
A SIMUL ATION-BASED CONTROLLER FOR DISTRIBUTED DISCRETE-EVEN T SYSTEMS
WIT H APPLIC ATIO N TO FLEXIBLE MANU FACTURING

Wayne J. Davis

Department of General Engineering
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801 USA

Fernando G. Gonzalez

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801 USA
 b
 c
ra
em
l

r
e
n
r
in
n

te
, t
r
m

o
 a
ng
a
s
p

hy
fo
th

l
e
a
m

h
n-

he
 is

od-
rdi-
here
. It
e or
-
pon
nd
sing
in-
rt.
 un-

ide

sic
urs.
chi-
ent
ate
der
age
rdi-
ys-
ng
ob-
ro-
hysi-

hat
ach
ABSTRACT

Today, sophisticated discrete-event systems (DES) are
ing proposed and designed to operate under advanced
puter control. In most cases, the complexity of the ove
planning and control problem for managing these syst
necessitates the use of distributed planning and contror-
chitectures. Currently, there is little formalism guiding the
construction of these architectures. In this paper, a new
coordination architecture, called the Recursive Object-O
ented Control Hierarchy (ROOCH), is employed to addr
the real-time management of these systems. In additio
new simulation approach, called Hierarchical Object-O
ented Programmable Logic Simulator (HOOPLS), is
troduced for modeling the ROOCH. In order to demo
strate the benefits arising from both the ROOCH archi
ture and the associated HOOPLS modeling paradigm
construction of the real-time control architecture fo
physical emulator of a flexible manufacturing syste
(FMS) will be discussed.

1 INTRODUCTION

Over the past decade, the Manufacturing Systems Lab
tory (MSL) at the University of Illinois has developed
new conceptual framework for the integrated modeli
scheduling and control of FMSs and other DESs, (see D
et al. [1993] and Davis et al. [1997]). These development
can now be summarized into three fundamental conce

1. The Recursive Object-Oriented Control Hierarc
(ROOCH) architecture which provides a means
defining the component subsystems comprising
overall system,

2. The Hierarchical Object-Oriented Programmab
Logic Simulator (HOOPLS) which simulates the d
veloped system architecture by modeling the inter
tions among the controllers contained within the co
ponent subsystems, and
e-
om-
ll
s

a

i-
ss
, a

i-
-
-
c-
he
a

ra-

,
vis

ts:

r
e

e
-
c-
-

3. The Hierarchical Subsystem Controller (HSC) whic
provides the generic framework for the intelligent co
troller contained within each subsystem.

2 THE RECURSIVE OBJECT-ORIENTED
CONTROL HIERARCHY (ROOCH)

The ROOCH was developed in collaboration with t
Government Electronics Group at Motorola, Inc. and
published in Tirpak et al. [1992]. The ROOCH introduces
the coordinated object as the basic building block for m
eling an FMS or other DESs, (see Figure 1). Each coo
nated object represents a basic hierarchical element w
integrated scheduling and control is to be implemented
is assumed that each coordinated object contains on
more primary unit processes, P

n
 (n=1,...,N), whose opera

tions are to be scheduled in order to execute tasks u
jobs residing within the coordinated object. Both jobs a
supporting resources, (e.g. tools, part kits and proces
information), enter the coordinated object through its
put port and will eventually exit through the output po
The jobs and supporting resources are assumed to be
der the control of the coordinated object while they res
within the coordinated object.

As stated above, the coordinated object is the ba
hierarchical element where scheduling and control occ
To this end, each coordinated object contains a Hierar
cal System Coordinator (HSC) to perform the concurr
functions of scheduling the allocation of the subordin
processes and controlling the flow of the entities in or
to implement the developed schedule. In order to man
the flow of entities, it is further assumed that each coo
nated object contains one or more material handling s
tems (MHSs) that are capable of moving entities amo
the various queues contained within the coordinated
ject. (The MHSs can be viewed as supporting unit p
cesses since they do not execute processing steps that p
cally transform the product.) It is absolutely essential t
these MHSs exist within the coordinated objects as e
coordinated object must be able to effect the entity move-

b

d
d

a

n

be-
is-
he
gle
l-

re-
e

n-
an

s-
ta-

ed

ned
en-
en
lu-

tory
s
n

d.
te-

a-
ve

 is
 of
rs,
C),
ne
ss)

