
EFFICIENT SIMULATION/OPTIMIZATION OF DISPATCHING PRIORITY
WITH “FAKE” PROCESSING TIME

Susumu Morito
Keun Hyung Lee

Department of Industrial and
Management Systems Engineering

Waseda University
3-4-1 Ohkubo, Shinju-ku, Tokyo 169, JAPAN
tions start from the overall approach, then move on
to a mechanism to fake processing time and a local
search, and end up with the algorithm statements.
Section 5 gives descriptions of the experiments and
their results. The last section gives conclusions.

2 JOB SHOP WITH MULTIPLE IDENTI-
CAL JOBS AND ITS CONTROL VIA
DISPATCHING

2.1 Job Shop with Multiple Identical Jobs

We consider a “static” job shop scheduling problem,
in which a set of jobs to be scheduled are known and
available at time 0. In most static job shop scheduling
problems, it has been generally assumed that each job
is unique. That is, each job has or can have unique job
characteristics such as routing and processing time.

In reality, however, production requests often ar-
rive in the form of production “lots”(other possible
names include “batches” or “orders”) each of which
calls for a specified number of parts of the same
type. For example, production order XY Z requests
25 pieces of part type A to be completed by 12 noon,
April 1, 1997, and production of part type A consists
of a set of “operations”, say, A1,A2,A3 which must
be processed in this order. The required number of
parts for a lot is called a “lot size”.

When production requests come in the form of
production lots and each lot consists of as many jobs
of the same type as the lot size, many identical jobs
would flow through a shop. Under the condition
where machine setups due to change of job types in-
cur major cost, one tends to produce the entire lot
all at once, and if so, each lot can be regarded as a
single job and the job shop can be viewed as one with
unique jobs.

However, in many contemporary automated job
shops such as FMS’s, each lot need not or may not
be regarded as a single job because of the following
reasons:

1) Differences of routing, lot sizes, and processing
times of different part types all contribute to “dis-
ABSTRACT

An efficient simulation/optimization approach is pre-
sented for finding a dynamic dispatching priority in
a static job shop environment under the presence of
multiple identical jobs. The key ingredients of the
proposed approach are (1) an efficient processing-
time-based dispatching rule, (2) simulation of a job
shop, and (3) a mechanism to “fake” (or modify) job
processing times based on the information of job slack
obtained from simulation. The paper presents an
overall approach to fake processing times, and also
identifies alternative strategies for algorithm design.

Experimental results of the proposed approach
yield a dispatching priority with more than 10% bet-
ter due date performance than the priority generated
by a good processing-time-based dispatching rule in
roughly 20 simulation runs.

1 INTRODUCTION

Simulation has been regarded as a powerful tool for
short-term look-ahead from early days. Nowadays,
with fast PCs and workstations and with powerful
simulation software, simulation-assisted look-ahead is
not a dream but a reality.

Dispatching rules have been used widely in
scheduling job shops. Many dispatching rules have
been proposed, analyzed, and in fact used to schedule
jobs. However, there has been little effort in combin-
ing simulation with dispatching. The only exception,
to the best of the authors’ knowledge, is Vepsalainen
and Morton (1988).

This paper presents a simulation/optimization ap-
proach to generate a good dispatching priority using
a simple processing-time-based dispatching rule as a
basis. The paper is organized as follows. The follow-
ing section describes job shops with multiple identical
jobs and its control via dispatching. The way we use
two terms, dispatching rule and dispatching priority,
is clarified, and the problem addressed in this paper
is defined. Section 3 describes related research. Sec-
tion 4 presents the proposed approach. The descrip-



Efficient Simulation/Optimization of Dispatching Priority with "Fake" Processing Time 873
tributed” processing of jobs that constitute a lot.
2) A limited number of pallets and fixtures makes

it impossible to process jobs that constitute a lot all
at once.

3) Some form of material handling system which
is often automated, is used and required to transport
works placed on pallets.

4) Hardware is designed to cope with simultane-
ous production of many distinct works, and the asso-
ciated control mechanism, i.e., software does not try
to group all jobs constituting a lot as one big batch.

