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ABSTRACT

In Department of Defense (DoD) distributed training
simulations, events occur that can cause unrealistic
behavior. These events can be system events, such as
the loss of a host or a network link to that host. They
can also be events that happen only in the simulated
world, such as an activity that migrates, bringing in-
creased activity to a different federate. As a result of
these events, the distributed simulation may have to
restructure itself to maintain realistic behavior. The
restructuring must take place in accordance with a
set of rules mandated by both the domain and spe-
cific application. Restructuring decisions must rely
on information from both the simulated world and
the system configuration. Reconfigurations must be
made quickly to minimize unrealistic behavior. Auto-
matic reconfiguration is not only faster than manual,
but automatic restructuring brings the added benefit
of fewer support staff. We call the automatic restruc-
turing of a distributed application with respect to
at set of rules Compensating Reconfiguration and we
have developed a software engineering environment
that could be used to support its inclusion in DoD
distributed simulations.

1 INTRODUCTION

The Department of Defense (DoD) distributed sim-
ulation domain encompasses a wide variety of uses,
architectures, and techniques. DoD uses distributed
simulationfor testand evaluation, analysis, and train-
ing. Each of these categories place different require-
ments on the distributed architecture. Currently DoD
has simulations thatuse a totally distributed approach,
as discussed in DIS (1994), and Weatherly (1996) but
has mandated that all simulations use a middleware
approach as defined by the high level architecture
(HLA) discussed in DMSO (1997). HLA is designed
to support a family of simulations that include aggre-
gate, disaggregate, and component levels of detail.
System anomalies in distributed training simula-
tions can cause unrealistic behavior. Should a com-
ponent lose its link to the rest of the simulation,
those virtual entities will continue under the con-
trol of their dead-reckoning algorithms until they are
removed from the simulation. This crude attempt
at avoiding unrealistic behavior is not very effective.
Starting a new copy of the component on a different
host can reestablish sanity if the component was a
computer generated force (CGF). For human-in-the-
loop trainers this approach is not practical, because
it is too expensive to keep simulators with crews just
waiting for failure. Substituting a CGF for the ab-
sent trainer is more cost-effective and can successfully
maintain simulation realism.

In some cases a manned simulation would only be
lost temporarily. When the manned simulation re-
turns, the distributed simulation cannot leave it out
of the exercise because it represents a significant in-
vestment in resources and training opportunity. Giv-
ing the simulator control of its original entities will
not always be appropriate. For example, a user re-
gaining control of his original helicopter that has al-
ready crashed on the virtual battlefield is futile. As
you can see the reintroduction of a simulator back
into a simulation is a complicated decision that re-
quires knowledge of the simulation state as well as
the system configuration state.

To maintain realistic behavior the simulationmust
sometimes restructure itself as it is executing. This
can include the starting, stopping, migrating, and
initializing of individual simulations. The exercise
controllers can manually reconfigure the simulation.
Since the longer a reconfiguration takes the longer
unrealistic behavior exists, faster is better. In ad-
dition, human controllers are costly. Automatically
restructuring the simulation is a better solution.

We call the automatic restructuring of a distributed
application in accordance with a set of rules Compen-
sating Reconfiguration . We have developed a software
engineering environment that could support its inclu-
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sion in Department of Defense (DoD) distributed sim-
ulations. The Compensating Reconfiguration compo-
nent created through this environment imposes a very
small performance penalty on the simulation, and is
not an unreasonably complex burden for the simula-
tion builders.

1.1 Related Work

In the DoD distributed simulation domain there has
been an abundance of work in defining the HLA as
shown in DMSO Interface Specification(1997) DMSO
Object Model Template (1997) and DMSO Rules (1996)
The HLA addresses the late joining, early departure
and changing ownership of federates. However, fault-
tolerance does not seem to have been adequately ad-
dressed, and certainly it has not been addressed within
the context of demands such as fewer support staff
and human-in-the-loop simulations as pointed out by
Calvin (1994).

The gluing together of disparate heterogeneous
distributed systems forms the foundation of HLA.
Understanding interconnection abstractions like CORBA
and POLYLITH Purtilo (1994) is critical to under-
standing HLA. Using standard interconnection ab-
stractions makes the development of a software en-
gineering environment practical. These abstractions
make it possible for our framework to work with ex-
isting systems without resorting to changing any of
the simulations themselves.