ix
 by
t or
s
ler

k,

846 Gonzalez and Davis
IN
PU

T
Q

U
E

U
E

OUTPUT
PORT

• • •
SUB-UNITS

SUB-UNIT OUTPUT
QUEUE

SUB-UNIT INPUT
PORT

INHIBIT FLAG

sub-unit state information

transport
commands

sub-unit directives with priorities EXECUTION
FUNCTION

PERFORMANCE
IMPROVEMENT

FUNCTION

ASSESSMENT
FUNCTION

M
O

N
IT

O
R

IN
G

 F
U

N
C

T
IO

N

assigned tasks
and due dates

unit state
information

HIERARCHICAL
SUBSYSTEM

COORDINATOR

P1
P

N

Process P0

INHIBIT
FLAG

INTERFACING
SUBSYSTEMS

Figure 1. Schematic of the Coordinated Object:
The Basic Module for Planning and Control

ment required to implement its schedule. The recursive
nature of the ROOCH arises from the fact that any subor-
dinate subsystem within a coordinated object can also
another coordinated object. This recursive feature permits
the modeler to construct the ROOCH with as many hierar-
chical levels as are needed to model the FMS or DES.

The HSC contained within a coordinated object rep
resents only types of control objects that will be define
for the ROOCH. In general, the controllers containe
within the ROOCH can be classified as one of three type
of control objects. A coordination node represents the HSC
associated with coordinated object. The primary distinc-
tion here is that the coordinated object must contain un
processes that are capable of performing processing tas
upon the job entities. A transportation node also repre-
sents the HSC within a coordinated object. However, in
this case, the coordinated object contains transport pr
cesses only. An example of a transport node is the primary
controller to a MHS. Finally, a process node can only ex-
ecute a processing or transport instruction. In general,
process node does not perform planning.

In order to prevent confusion, let us reiterate the dif
ference between a coordinated object and coordinatio
node. The coordinated object is a modeling element for
defined subsystem. It must contain a control object whic
can either be a coordination node or a transportation no
depending on whether or not the coordinated object co
tains subsystems (or processes) which can perform pr
cessing steps.
e

-

s

it
ks

o-

 a

-
n

h
de
-

o-

3 THE HIERARCHICA L OBJECT-ORIENTED
PROGRAMMABLE LOGIC SIMUL ATOR
(HOOPLS)

HOOPLS is a simulation methodology based upon the
lief that in order to accurately model a system with a d
tributed control architecture, the interactions among t
controllers must be considered within the model. The sin
most important characteristic of the HOOPLS methodo
ogy, and what separates it from other object-oriented
search efforts in simulation, is its focus upon modeling th
flow of messages among the included controllers. The
modeling of the controllers must also recognize the ma
ner in which each element of the coordinated object c
modify the state of a given entity. The coordinated object,
itself, can reassign the ownership of an entity only by a
signing it to a subordinate subsystem for the implemen
tion of a specified set of tasks. The MHSs (which may also
be coordinated objects) included within the coordinat
object can only change the location of the entity. Finally,
it is the primary unit processes which execute the assig
processing tasks that physically modify the state of an
tity. HOOPLS explicitly considers these constraints wh
it defines the state-transition mechanisms for the evo
tion of the DES.

4 THE FMS EMUL ATOR

In order to develop an educational and research labora
for the coordination of DESs, the Manufacturing System
Laboratory at the University of Illinois has constructed a
FMS emulator (see Davis et al. [1994]). To insure safety
and economy, all physical processing has been omitte
We have also constructed physical analogs for the ma
rial handling systems (MHSs). In developing this emul
tor, we have demonstrated the ability for HOOPLS to ser
as a computer-aided tool for designing the emulator’s con-
trol architecture.

The schematic for the constructed FMS emulator
depicted in Figure 2. Figure 3 provides a photograph
the emulator. The emulator has four Processing Cente
numbered 1 through 4. Each Processing Center (P
shown in Figure 4, is a coordinated object containing o
primary subordinate processing resource (the Unit Proce
and a dedicated MHS.

The PC’s MHS is represented by a carousel with s
electromagnets which can hold the jobs (represented
color-coded steel washers) that reside in either the inpu
output queue of the PC. The movement of the carousel i
controlled by a dedicated Programmable Logic Control
(PLC). The PC's controller is a UNIX workstation which
is placed upon a rostrum atop each PC. This controller is
connected to the MHS PLC via a dedicated RS 232 lin

A Simulation-Based Controller for Distributed Discrete-Event Systems 847
and its display provides the sum
mary status for the MHS and th
subordinate unit process. Becau
each PC does contain a unit proce
and is a coordinated object, the PC
controller represents a coordinatio
node.

