH has been designed such that the same model can
be used both to simulate and to control the systéhe
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Control
Objects Name  Type of Node
fmssup Coordinating Node
fmscell Coordinating Node
fscell Coordinating Node
fsprocl Processing Node
fsproc2 Processing Node
fsplc Not a Coordinated
Object
cellmhs Transport Node
mhsplc Not a Coordinated
Object
pclcell Coordinating Node
pclproc Processing Node
pclmhs Transport Node
pclplc Not a Coordinated

Object

Table 1. The Control Objects

NodesTitle

Cell supervisor
Cell controller

Fixturing statiors
cell controller
Fixturing station 1
process controller
Fixturing station 2
process controller

Fixturing statiors PLC

driver

Cell's MHS controller
Cell's MHS PLC driver

Processing center 1 cell

controller
Processing center 1
process controller
Processing center 1
MHS controller

NodesTask

Assigns jobs to the cell controtle

Coordinates the cells 5 processing centers and
the AGV.

Coordinates the Fixturing stations 2 processes
and its MHS.

Represents the Fixturing station 1 processo

Represents the Fixturing station 2 processo
Models the Fixturing statioa PLC drive.

Controls the MHS of the cell.
Represents the celMHS driver

Coordinates the processing center 1 processor
and its MHS.
Represents the processing center 1 processor

Controls the MHS for processing center 1

Processing center 1 PLC Models the processing center 1 PLC drive

driver

Note that the conol objects for PC2, PC3 and PC4eaidentical to those of PC1 andeanotrepeated in the table.

Supervisor

Emulator Control Hierarchy

Physical Equiptmemt

Figure 5 The ROOCH Decomposition of the Model Used to Control the Emulator
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model is entirely characterized through an exhaustive defi- causes the controller object to respond. This response can
nition of the control messages that are issued or receivedbe viewed as an output from the coordinated obj€bte

by each controller contained within the ROOCHe(Eable HOOPLS methodology is not concerned with the method-
2) and the state transition mechanisms which will occur ology employed to construct submodels for the coordinated
upon the receipt of a control messaddese state transi-  objects so long as the overall coordination among the
tion mechanisms, in turn, determine the subsequent con-submodels is implemented by modeling the controller in-
trol messages that will be issued by the receiving control- teractions.

ler. Due to limited space, the state transition mechanisms For the modeling of the FMS emulatthe employed

are not presented. control messages are givanTable 2 All of these mes-
o sages, except for the Exectidsk ail TaskExecuted, pe
5.1 The Communication Messages tain to moving entities within the manufacturing cell. In

most cases, the entity is being moved from one MHS to
Recall that the single most important characteristic of the anothe. In order to transfer the entity between two MHSs,
HOOPLS methodology is its focus upon modeling the flow one of the two MHS must perform the loading while the
of control message3he dedicated control object within  other simply waits at an input or output port until the load-
the submodel for a given coordinated object simply gene ing is complete. In all cases, the MHS that simply waits
ates the appropriate response based upon the message ihust be at the port before the loading MHS starts loading.
receives The dynamics that occur within the coordinated This means the response from the simple MHS must be
object must also be explainedhe submodels for the co-  received before the command for loading MHS can be is-
ordinated objects must also model the flow of entities within sued. In order to allow both MHSs to move to the input or
each coordinated objecthese submodels are responsible output port at the same timegtAnticipateltem message
for explaining the state transition mechanisms of the-coo is issued to the loading MHS so that it can move to the
dinated objects When certain events oagithey cause port, but not loadThe simple MHS is issued the regular
the controller object within the modeled coordinated ob- command to move. Since the simple MHS does not know
ject to issue its response to an incoming control message.when the loading is completed, the ResourceFree command
In short, an incoming control message initiates a sequencemust be employed in order to tell the simple MHS that the
of state transitions to occur resulting in an event which loading is done, and it is free to move again.

Table 2 The HOOPLS Messages

From To Message Optional Operand Required Operand
CN CN Acceptltem whee serial number
CN CN IltemAccepted serial number
CN CN Returnitem whee serial number
CN CN ltemReturned serial number
CN TN ResourceFree serial number
CN CN Executdask queue serial number
CN PN Executdask Task serial number
PN,CN CN TaskExecuted serial number
CN TN PickUpltem whee serial number
TN CN ltemPickedUp serial number
CN TN Deliverltem whee serial number
TN CN ItemDelivered serial number
CN CN,TN Anticipateltem whee serial number
TN,PN PLC message NULL

whee - the name of the location.

task - The task. Can be a string or a list of strings.

serial number - The serial number of the job (job number).

message - Any arbitrary message.

CN - Coordinating Node.

PN - Processing Node.