Figure 1: Job Shop with Multiple Identical Jobs

When the multiple identical jobs belonging to a
particular lot cannot or need not be processed all at
once, the associated Gantt chart may look like Fig-
ure 1. The shop like Figure 1 creates difficulties when
one wants to estimate the production lead time of a
particular lot, which is the time between the start
and the end of the entire lot. If a lot calls for, say, 25
pieces of part type A with three operations, A1,A2,A3

to be processed in this order, time between the start
of operation A1 of the first job and the end of A3
of the last (i.e., 25th) job, constitutes the produc-
tion lead time. Since, for example, the second op-
eration A2 of the first job can be started after the
completion of A1 of the first job, and need not wait
for the completion of A1 of the entire lot, production
of a particular lot “overlaps” time-wise. Furthermore,
“interference” with jobs belonging to other lots gener-
ally creates waiting. Such interference together with
overlapping production makes it difficult to estimate
production lead time of a lot. A lack of knowledge
for the production lead time would make scheduling
difficult in a job shop with multiple identical jobs.

2.2 Dispatching Rule and Dispatching Prior-
ity

Throughout this paper, we distinguish “dispatching
rules” from “dispatching priorities”. Here, a dis-
patching priority is defined to be a linear ordering
of all relevant operations, based on which jobs are
dispatched on all machines. If, for example, opera-
tions to be dispatched consist of A1,A2,A3; B1,B2;
C1,C2,C3 , any one of the linear orderings of the 8
operations, say,

C2 → A3 → B1 → B2 → C1 → A2 → C3 → A1

gives a dispatching priority. We assume that a single
dispatching priority is shared on all machines.
In a job shop with multiple identical jobs, two or
more distinct operations of the same part type, say
C1 and C3, may compete for the same machine, and
it is not enough to assign priority to jobs, and thus
becomes necessary to assign priority to operations.

A dispatching rule, on the other hand, is defined
to be a well-defined mechanism to determine a dis-
patching priority based on such information as job
properties(lot size, lot due date, number of opera-
tions and the associated processing time, routing,
etc.), current shop status, as well as current time.
As in Figure 2, a dispatching rule can be regarded
as a mechanism which maps input information to a
linear ordering of operations.

Figure 2: Dispatching Rule and
Dispatching Priority

2.3 Problem Statement

We now define a “dispatching priority problem”,
which is a short-term scheduling problem. Note that
we focus our attention on the “dynamic” dispatching
priority, i.e., the priority ordering changes dynami-
cally over time reflecting changes of production sta-
tus. Here, we take the total tardiness as the perfor-
mance measure, even though other measures could
have been used.

Objective: Minimize total tardiness
Conditions: Each part type is given a lot size

and a due date by which the production of the entire
lot is hoped to be completed. All processing informa-
tion such as the associated operations together with
their sequence and time requirements are assumed to
be known and deterministic. Detailed descriptions of
the simulation model will be given in 5.1.

What is to be decided: Dispatching priority of
parts and operations

Finally, we note that the particular type of static
scheduling problems presented is important in auto-
mated job shops such as FMS’s with multiple identi-
cal jobs because:

1) System control software often requires a system
user to specify dispatching priority, or at least ask the
user to select a dispatching rule to be used.

2) A set of lots to be processed concurrently are
usually known (i.e., have been decided) in advance.
A decision to select which lots to be put into the



874 Morito and Lee
system is often referred to as part type selection, and
we assume that this decision has been made already.

3 RELATED RESEARCH

3.1 Use of Simulation in Dispatching

An iterative use of simulation in the determination of
dispatching priority was probably first proposed by
Vepsalainen and Morton(1988).

3.2 Use of “Modified Information” in Dis-
patching

There are some attempts in the past to use “fake”
data to generate a dispatching priority. Probably the
most well-known and well-performed one would be an
extremely simple scheme called Modified Due Date
(MDD) of Baker and Kanet (1983).

3.3 Optimization of Dispatching Priority

Morito and Lee (1994) tried to explore the best dis-
patching priority with the least total tardiness among
all possible priority ordering. They noted the fact
that any dispatching priority with good performance
is acceptable even if one does not know a rule (i.e., a
mechanism) which relates the priority ordering to the
jobs’ properties and other factors. A combination of
simulation with simulated annealing is employed to
explore a near-optimal dispatching priority. They as-
sumed a static job shop environment (i.e., all jobs are
available at time 0, and no new jobs arrive thereafter)
and the static dispatching priority (i.e., priority does
not change over time).

Their study showed that the best dispatching
priority found by their simulation/optimization ap-
proach produced slightly more than 10% better
due-date performance than best dispatching rules
they compared. The gain was obtained, how-
ever, after thousands of iterations of their simula-
tion/optimization approach. Despite their attempt,
they failed to come up with a new rule that yields
the best dispatching priority obtained by the simula-
tion/optimization approach.