Another subordinate subsystem
is the Fixturing Center (FC) which
also represents a coordinated obje
The structure and emulation of th
FC is very similar to that of a PC
The FC has a dedicated MHS con
sisting of a primary carousel capab
of holding sixteen jobs and two
smaller carousels for loading an
unloading jobs from the AGVs. The
movement of these carousels is co
trolled by a dedicated PLC. The FC
-
e
se
ss
's
n

ct.
e
.
-

le

d

n-

Machine 1

Machine 4

Machine 2

Machine 3

Fixturing
Stations
1 and 2

Dedicated LAN

Cell
Controller

MHS (PLC)
Controller

To Network Server

5ft. by 10 ft. Table

HO Guage Train Track

Entry Point
from Shop Level

Exit Point
to Shop Level

Figure 2. Schematic for the Layout of the Physical Emulator
Figure 3. A Photograph of the Physical Emulator

Figure 4. (right) Picure of the Processing Center. Note that
the HO-scale train is parked in front of processing center.

di
-
ch
es

ate
tio

s
e
c-
-
ar
w-
pr
re
re

k

S

th
an
te
it
ec

X
at
 vi

bs
na
ts
o c
PC
sk
io

om
C
s
or

ers
ined

ich
us-
S.
)

wn

n
lez

ent
s

la-
th
rs'
i-

e
ed
en-

le-
le-

er
In-
 C,
ual
 on
u-

en
n-

 at
ol
an-
yed
ol
el.
ll
ll.

o-
ll.
ic
 can

848 Gonzalez and Davis
has two fixturing positions which represent the subor
nate unit processes. A dedicated laptop UNIX worksta
tion provides the real-time status information for ea
fixturer. This same workstation also issues control m
sages to the dedicated PLC for the FC’s MHS. Because
the FC contains two unit processes and is a coordin
object, the FC's controller represents another coordina
node.

The final subordinate process is the Cell MHS. An
Automated Guided Vehicle (AGV) system is employed a
the cell’s MHS, and the AGVs are emulated with HO-scal
electric trains. (A train is shown in front of the PC pi
tured in Figure 4.) The train layout is diagrammed in Fig
ure 2 and pictured in Figure 3. In this layout, there
over forty track segments which can be individually po
ered. Sensory switches, also shown in Figure 4, are
vided on each track segment in order to detect the p
ence of an AGV. A Petri net has been developed to insu
that no more than one AGV ever occupies a single trac
segment at a time.

A dedicated PLC receives directives from the MH
controller to move a given AGV from one location to an-
other using the incorporated Petri net logic. The dedicated
PLC returns the location of each AGV as it enters each
track segment to the MHS controller. The MHS controller
is also responsible for determining the order in which
pending material handling transfers will be processed
which AGV will be assigned to complete each reques
transfer. Although the MHS is a coordinated object,
does not contain unit processes that are capable of ex
ing processing instructions upon a job entity. Therefore,
the MHS controller represents a transport node.

The cell controller is implemented by another UNI
workstation. It is connected to each of the subordin
PCs, FC and MHS controllers (and a network server)
an ether network. Various commands and feedback infor-
mation flow across this network. The role of the cell Con-
troller is to orchestrate the flow of all entities types (jo
as well as supporting resources) among the subordi
processes within the cell. The cell, in this case, represen
another coordinated object whose subsystems are als
ordinated objects. Five of these subsystems, the four
and the FC, are capable of executing processing ta
Therefore, the cell controller represents a coordinat
node.

5 THE CONTRO L ARCHITECTURE

The model for the physical emulator has now been dec
posed into a set of coordinated objects using the ROO
decomposition architecture. The complete model consist
of 25 control objects which includes control objects f
-

-

d
n

e

o-
s-

e
d

d

ut-

e
a

te

o-
s

s.
n

-
H

the coordinated objects defined above and the controll
for the basic unit and transport processes that are conta
with each coordinated object (see Table 1). Each control
object is implemented as an independent controller wh
communicates with its supervisor and its subordinates
ing communication messages defined within HOOPL
The communication employs a local area network (LAN
connecting seven computers. The cell controller is situ-
ated on one computer while each of the cell’s six subordi-
nate coordinated objects' controllers is situated on its o
computer.