TN - Transpot Node.

PLC - Programmable Logic Controller
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The supervisor is assumed to know the limitations of starts its cycle over again by checking the message relay
its subordinate controllers. It will not request thata subo  for new messages.
dinate controller execute an operation that will put the sub- The employment of global and local event lists pro-
ordinate in an erroneous staidat is, the supervisor knows  vides an essential means for synchronizing the events that
how many parts can fit into a particular machine and will are being processed in the submodels. Currently other
not request that statimcontroller to accept a new job if means are being explored in order to synchronize the ex-
the subordinate has no available capacity at the time. Inecution of events. Other have also been employing simu-
this manneg the subordinate controller need not check to lation to control manufacturing systems. Peters et al. [1996]
see if it has the capacity to handle a request from its-supe have adapttARENA® to control their experimental FMS.
visor. Howeve, in cases where the machine can be put Howeva, their development is limited to one hierarchical
into an erroneous state causing physical damage or inte level only where the supervisdhe cell controlle man-
rupting normal response, the subordinate controller can ages a set of subordinate process€key too must in-
screen the requestThese redundant checks provide an clude special events which send messages to the control-

extra measure of safet lers Narayanan et al. [1992] and GovinddE§93] have
also developed simulation tools which share many of the
6 THE REAL-TIME SIMUL ATION properties of HOOPLS. They too model the controller in-

teractions. From this set of independent development
The HOOPLS executive function consists of a global event effort, the need to model controller interactions is becom-
list and a message relay (see Figuré\)en a submodel ing evident.
is executed, the message relay receives all of the messages
that are outputted by the submodel currently being ex- Global Event List
ecuted The messages are inserted into the rear of the mes-
sage queue that is used to implement the message rela
Once the submodel finishes execution, the HOOPLS func-

tion removes the message that is at the front of the mes-
. . . OQ Message Relay
sage queue and gives it to the submodel to which the mes- =
sage is addressed. Upon receiving the message, the U= ]
submodel then executes the appropriate event to process

the message. Since further messages may be generated by
the execution of this event, these messages are again in-
serted into the rear of the message quéine above pro-
cess is repeated until there are no messages in the message
queue.

After the message relay is emptied, the main HOOPLS
function pulls the next event from the global event list.
The events in this list have two pieces of information, the

Address Table
Message

place and the time that the next event will gcéthe in- T "

formation about the type of event and other details about O] HOOPLS 0 |From| Message
e . . s Function

the event are stored within a local event list contained within

the submodel. Hence, whenever a submodel stores an event Q

on its dedicated event calemdan abbreviated copy of the

event is also stored on the global event calengiace all

submodels schedule events in this marthe global event Figure 6 An Example of a HOOPLS Simulation of a
list always maintains a chronological order of the events Controller Decomposed int Three Subordinate
that are to occur in all of the submodel¥he main Controllers. Each of the three subordinate controllers are
HOOPLS function updates its clock with the time in the included in the simulation with no modificationThe
global event and calls the appropriate submodel with the bottom controller sends a message to the message relay
new current time The submodel, knowing that it has the addressed to the middle contrallEhe message relay sends
next event, pulls the next everif @is local event list and the message to the middle controlléVhile the middle
executes it After the event is processed, including the controller was executing this message, it executed a
scheduling of future events (on both the local and global DELAY event which scheduled an event into the global
event calendars) and response messages are created aravent list At sometime late the global event is pulledfo
sent to the message rnglarogram control is then returned  the global event list and the middle controller is “awakened”
to the HOOPLS functian The main HOOPLS function to execute this event.
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7 FUTURE WORK

The next step in this research is to develop the Hierarchi-
cal Subsystem Coordinator (HSC) which will perform the
real-time scheduling and control functions for eachrcoo

Gonzalez and Davis

GonzalezF. G. 1996 A Simulation-Based Controller
Builder for Flexible Manufacturing System$roc.
of the 1996Mnter Simulation Confene, eds. J. M.
Charnes, D. M. Morrice, DI. Brunne, J. J. Swain,
1068-1075.

dinated object. Ourimmediate research plans will address Narayanan, S.DA. Bodne, U. Sreekanth, S.J. DijeT.

the development of a real-time scheduling capability for
the cell controlle The implemented HOOPLS simulation
presented in this paper will then be employed within this
scheduler to perform the real-time simulations which can
project future system performance to assist in scheduling
process (see Davis et al. [1996] and Davis [1998})e

cell controller will still control the system in the manner
discussed in this papebut it will able to dynamically
change its control strategy to implement the current plan
developed by the real-time schedul&@he physical FMS
emulator will continue to serve as the testbed for the algo-
rithmic developments.
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