The end-result of Compensating Reconfiguration
is the dynamic reconfiguration of the application. A
running distributed application might change itself
three ways: structure, topography, or implementa-
tion. Changing the structure involves adding or re-
moving components. HLA supports the dynamic join-
ing and departing of federates from the federation.
Currently HLA does not support Comensating Re-
configuration, because federates cannot reconfigure
other federates as they can in other middleware such
as POLYLITH.

There are two primary approaches to dynamic re-
configuration. The CONIC (Kramer 1990) approach
moves the application to a quiescent state prior to
reconfiguration. This approach requires logic located
in each component that will migrate a component to
a quiescent state in finite time. This technique may
be appropriate for analysis, aggregate, and test and
evaluation simulations. Quiescence does not properly
describe training simulations. Hofmeister’s (1991)
approach is better for training simulations. She re-
quires the components involved to divulge their in-
ternal state, then loads this into the new compo-
nent. Since federates continuously divulge their in-
ternal state (the part that the rest of the simulation
cares about anyway), the software is ready for dy-
namic reconfiguration without change.

Some fault-tolerant techniques apply to some in-
stances of distributed simulation as pointed out by
Cristian (1991). We are working to provide a frame-
work through which we can apply traditional fault-
tolerance as well as going beyond to the rich environ-
ment of Compensating Reconfiguration. There has
been some work in merging fault-tolerance and dy-
namic reconfiguration, in Kramer (1990) but it does
not cover the complexities of the distributed simula-
tion training domain.

2 SIMPLE MOTIVATING SCENARIO

To help illustrate the functionality required by for
compensating reconfiguration we will go through a
simple scenario. Our example is a military simula-
tion that integrates manned simulators and computer
generated forces (CGF) to create a rich training en-
vironment. An aviation section (one observation he-
licopter, two attack helicopters) supports a platoon
(four tanks) during an attack. The tanks and heli-
copters are crewed simulators, while the rest of the
friendly and enemy forces are CGFs. A local area
network connects all the simulators and backups.

The goal of this exercise is to train the users.
Therefore a goal of the simulation builders is to in-
sure that a system failure will not result in the rest of
the participants noticing unrealistic behavior. Addi-
tionally, the simulation must bring a manned system
that becomes available again back into the exercise
as quickly and seamlessly as possible. The simula-
tion builders write the rules to achieve these goals.

The exercise starts and all participants are taking
part in the war game. A attack helicopter simulator
program crashes. The uncontrolled virtual helicopter
continues to behave according to its dead-reckoning
algorithm as implemented in all the other simulators.
This is only acceptable for a situation-dependent pe-
riod of time.

In this scenario, a semi-autonomous force (SAF)—
which is a simulator that mostly controls its enti-
ties automatically, relying on a human operator for
only ”strategic” direction—is available as a spare. By
making the attack helicopter a computer generated
force (CGF), the exercise can continue for the rest of
the users.

A second attack helicopter simulator fails because
there is a break in the network connection. Since the
SAF spare is not available, the proper compensation
would be to start another simulator. In this case,
the secondary spare is a very simple simulator that
is completely automated and will only gracefully re-
move the entity from the simulated battle. It takes
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control of the attack helicopter and tells the other
participants that it has a mechanical problem and
lands the aircraft immediately.

The network problem clears, and the attack heli-
copter crew cannot just be left out of the simulation.
They must be reincorporated, to get full value from
the simulation and the time invested in the exercise.
Just giving the crew control of its original attack heli-
copter entity would be futile, since that entity can no
longer realistically participate in the simulation. A
better solution would be for the crew to control the
other attack helicopter which is still involved in the
attack.

Just from this very simple example, you can see
the complexities involved in determining the proper
compensation for an event. Decisions will have to be
based on both the configuration state and the simu-
lation state. Since both are dynamic, the logic must
be adaptive.

3 COMPENSATING RECONFIGURATION
REQUIREMENTS

To make the concept more understandable we have
delineated the requirements for a Compensating Re-
configuration component in the DoD HLA domain.
Figure 1 shows how a Compensating Reconfigura-
tion component fits into a middleware architecture.
It joins the federation as another federate and listens
to all messages passed within the federation. When it
compensates for an event, it does so through the mid-
dleware primitives, taking advantage of the middle-
ware’s services. Guidelines for simulation developers
to take better advantage of Compensating Reconfig-
uration are beyond the scope of this paper.