Each controller was implemented using a simulatio
software tool that we have developed (see Gonza
[1996]). The software tool provides a collection of C++
objects whose integration with the controller object’s model
permits each controller to be executed as an independ
distributed object. Thus, each of the 25 controller object
has its own instantiation of the simulation tool. This im-
plies that there are 25 independent copies of the simu
tion tool, each executing its own model concurrently wi
the others. The only thing that coordinates the controlle
actions into a unified control architecture is the commun
cation that occurs during their interactions.

Figure 5 shows the ROOCH decomposition of th
model. Note that when the developed model is employ
to control the FMS, the supervisor represents an indep
dent agent that assigns tasks to the cell controller. It is not
part of the modeled control architecture per se. The PLC
controllers that are shown at the bottom level are not imp
mented in the control model either because they are imp
mented by the actual PLCs within the emulator. Although
logically they work the same way as the other controll
models, the PLC does not support our software tool.
stead, the controllers must be implemented in Dynamic
the C compiler that resides in the PLC. Since the act
code used to build the models in the PLC cannot be run
the workstations, their actions had to be modeled for sim
lation purposes.

In summary, the submodels that are presented betwe
the two horizontal lines in Figure 5 are the employed co
trollers for the FMS emulator. When the model is being
employed to control the FMS, the process controllers
the bottom of Figure 4 will be implemented by the contr
code contained within the dedicated PLCs that are m
aging the processes. When the model is being emplo
in the simulation mode, additional models for the contr
objects representing the PLCs will be added to the mod
Finally, during the control mode, a supervisor for the ce
will be provided where tasks can be inputted into the ce
In the simulation mode, we employ a typical creation pr
cess which models the arrival of job entities into the ce

Hence, the HOOPLS simulation model for the bas
ROOCH has been designed such that the same model
be used both to simulate and to control the system. The

A Simulation-Based Controller for Distributed Discrete-Event Systems 849
Table 1. The Control Objects

Control
Object’s Name Type of Node Nodes Title Nodes Task
fmssup Coordinating Node Cell supervisor Assigns jobs to the cell controller.
fmscell Coordinating Node Cell controller Coordinates the cells 5 processing centers and

the AGV.
fscell Coordinating Node Fixturing station’s Coordinates the Fixturing stations 2 processes

cell controller and its MHS.
fsproc1 Processing Node Fixturing station 1 Represents the Fixturing station 1 processor.

process controller
fsproc2 Processing Node Fixturing station 2 Represents the Fixturing station 2 processor.

process controller
fsplc Not a Coordinated Fixturing station’s PLC Models the Fixturing station’s PLC driver.

Object driver
cellmhs Transport Node Cell’s MHS controller Controls the MHS of the cell.
mhsplc Not a Coordinated Cell’s MHS PLC driver Represents the cell’s MHS driver

Object
pc1cell Coordinating Node Processing center 1 cell Coordinates the processing center 1 processor

controller and its MHS.
pc1proc Processing Node Processing center 1 Represents the processing center 1 processor

process controller
pc1mhs Transport Node Processing center 1 Controls the MHS for processing center 1

MHS controller
pc1plc Not a Coordinated Processing center 1 PLC Models the processing center 1 PLC driver.

Object driver

Note that the control objects for PC2, PC3 and PC4 are identical to those of PC1 and are not repeated in the table.

Figure 5. The ROOCH Decomposition of the Model Used to Control the Emulator

cellmhs

pc1mhs pc1proc

pc1plc

pc1cell pc2cell

pc2mhs pc2proc

pc2plc

pc3cell

pc2mhs pc2proc

pc4cell

pc4mhs pc4proc

pc4plcpc3plc

fsmhs fsproc1 fsproc2

fsplc

fmscell

fmssup

Supervisor

Emulator Control Hierarchy

Physical Equiptmemt

fscell

mhsplc

e
v

u

o
o
m

th
w

e
g
d

i
le
o

b
g
n
c

 can

d-
ted
he
n-

n
 to
s,
e
d-
its
g.

 be
is-
or

he
r
ow
and
he

850 Gonzalez and Davis
model is entirely characterized through an exhaustive d
nition of the control messages that are issued or recei
by each controller contained within the ROOCH (see Table
2) and the state transition mechanisms which will occ
upon the receipt of a control message. These state transi-
tion mechanisms, in turn, determine the subsequent c
trol messages that will be issued by the receiving contr
ler. Due to limited space, the state transition mechanis
are not presented.