The results indicate that there is a potential for
better dispatching rules, but it is not easy to find
such ones. Optimization of dispatching priority is in-
teresting, but its computational burden generally ap-
pears to be too heavy. The question then would be:
Are there ways to come up with a good dispatching
priority without “wasting” a huge amount of com-
putation? This paper addresses the above question,
and presents a simple and effective simulation-based
mechanism to fill the gap.
4 A SIMULATION-ASSISTED SCHEME
FOR OBTAINING A GOOD DISPATCH-
ING PRIORITY

4.1 Basic Design Philosophy

We first describe our basic design philosophy:
1) Use a well-performed processing-time-based dis-

patching rule to generate an initial dispatching prior-
ity.

Our past studies indicate that the processing-
time-based dispatching rules generally produce an ex-
cellent due-date performance without sacrificing shop
utilization (Lee, Morito, and Imaizumi 1996). Ob-
viously, these rules are simple and take little time.
Therefore, it is natural to use such a rule to generate
an initial dispatching priority.

2) Use simulation to obtain estimates for job com-
pletion time(or equivalently, job slack or tardiness).

Provided that a simulation model of a job shop is
available, job completion times can be estimated by
simulating the shop assuming the given dispatching
priority. This allows us to estimate slack or tardiness
of jobs.

3) Intelligently “fake” processing time of jobs and
apply again the processing-time-based dispatching rule
to generate a dispatching priority with better due-date
performance.

If simulation results indicate that a particular job,
say jobA, has a lot of slack with some other jobs being
tardy, one naturally wants to lower the dispatching
priority of job A so that tardiness of other jobs can be
reduced. Assuming that we use a simple processing-
time-based dispatching rule, this might be achieved
by “increasing” the processing time of job A for the
purpose of sorting in priority generation. In other
words, we “fake” the processing time of job A. Thus,
we fake processing times of some jobs systematically
based on some mechanism in the hope that due-date
performance is improved, and re-apply the selected
processing-time-based dispatching rule to generate a
new and hopefully “better” dispatching priority.

Based on the general philosophy stated above,
we now present the outline of a simulation-assisted
scheme to find a reasonable dispatching priority.
First, we present an overview of the entire approach,
followed by brief descriptions of its key ingredients,
which consist of 1) a precise mechanism of process-
ing time fake, and 2) an overall design of an iterative
method to explore an improved dispatching priority.

4.2 Overall Approach (Figure 3)

Figure 3 schematically shows the overall approach.
Entries in the boxes indicate some sort of mecha-
nisms whose input and output are indicated in italics.



Efficient Simulation/Optimization of Dispatching Priority with "Fake" Processing Time 875
Given job data, we first apply a specified processing-
time-based dispatching rule to generate a specific dis-
patching priority. We note that when the processing-
time-based dispatching rule is fixed, a given set of
processing times lead to a unique dispatching prior-
ity (unless there exist ties). Let us call the resultant
priority the ”base” dispatching priority.

Figure 3: Overall Approach

Under the current technology, the only approach
possible to estimate shop performance of the given
base dispatching priority appears to be simulation.
Thus, we run simulation to obtain its shop perfor-
mance. In particular, we obtain slack/tardiness in-
formation of jobs from simulation results. Note that
the simulation is run based on the original processing
time data, and not based on the fake data. Given
the slack/tardiness information, we perform process-
ing time fake. Given the base dispatching priority, we
try several alternative fake data sets. This is because
a particular fake may not lead to improved dispatch-
ing priority.

Once a set of fake processing times are given, we
again apply the dispatching rule to obtain the associ-
ated dispatching priority, which will be simulated to
obtain slack/tardiness information. There are several
possible ways to organize the search, such as a local
search, a branch and bound, and a backtrack. Be-
low, we develop an algorithm based on a local search,
in which different sets of fake processing times con-
stitute a “neighborhood” of a given base dispatching
priority.

In a local search with “best improvement strat-
egy”, the algorithm continues to find the dispatching
priority among a neighborhood which yields the least
tardiness. If no improvement is achieved as compared
with the base dispatching priority, we stop. Other-
wise, replace the base dispatching priority with the
newly-found improved dispatching priority and essen-
tially the same procedures repeat until termination.