Coherence. A necessary, but not sufficient con-
dition for a distributed simulation to maintain realism
is for each virtual entity to be controlled by one and
only one simulation at all times. This condition we
call coherence and is the driving principle for Com-
pensating Reconfiguration.

Event-Detection. A Compensating Reconfigu-
ration component must react to multiple system and
application event types. Ideally the Compensating
Reconfiguration component can detect system events
by listening to the application message traffic. This
is low-cost and unobtrusive. Although not preferred,
active measures can be used with higher, but still low,
cost. Additionally, it must be able to detect events
that are defined only in the application state.

Simulation/Configuration Mapping. Because
decision making requires access to both the state of
the simulated world as well as the configuration state,
the software must be able to map between the two,
using information from both to make a decisions.

State Monitoring. To base decisions on the sim-
ulation state the component must have access to that
state. Because distributed simulations may include
many entities each with a host of attributes, access to
the simulation state must be in abstract form to keep
the decision logic from getting overly complicated.

Decision-Making. When the Compensating Re-
configuration component identifies an event, it must
decide which compensating action is appropriate. It
must do this for all the event types it handles, and it
must decide based on its defining rules and the cur-
rent state of the simulation and configuration. The
rules must be expressive enough to handle compli-
cated conditions while allowing the simulation builder
to think in terms of end-results rather than implemen-
tations. Distributed simulations can create events
simultaneously; consequently the Compensating Re-
configuration system must be capable of concurrently
handling multiple decisions. As the application ex-
ecutes, to include reconfiguring itself, the decision-
making logic must take those changes into account.

Reconfiguration. The HLA interface specifica-
tion provides the means for components to join and
depart the federation during execution. (DMSO In-
terface Specifcation 1997) Most other middleware al-
lows this process to be managed by components that
are not participating in the reconfiguration. Not only
must the simulation builder have access to the full
power of the API, but he must have a powerful way
of employing that API. He must have access to the
state information, as well as be able to apply loops,
conditionals, and waits. In addition, Compensating
Reconfiguration components must insure that regard-
less of the frequency, order, or timing of reconfigura-
tions the simulation will always end up with a coher-
ent structure.
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Figure 2: Bullpen Structure and Data Flow

4 BULLPEN: A COMPENSATING RECON-
FIGURATION FRAMEWORK

Our approach to solving this problem is a software en-
gineering environment called Bullpen. A key part is
the Bullpen framework, which includes three compo-
nents. Figure 2 shows the components of the Bullpen
Framework and the data flow between the compo-
nents and the simulation. Bullpen gets its policies at
runtime through the use of various files.

We have developed the Bullpen prototype on a
simulation architecture based on DoD’s High Level
Architecture (HLA). Bullpen runs as a support util-
ity; it only inserts itself into the simulation when
required. Most of the time it will monitor all the
message traffic of the simulation and do nothing. If
the simulation is using multicast or broadcast then
there is no real overhead. With unicast there is the
slight penalty of an additional network message per
simulation message. When it detects an event of in-
terest, Bullpen then makes two decisions. The first
decision determines a compensating reconfiguration,
while the second decides how to implement that re-
configuration.

Bullpen has three independently executing com-
ponents. It is Scout’s mission to detect events of in-
terest and report them along with any preliminary
information to Coach. Coach contains the decision-
making logic for both the compensation and recon-
figuration decisions. Coach directly executes the re-
configurations by using the services provided by the
distributed simulation infrastructure. Scoreboard is
responsible for keeping a valid copy of both the ap-
plication and system state. The application state
includes meta-states. Meta-states keep the compen-
sating reconfiguration logic simple while minimizing
changes when requirements change. In our prototype
this includes implementation of the dead-reckoning
algorithm.
Bullpen has at least five major threads running
whenever it is executing. Scout continues to han-
dle incoming messages and to test for absent simu-
lators regardless of what else Bullpen is doing. This
way Bullpen can identify an event when it happens.
Coach manages simultaneous events by spawning a
new thread for each event it handles. Scoreboard
deals with queries and updates in one thread while
updating the database through dead-reckoning in an-
other. This way we insure that the database always
represents an accurate picture of the state.