5.1 The Communication Messages

Recall that the single most important characteristic of
HOOPLS methodology is its focus upon modeling the flo
of control messages. The dedicated control object within
the submodel for a given coordinated object simply genr-
ates the appropriate response based upon the messa
receives. The dynamics that occur within the coordinate
object must also be explained. The submodels for the co-
ordinated objects must also model the flow of entities with
each coordinated object. These submodels are responsib
for explaining the state transition mechanisms of the cor-
dinated objects. When certain events occur, they cause
the controller object within the modeled coordinated o
ject to issue its response to an incoming control messa
In short, an incoming control message initiates a seque
of state transitions to occur resulting in an event whi
fi-
ed

r

n-
l-
s

e

e it

n

-
e.
ce
h

causes the controller object to respond. This response
be viewed as an output from the coordinated object. The
HOOPLS methodology is not concerned with the metho
ology employed to construct submodels for the coordina
objects so long as the overall coordination among t
submodels is implemented by modeling the controller i
teractions.

For the modeling of the FMS emulator, the employed
control messages are given in Table 2. All of these mes-
sages, except for the ExecuteTask and TaskExecuted, per-
tain to moving entities within the manufacturing cell. I
most cases, the entity is being moved from one MHS
another. In order to transfer the entity between two MHS
one of the two MHS must perform the loading while th
other simply waits at an input or output port until the loa
ing is complete. In all cases, the MHS that simply wa
must be at the port before the loading MHS starts loadin
This means the response from the simple MHS must
received before the command for loading MHS can be
sued. In order to allow both MHSs to move to the input
output port at the same time, the AnticipateItem message
is issued to the loading MHS so that it can move to t
port, but not load. The simple MHS is issued the regula
command to move. Since the simple MHS does not kn
when the loading is completed, the ResourceFree comm
must be employed in order to tell the simple MHS that t
loading is done, and it is free to move again.
Table 2. The HOOPLS Messages

From To Message Optional Operand Required Operand

CN CN AcceptItem where serial number
CN CN ItemAccepted serial number
CN CN ReturnItem where serial number
CN CN ItemReturned serial number
CN TN ResourceFree serial number
CN CN ExecuteTask queue serial number
CN PN ExecuteTask Task serial number
PN,CN CN TaskExecuted serial number
CN TN PickUpItem where serial number
TN CN ItemPickedUp serial number
CN TN DeliverItem where serial number
TN CN ItemDelivered serial number
CN CN,TN AnticipateItem where serial number
TN,PN PLC message NULL
where - the name of the location.
task - The task. Can be a string or a list of strings.
serial number - The serial number of the job (job number).
message - Any arbitrary message.
CN - Coordinating Node.
PN - Processing Node.
TN - Transport Node.
PLC - Programmable Logic Controller

 o
o
b

i
f

to
p
u
t
a
n

en

a
x
e

e
n
e
e

ce
e
n

ss

L
t

h

o
h
v

nt

e
th
e

e
ba
d

lay

-
that
her
ex-
u-

96]

l

trol-

he
n-
nt
-

re

elay
s

 a
al

d”

A Simulation-Based Controller for Distributed Discrete-Event Systems 851
The supervisor is assumed to know the limitations
its subordinate controllers. It will not request that a subr-
dinate controller execute an operation that will put the su
ordinate in an erroneous state. That is, the supervisor knows
how many parts can fit into a particular machine and w
not request that station’s controller to accept a new job i
the subordinate has no available capacity at the time.
this manner, the subordinate controller need not check
see if it has the capacity to handle a request from its sur-
visor. However, in cases where the machine can be p
into an erroneous state causing physical damage or inr-
rupting normal response, the subordinate controller c
screen the request. These redundant checks provide a
extra measure of safety.