4.3 Design of “Fake” Mechanism

Our basic idea is simply to fake job processing times
with positive slack to make it longer. A variety of
mechanisms can be considered to achieve this goal.
Therefore, determination of a precise mechanism to
fake processing time of jobs requires us to study care-
fully several alternative design strategies. Below, we
list several view points for such mechanism design.

1) Do we apply only “positive” fake (increasing
processing time) or both positive and “negative” fake
(decreasing processing time)?

2) Do we relate the magnitude of slack/tardiness
to the degree of processing time modification?

3) How do we decide the absolute magnitude of
processing time modification?

4) Do we include randomness in the fake mecha-
nism?

Figure 4: Processing Time Fake Pattern

In this paper, we employ the deterministic mecha-
nism which considers only “positive” fake to increase
processing time of jobs with positive slack. An intu-
itive justification for not applying fake to tardy jobs is
the well-known fact that the SPT (Shortest Process-
ing Time first) rule is optimal for 1-machine mimi-
mum flow time scheduling, and is expected to pro-
duce good due date performance in a more general
shop environment. Thus we do not feel it necessary
to fake processing times of tardy jobs.

A linear relationship between the relative fake
strength and the magnitude of slack is considered
which applies stronger modifications for jobs with big-
ger slack. Figure 4 shows a basic “fake pattern”, in
which the horizontal axis corresponds to the magni-
tude of job slack, and the vertical axis, the magnitude
of processing time fake (called the fake factor). If, for
example, the fake factor f3 for job 3 is 1.15, then
the processing time of job 3 will be increased by 15%.
The maximum value of the fake factor 1+gmax (=1.5
in Figure 4) given to the job with the biggest slack
will be specified as described below.



876 Morito and Lee
4.4 An Iterative Method Based on Local
Search

Faking processing times based on such a mecha-
nism discussed above and applying a processing-time-
based dispatching rule does not guarantee a genera-
tion of a better dispatching priority. That is, we must
be prepared that the idea fails for a particular fake.
If a fake fails to produce a better priority, we look for
other fakes. We accomplish this by a form of a local
search.

4.4.1 Neighborhood

In designing a local search, selection of a neighbor-
hood is essential. It is not at all obvious what kind of
neighborhood is appropriate here, but we try to gen-
erate different fake patterns given a “base” dispatch-
ing priority by adjusting “strength” of the fake. We
accomplish this by changing the maximum value of
the fake factor. As a stronger fake tends to distort the
original “problem structure”, the algorithm tested
here adopts the strategy to start from weaker fakes
(i.e., less modification) and move towards stronger
fakes (i.e., more modification). For example, one
neighbor is defined by gmax = 0.5, and another de-
fined by gmax =1.0(i.e., a maximum of 100% process-
ing time increase), and so forth.

Figure 5: Neighborhood

Figure 5 shows the image of the local search. The
figure assumes the best improvement strategy to se-
lect the best among the neighborhood which consists
of 9 distinct fake data sets. The relative distance
between nodes schematically implies the strength of
the fake. Namely, node 1 (node 9) corresponds to
a fake data set of the least (largest) strength in the
neighborhood of the base dispatching priority. Figure
5 assumes that the fake pattern of node 8 produced
the best improvement among the neighborhood, and
thus the associated dispatching priority becomes a
new base priority with the new neighborhood consti-
tuting nodes 10 through 18. The process continues
unless there is no improvement in the neighborhood.

If the “first improvement strategy” is adopted, we
switch the base dispatching priority as soon as an
improved dispatching priority is found. If no imrove-
ment is achieved within the specified upper limit, the
algorithm stops. Some intermediate strategy between
best improvement and first improvement could be de-
vised, but will not be considered in this paper.

4.5 Prototype Algorithm

A prototype algorithm is now stated below:

Step 0 (Selection of the basic dispatching rule, initial
generation of a dispatching priority, and initial base
simulation) Select a processing-time-based dispatch-
ing rule used as a building block. Apply the selected
rule on a given set of job data, and produce an ini-
tial dispatching priority which is now called as the
initial “base” dispatching priority. Perform a simu-
lation run using original processing time information
to evaluate the effects of the initial base dispatching
priority. Initialize the “outer” iteration counter k to
1. Set Oij, the measure for lot i, operation j, used
to determine priority to conform with the selected
processing-time-based dispatching rule (say, ODSMT
as recommended by Lee, Morito, and Imaizumi 1996).