Scout. Scout reifies the event detection func-
tion. It keeps its own small lists, but otherwise re-
lies on Scoreboard for application state information.
Anytime Scout observes a message from a federate
it updates that federate’s heartbeat. Scout is also
party to reconfigurations made by Coach so that it
understands the current structure of the simulation.
It detects events two ways: by discovering messages
from federates that Bullpen has reconfigured out of
the simulation, and by detecting an expired heart-
beat.

Coach. Coach uses a separate type of Decision-
Maker for each type of event that it handles. Each
Decision-Maker uses the rules defined by the simula-
tion developers and the current state to choose a com-
pensating action. Compensating actions are imple-
mented as a Strategy, which can be a JavaTM method
or a Partial-Order-Planner. When the Strategy is
a method, it can use conditionals, loops, and waits
while it executes the reconfiguration. It also has the
ability to query for system and/or application state.
This is very powerful, but forces the developer to deal
with the reconfiguration protocol. A planner works
off a set of rules and is easier to reason about, but
may be slower. Coach also uses a locking protocol
to ensure that reconfiguration actions are atomic and
leave the federation structure consistent.

Scoreboard. Scoreboard’s purpose is to keep an
accurate version of the system and application state
and provide an interface for queries. Scoreboard mon-
itors message traffic updating itself, to include us-
ing triggers—The same concept found in Relational
Databases, a change in the data causes a trigger to
fire. That trigger executes an algorithm that may
modify the database and recursively cause other trig-
gers to fire. to keep accurate meta-states. The feder-
ation’s dead-reckoning algorithms are part of Score-
board.

Bullpen needs access to the application meta-state
while making a decision. In large simulations making
decisions using the state of entities can be very com-
plex. When stating requirements, simulation users
will tend to think in terms of aggregate states of vir-
tual object groups. These we call meta-states.



Using Compensating Reconfiguration to Maintain Military Distributed Simulations 965
Moving Attacking Consolidating

Not Mission Capable

crosses LD/LC, sees enemy,fires, fired ata

enters objectiveb
mobility kill, kill, no ammo, mech breakdownc

Tank
a b

b

c cc

Transitions

Moving
a b

b

c cc

Transitions

Tank Platoon

Ineffective

Attacking Secure

at least one tank attackinga

half or more tanks not mission capablec

all tanks consolidatingb

Figure 3: State Transition Diagram for an Individual
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To better explain meta-states look at figure 3.
The top diagram shows the transitions and rules for
a single virtual object—a tank. The bottom dia-
gram shows the state transitions for a unit—a tank
platoon—containing four tanks. The individual tanks
change state based on their location, status, or the
actions of other virtual objects. The tank platoon
changes state when all or some of the member tanks
change state. If we were to follow this hierarchy to
division level (∼5000 vehicles) you can see that the
complexity of the conditionals required to use the
state would be enormous. This makes using the appli-
cation state unrealistic. However, by encoding state
changes and relationships in the database through the
use of a trigger, the use of meta-states of the levels in
the hierarchy becomes very convenient.

4.1 Bullpen Advantages

Using Bullpen yields sufficient compensating recon-
figuration functionality for less effort than a tradi-
tionally programmed approach. Bullpen combines
rule-based interfaces and a software kit to provide
the performance, expressiveness, and capability nec-
essary to support the distributed training simulation
domain. As a result, less effort if required to build the
functionality from scratch, but as the requirements
evolve, it is easier make the appropriate changes. A
side benefit of this is that prototyping requires less
effort, and is therefore more likely to be included in a
project. Since the purpose of compensating reconfig-
uration is to implement engineering decisions about
the allocation of resources against the risks, the more
t
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Figure 4: Reconfiguration Timeline (not to scale)

knowledge the designers have the more likely they will
develop a good allocation design.

While providing these benefits, it is crucial that
the resulting software meet the performance require-
ments for compensating reconfiguration. Performance
can be broken down into three broad areas: expres-
siveness, response-time, and correctness.

When using an abstraction to simplify a task, we
trade full control and knowledge of the process for
simplicity. By using a rule-based approach we allow
the developers to reason about compensating recon-
figuration while hiding the details. The risk is that
we have hidden details that are critical to a correct
solution; out abstraction is not expressive enough to
meet the domain’s requirements. To guard against
this, we are experimenting with both synthetic sce-
narios and actual DoD scenarios to find requirements
that we cannot satisfy due to our abstractions being
overly general. So far we have not found this to be a
shortcoming of our design.