6 THE REAL-TIME SIMUL ATION

The HOOPLS executive function consists of a global ev
list and a message relay (see Figure 6). When a submodel
is executed, the message relay receives all of the mess
that are outputted by the submodel currently being e
ecuted. The messages are inserted into the rear of the m
sage queue that is used to implement the message ry.
Once the submodel finishes execution, the HOOPLS fu
tion removes the message that is at the front of the m
sage queue and gives it to the submodel to which the m
sage is addressed. Upon receiving the message,
submodel then executes the appropriate event to pro
the message. Since further messages may be generat
the execution of this event, these messages are agai
serted into the rear of the message queue. The above pro-
cess is repeated until there are no messages in the me
queue.

After the message relay is emptied, the main HOOP
function pulls the next event from the global event lis
The events in this list have two pieces of information, t
place and the time that the next event will occur. The in-
formation about the type of event and other details ab
the event are stored within a local event list contained wit
the submodel. Hence, whenever a submodel stores an e
on its dedicated event calendar, an abbreviated copy of the
event is also stored on the global event calendar. Since all
submodels schedule events in this manner, the global event
list always maintains a chronological order of the eve
that are to occur in all of the submodels. The main
HOOPLS function updates its clock with the time in th
global event and calls the appropriate submodel with
new current time. The submodel, knowing that it has th
next event, pulls the next event off its local event list and
executes it. After the event is processed, including th
scheduling of future events (on both the local and glo
event calendars) and response messages are create
sent to the message relay, program control is then returned
to the HOOPLS function. The main HOOPLS function
f

-

ll

In

e
t

e
n

t

ges
-
s-

la
c-
s-
s-

the
ss

d by
 in-

age

S
.
e

ut
in
ent

s

e

l
 and

starts its cycle over again by checking the message re
for new messages.

The employment of global and local event lists pro
vides an essential means for synchronizing the events
are being processed in the submodels. Currently ot
means are being explored in order to synchronize the
ecution of events. Other have also been employing sim
lation to control manufacturing systems. Peters et al. [19
have adapted ARENA® to control their experimental FMS.
However, their development is limited to one hierarchica
level only where the supervisor, the cell controller, man-
ages a set of subordinate processes. They too must in-
clude special events which send messages to the con
lers. Narayanan et al. [1992] and Govindaraj [1993] have
also developed simulation tools which share many of t
properties of HOOPLS. They too model the controller i
teractions. From this set of independent developme
effort, the need to model controller interactions is becom
ing evident.

To From Message

Message Relay

Address Table

Message

HOOPLS
Function

Global Event List

Figure 6. An Example of a HOOPLS Simulation of a
Controller Decomposed into Three Subordinate
Controllers. Each of the three subordinate controllers a
included in the simulation with no modification. The
bottom controller sends a message to the message r
addressed to the middle controller. The message relay send
the message to the middle controller. While the middle
controller was executing this message, it executed
DELAY event which scheduled an event into the glob
event list. At sometime later, the global event is pulled off
the global event list and the middle controller is “awakene
to execute this event.

h
e

is

n

r

o

4
a

d

.

-
-

-

-

6.

r

d

n-
 of
i-

-
s-

-
e
t

d

852 Gonzalez and Davis
7 FUTURE WORK

The next step in this research is to develop the Hierarc
cal Subsystem Coordinator (HSC) which will perform th
real-time scheduling and control functions for each coor-
dinated object. Our immediate research plans will addre
the development of a real-time scheduling capability fo
the cell controller. The implemented HOOPLS simulation
presented in this paper will then be employed within th
scheduler to perform the real-time simulations which ca
project future system performance to assist in scheduli
process (see Davis et al. [1996] and Davis [1998]). The
cell controller will still control the system in the manne
discussed in this paper, but it will able to dynamically
change its control strategy to implement the current pla
developed by the real-time scheduler. The physical FMS
emulator will continue to serve as the testbed for the alg
rithmic developments.

REFERENCES

Davis, W. J., D. Setterdahl, J. Macro, V. Izokaitis and B.
Bauman. 1993. Recent Advances in the Modeling,
Scheduling and Control of Flexible Automation. Proc.
of the 1993 Winter Simulation Conference, eds. G.W.
Evans, M. Mollaghasemi, E.C. Russell and W.E. Biles,
143-155, The Society for Computer Simulation, San
Diego, CA.

Davis, W.J., B. Bauman, J. Macro and D. Setterdahl. 199
Constructing an Emulator for Research and Educ
tion in the Control of Flexible Automation. Proceed-
ings of the ORSA Technical Section on Manufactur-
ing Management Conf., eds. J. Buzacott and C.A.
Yano, 151-157.