Step 1 (“Neighborhood” search with simulation)
Repeat the neighborhood search, Step 1h, for

h = 1, ..., hmax, where hmax is the size of the neigh-
borhood which is a predetermined parameter. Here,
we assume that si denotes slack for lot i as obtained
from simulation with the base dispatching priority.
That is, si = max(0, di − ci) where di denotes the
given due date of lot i, and ci the completion time
of lot i as obtained from the simulation of the base
dispatching priority. Note that values of si do not
change throughout Step 1h below, as the base dis-
patching priority may be updated only in Step 2.

Step 1h Determine the maximum incremental fake

factor ghmax for h-th neighbor:

ghmax = G(gh−1
max)

and calculate the perturbation factor (relative to the
base case) fi of lot i via

fi =

{
1 + ghmax (si/maxi(si | si > 0)) if si > 0
1 otherwise.

Determine the dispatching priority based on new
measures Nij where Nij = Oij · fi.

Perform then a simulation run based on the resul-
tant dispatching priority but with the original pro-
cessing time. If the resultant total tardiness is less



Efficient Simulation/Optimization of Dispatching Priority with "Fake" Processing Time 877
than that of the current best dispatching priority, re-
place the current best dispatching priority and also
save the associated values of fi as f∗i .

Step 2 (Termination check and updating the base dis-
patching priority)

If there is no improvement in the neighborhood
(i.e., during Step 1h, h = 1, ..., hmax), stop. Use the
current base dispatching priority. Otherwise, the cur-
rent best priority has been updated during the pre-
vious sub-iterations, and renew the “base” dispatch-
ing priority to this newly-obtained current best prior-
ity. Increment the iteration counter k by 1. Replace
the measure Oij by Oij · f∗i (for all i and j), i.e.,
Oij ← Oij · f∗i (for all i and j) where Oij · f∗i is the
measure used to derive the current best dispatching
priority, and return to Step 1.

The above algorithm is stated assuming the best
inprovement strategy, but can be modified easily to
other strategies. Other termination criteria, such
as “forced termination” based on iteration counts
and/or the number of simulation runs, can be acco-
modated easily.

4.6 Detailed Settings

As a base dispatching rule, we employ ODSMT,
which gives the highest priority to an operation with
the least value of (lipi ·lipij), where pi is the total pro-
cessing time of the part type of lot i, pij the process-
ing time of operation j of part type of lot i, and li the
lot size of lot i. Rule ODSMT was the best dynamic
dispatching rule tested in Lee and Morito(1996) with
regard to the tardiness measure.

In the experiments to be described below, we use
the following form of the function and parameter:

ghmax = G(gh−1
max) = gh−1

max + a.

Here a is a fixed constant, and the value of 0.9 is used
in our experiments. Note that this is equivalent to say
that ghmax is increased by 0.9 each time we strengthen
the fake. The choice of a=0.9 is based on the results
of preliminary experiments. The initial value g0

max is
assumed to be 0.

5 EXPERIMENTS AND RESULTS

5.1 Model Assumptions

The model described below is a simplified version of
a complex and detailed simulation model developed
for a commercial module-type medium- to small-scale
FMS. We envision a system which consists of machin-
ing centers, which are interconnected to load/unload
stations (LUL) and pallet stocker by a stacker crane,
even though our model here do not explicitly include
LUL’s, stocker, and a stacker crane, under the as-
sumption that they are not constraining resources.
Other important elements of the system considered
include pallets (including fixtures), and finite local
machine input buffer. We list basic assumptions of
the model below:

1) Jobs to be processed correspond to a finite
number of distinct part types. For each part type,
a predetermined production quantity is known which
we call a “lot size”. Processing of a specific part type
consists of several “operations”, where each operation
can be performed without interruption on a single
machine. A given series of operations for a particu-
lar part must be performed in the prescribed order.
We assume a one-to-one correspondence between part
types and lots.

2) A work is placed on a pallet with operation-
dependent fixtures. The number of pallets available
for a particular operation is assumed to be a fixed
constant, which is often a lower single digit number.

3) A pallet and the associated work(s) must be re-
turned to LUL between any two operations. At LUL,
a work is removed from the pallet and the next work
requiring the same operation, if available, is loaded
on this pallet. Subsequently, the removed work will
be loaded on the pallet for the “next” operation, if
one exists.