Normally, the implementation of an abstraction
will include some performance penalty over a less ab-
stract approach. We feel that some response-time
degradation is acceptable, as long as it does degrade
the usefulness of the application. Almost any auto-
mated solution will be faster then using human con-
trollers to reconfigure the system, so comparing to
that standard is not very useful. A well optimized
hand- crafted component can normally outperform an
abstract implementation. However, if faster response-
time is not the only consideration, some relaxation of
this standard is acceptable.

We look at response-time by it down into three
components and comparing the abstraction penalty
to the other parts of the total response-time. Figure 4
shows the timeline for a reconfiguration. These times
are all very hardware dependent so we limit ourselves
to an order of magnitude analysis. tEVENT is the
time the event occurs. tdetect is when Bullpen detects
that event. With heartbeats, this will average half the
heartbeat expiration, measured in seconds.(DIS 94)
tDECIDE marks the completion of Bullpen’s decision
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process. tRECONFIG is the time that the reconfigura-
tion of the simulation is complete. The elapsed time
TDECIDE is the only part that is attributable to the
logic which has an abstract interface. Usual values
are in hundredths of a second. In the best case where
the simulation builders dedicated a hot spare to this
event TRECONFIG would have a duration measured
in tenths of a second. At the other end of the spec-
trum, loading and initializing a simulator would give
TRECONFIG a value measured in tens of seconds.

tOBS is the time where a user of the distributed
simulation will observe unrealistic behavior. It will
occur at some non-deterministic interval (usually sec-
onds) after tEV ENT . If it is also after tRECONFIG,
say at t′OBS then no unrealistic behavior occurs. If it
is before tRECONFIG then the simulation will display
unrealistic behavior during the interval TUNREAL.
The duration of TUNREAL is dependent on TRESPONSE .
TDETECT (100) dominates TREACT in the best case,
and TRECONFIG(101) dominates in the worst case.
TDECIDE is never the dominant term. Therefore the
penalty imposed by our abstraction is not a critical
part of the response time.

The final part is correctness. The created compo-
nent must be able to provide correct reconfigurations,
if it is designed to meet the requirements. We assume
that all participating simulations have passed valida-
tion and verification, so that given a correct view of
the simulation state they will produce realistic behav-
ior. We deem a compensation correct, if afterwards,
each entity is controlled by one and only one compo-
nent that has all the information and authorization
that it needs to manage that entity.

5 CONCLUSIONS

We have implemented a number of scenarios using our
approach to compensating reconfiguration as well as
a more traditional high-level language approach. We
have found that our approach provides sufficient per-
formance for the scenarios that we have investigated.
Our rule-based interface is well-suited to expressing
both the compensation and reconfiguration logic. We
have not found any requirements that are excessively
difficult to implement using our system, and in fact
we have found it much simpler to reason about re-
configurations as sets of rules rather than procedural
algorithms. Although there is a performance penalty,
we have found it not be perceptually significant. Our
properly built implementations, have resulted in cor-
rect reconfigurations.

In terms of the effort required to produce compen-
sating reconfiguration functionality, we have found
great advantages to our approach. We have found
that on the average the initial implementation takes
less than half the time of our hand-coding approach.
Where we really found a large advantage was when
we slightly changed the requirements as would oc-
cur when prototyping. Because Bullpen encapsulates
the different logic involved, changes where isolated to
specific parts of bullpen and very easy to make.

We have shown Compensating Reconfiguration as
a viable technique for use in distributed simulation.
It can maintain realism in the presence of failures.
We have shown it is also useful to automatically keep
the system optimally configured as the simulation
evolves. Compensating Reconfiguration can be crit-
ical to maintaining realism in training simulations,
and it can be reduce the support staff.

We have identified a weakness in current distributed
simulations system research. The unexpected loss, or
reentry of a federate can result in unrealistic behav-
ior. Reacting to these anomalies requires more com-
plex logic than traditional fault-tolerance provides
and faster reactions than current dynamic reconfig-
uration systems. We have identified a solution to
this and in the process developed a software engi-
neering environment to create components that allow
distributed simulations to perform compensating re-
configuration in response to any type of event. Sim-
ulation builders can use this component to allocate
resources and avoid unrealistic behavior. It performs
within the time constraints of training simulations
and shields the simulation builder from the details
involved.
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