Davis, W. J., J. G. Macro, A. L. Brook, M. S. Lee, G. S.
Zhou. 1996. Developing a Real-Time Emulation /
Simulation Capability for the Control Architecture to
the RAMP FMS. Proc. of the 1996 Winter Simula-
tion Conference, eds. J. M. Charnes, D. M. Morrice,
D. T. Brunner, J. J. Swain, 171-178.

Davis, W.J., J. Macro and D. Setterdahl. 1997. An Inte-
grated Methodology for the Modeling, Scheduling an
Control of Flexible Automation. To appear in the J.
on Robotics and Intelligent Control.

Davis, W.J. 1998. Real-Time Simulation: The Need and
the Evolving Research Requirement. To appear in
the Simulation Handbook, ed. J. Banks, 67 pages,
Wiley, New York.

Govindaraj, T., L.F. McGinnis, C.M. Mitchell, D. A.
Bodner, S. Narayanan and U. Sreekanth. 1993
OOSIM: A Tool for Simulating Modern Manufactur-
ing Systems. Proc. of the 1993 National Science Foun
dation Grantees in Design and Manufacturing Con
ference, 1055-1062.
i-

ss
r

n
g

n

-

.
-

Gonzalez, F. G. 1996. A Simulation-Based Controller
Builder for Flexible Manufacturing Systems. Proc.
of the 1996 Winter Simulation Conference, eds. J. M.
Charnes, D. M. Morrice, D. T. Brunner, J. J. Swain,
1068-1075.

Narayanan, S.D., A. Bodner, U. Sreekanth, S.J. Dilley, T.
Govindaraj, L.F. McGinnis and C.M. Mitchell. 1992.
Object-Oriented Simulation to Support Operator De
cision Making in Semiconductor Manufacturing.
Proc. of the 1992 Intl. Conf on Systems, Man and Cy
bernetics, 1510-1519, The Institute of Electrical and
Electronics Engineers, Piscataway, NJ.

Peters, B.A., J.S. Smith, J. Curry and C. LaJimodiere. 199
Advanced Tutorial - Simulation Based Scheduling and
Control, Proc. of the 1996 Winter Simulation Confer-
ence, eds. J.M. Charnes, D.J. Morrice, D.T. Brunner
and J.J. Swain, 194-198, The Society for Compute
Simulation, San Diego, CA.

Tirpak, T.M., S.M. Daniel, J.D. LaLonde, and W.J. Davis.
1992. A Fractal Architecture for Modeling and Con-
trolling Flexible Manufacturing Systems, IEEE Trans.
on Systems, Man and Cybernetics, 22(5), 564-567.

AUTHOR BIOGRAPHIES

FERNANDO G. GONZALEZ received his Ph.D. in Elec-
trical and Computer Engineering at the University of Illi-
nois. Earlier, he received his B.S. in computer science an
M.S. in electrical engineering at Florida International Uni-
versity. His current research addresses the real-time ma
agement of discrete-event systems. He was a recipient
an NSF Support for Under Represented Groups in Eng
neering (SURGE) Fellowship and a GTE Minority Fel-
lowship. Dr. Gonzalez is currently employed as a post
doctorate researcher to further improve the emulator di
cussed in this paper.

WAYNE J. DAVIS is a Professor of General Engineering
at the University of Illinois at Urbana-Champaign. He re
ceived his degrees in Engineering Sciences from Purdu
University. His current research addresses the intelligen
control architectures for large-scale discrete-event systems.
In this effort, he is collaborating with the Intelligent Sys-
tems Division at the National Institute of Standards an
Technology. He is also developing several new simula-
tion languages in order to support this development.

	A SIMULATION-BASED CONTROLLER FOR DISTRIBUTED DISCRETE-EVENT SYSTEMS WITH APPLICATION TO FLEXIBLE MANUFACTURING
	ABSTRACT
	1 INTRODUCTION
	2 THE RECURSIVE OBJECT-ORIENTED CONTROL HIERARCHY (ROOCH)
	3 THE HIERARCHICAL OBJECT-ORIENTED PROGRAMMABLE LOGIC SIMULATOR (HOOPLS)
	4 THE FMS EMULATOR
	5 THE CONTROL ARCHITECTURE
	5.1The Communication Messages

	6 THE REAL-TIME SIMULATION
	7 FUTURE WORK
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 845
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