4) What we call an “operation” generally consists
of many “sub-operations” and the number of tools
required for an operation often reaches as high as 30
- 50. All these sub-operations will be performed au-
tomatically based on the prescribed programs of NC
(numerically controlled) machines, and the time re-
quired for tool changes is practically negligible with
the help of automatic tool changer (ATC). We as-
sume that tool assignments are already given and
the machine(s) which can process a particular op-
eration is known, and thus we pay no attention to
sub-operations. The machine(s) that can process a
particular operation is (are) sometimes referred to as
the “candidate machine(s)” for the operation.

5) Raw materials for the first operation of all parts
are assumed to be available at time 0.

6) Each machine has a finite input buffer of a spec-
ified size. Whenever an empty space becomes avail-
able in a particular buffer, the system tries to fill the
space. Therefore, the system works in a “pull” mode
in a sense.

7) Any movement of pallets requires an “infinite-
speed” stacker crane whose control is determined by
the user-specified dispatching priority. That is, a dis-
patching priority as in (1) is scanned from the top
(i.e., the operation with the highest priority) to see
if there exists a (transportable) work corresponding
to the operation of interest. If there is one, dispatch



878 Morito and Lee
the stacker crane to move the work. Since we as-
sume an infinite-speed stacker crane, the work will
be brought to the buffer immediately. If one cannot
find the work, look for a work with the next high-
est priority, and so forth. We assume that there ex-
ists one static dispatching priority which is applied to
any requests for transportation. In other words, the
dispatching priority does not change over time, nor
depends on machines.

8) No preemption is allowed during processing.
9) Processing time of operations, the number of

pallets for a specific operation, due dates given to
each lot of a part type, are all known and determinis-
tic. Work transportation time and load/unload time
are negligibly small, and they are assumed to be 0.

10) No equipment (machines, LUL’s, a stacker
crane, tools) failure is considered.

5.2 Experimental Conditions

The results presented below are based on a simple 10-
machine job-shop-type FMS model. We assume that
each lot calls for distinct part type, and the number
of lots (which is same as the number of distinct jobs)
is 20. Lot sizes are generated from uniform distribu-
tions in [1-5]. The number of operations per job is
also generated randomly from uniform distributions
in [1-5]. Processing time of individual operations fol-
lows a uniform integer distribution between 15 and 95
(min.). Only a single pallet is assumed to be avail-
able for each operation, and also the size of local ma-
chine input buffer is 1 for each machine. The number
of machines capable of processing an operation is as-
sumed 1. Finally, due dates are determined randomly
based on the method with two parameters, namely,
the tightness factor T and the range factor D, as in
Morito and Lee(1994).

5.3 Experimental Results

5.3.1 Overall Performance

Table 1 shows the performance of the proposed ap-
proach. Results shown reflect the average of 10 ran-
domly generated problems. Two variations of the lo-
cal search are tried, that is, the first improvement and
the best improvement among neighborhood. The ap-
proach produced roughly 10% improvement over the
initial dispatching priority of ODSMT with only 3
iterations and approximately 30 simulation runs (un-
der the best improvement). Here, the number of it-
erations corresponds to the number of distinct base
dispatching rules until a local optimum is reached.
Table 1: Performance of the Proposed Scheme

best imprv. first imprv.
no. of iterations 3.4 2.85
no. of simulation runs 34 18.58
final improvement(%) 10.20 9.53

5.3.2 Process of Improvement

Figure 6 shows how improvement could be achieved
within 52 simulation runs starting from the initial
base dispatching priority obtained by ODSMT. The
horizontal axis of the figure show the average %
improvement achieved by the neighborhood search
within the designated number of fake patterns. The
results reflect the average of 100 distinct problems.

Figure 6: The Number of Different Fake Patterns
Tested and Improvement Achieved

In the case of best improvement strategy, 10 dif-
ferent sets of fakes with varying strengths are gener-
ated (starting from the weaker ones to the stronger
ones) and evaluated, and the plots show the best re-
sults up to the designated run. In the case of first
improvement strategy, the base dispatching priority
is updated as soon as an improved priority is found.

We can observe that 10% improvement can be
achieved after 20 different fake patterns with different
strengths. Figure 6 also shows that most of the gain
is achieved with 20 iterations. This is understandable
because the stronger fake tends to mess up the prob-
lem structure. The performance does not differ much
depending on the best or first improvement strategy,
but the best improvement gives slightly better results.

6 CONCLUDING REMARKS

We presented an efficient simulation/optimization ap-
proach for finding a dynamic dispatching priority in
a static job shop environment under the presence of
multiple identical jobs. The basic ingredients of the



Efficient Simulation/Optimization of Dispatching Priority with "Fake" Processing Time 879
proposed approach are an efficient processing-time-
based dispatching rule, simulation of a job shop, and
a mechanism to fake job processing times based on
the information of job slack. Experimental results of
the proposed approach are presented which show that
an excellent dispatching priority can be obtained with
a few iterations of the algorithms and also with a few
simulation runs, without spending a huge amount of
computer time.

Main contributions of the paper are in order:
1) An overall approach to fake (i.e., to modify)

processing times to obtain better dispatching priori-
ties is presented, and alternative strategies for algo-
rithm design are identified.

2) The proposed approach generated a dispatch-
ing priority more than 10% better than the priority
generated by a good processing-time-based dispatch-
ing rule. The margin was as big as 15%, and such
good results were obtained within 20 simulation runs.
Moreover, much of the gain was achieved during the
first 5 simulation runs or so.

ACKNOWLEDGMENTS

This research is supported by Waseda University
Grant for Special Research Projects 96A-115, 96B-
031,97A-135 and Ministry of Education Grant for Sci-
entific Research (C)(2) 08680469.

REFERENCES

Baker, K. R., and J. J. Kanet. 1983. Job shop
scheduling with modified due dates. Journal of
Operations Management 4:11-22.

Lee, K. H., S. Morito, and J. Imaizumi. 1996. Exper-
imental evaluation of processing-time-based dis-
patching rules in a job shop with multiple identi-
cal jobs. Journal of Japan Industrial Management
Association (in Japanese) 47:282-291.

Morito, S., and K. H. Lee. 1994. An application of
simulated annealing for an FMS dispatching pri-
ority problem. In Proceedings of New Directions
in Simulation for Manufacturing and Communi-
cations, ed. S. Morito, H. Sakasegawa, K. Yoneda,
M. Fushimi, and K. Nakano, 197-203. Operations
Research Society of Japan, Tokyo.

Vepsalainen, A. P. J., and T. E. Morton. 1988. Im-
proving local priority rules with global lead-time
estimates. Journal of Manufacturing and Opera-
tions Management 1:102-118.

AUTHOR BIOGRAPHIES

SUSUMU MORITO is Professor of Operations
Research at Department of Industrial and Manage-
ment Systems Engineering, School of Science and
Engineering, Waseda University. He received his
B.Engr. and M.Engr. from Waseda, and also M.S.
and Ph.D. from Department of Operations Research,
Case Western Reserve University, Cleveland, Ohio.
Professor Morito taught at Case Western Reserve
and also at the University of Tsukuba prior to join-
ing Waseda. His main area of research is operations
research, with particular emphasis on applications
of discrete-event simulation in manufacturing. He
serves as the co-president of the special interest group
on simulation at the Operations Research Society of
Japan.

KEUN HYUNG LEE is a doctoral student at De-
partment of Industrial and Management Systems En-
gineering, Waseda University. He holds Master of
Management from Yokohama National University.


	EFFICIENT SIMULATION/OPTIMIZATION OF DISPATCHING PRIORITY WITH \FAKE" PROCESSING TIME
	ABSTRACT
	1 INTRODUCTION
	2 JOB SHOP WITH MULTIPLE IDENTICAL JOBS AND ITS CONTROL VIA DISPATCHING
	2.1 JobShopwithMultipleIdenticalJobs
	2.2 DispatchingRuleandDispatchingPriority
	2.3 ProblemStatement

	3 RELATED RESEARCH
	3.1 UseofSimulationinDispatching
	3.2 Useof\Modi edInformation"inDis- patching
	3.3 OptimizationofDispatchingPriority

	4 A SIMULATION-ASSISTED SCHEME FOR OBTAINING A GOOD DISPATCHING PRIORITY
	4.1 BasicDesignPhilosophy
	4.2 OverallApproach(Figure3)
	4.3 Designof\Fake"Mechanism
	4.4 AnIterativeMethodBasedonLocal Search
	4.5 PrototypeAlgorithm
	4.6 DetailedSettings

	5 EXPERIMENTS AND RESULTS
	5.1 ModelAssumptions
	5.2 ExperimentalConditions
	5.3 ExperimentalResults

	6 CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 872
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


