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ABSTRACT

Modeling and simulation of very large systems
introduces a number of issues that are not seen in the
modeling of simpler systems.  These arise because the
resource requirements for simulation rise much faster
than the number of components being modeled and
quickly overtake the available hardware and calendar
time allocated.  This implacable constraint has been
met in several ways, though each has issues.

11))  Decrease the number of objects by aggregating
some..

Issues:  Are the right objects being aggregated and
how do we know?  How do we mix objects of different
aggregations?

2) Coarsen the temporal resolution for some portions
of the model.

Issues:  Are the right portions coarsened?  How do we
mix the coarse with the fine?

3) Build several models, each addressing different
facets.

Issues: How do we combine these into a
comprehensive model?  How do we organize this so
that for a particular enquiry, we can determine which
of these facet models are applicable?

   This paper will discuss an approach that addresses
these issues by providing a framework that accepts
different levels of aggregation and/or resolution.

1   CONSTRAIN SIMULATION SIZE

To motivate this discussion, let's start with a modeling
problem that is big, yet still well within what is being
modeled today.  The example is a telecommunications
example, an Asynchronous Transport Mode (ATM)
network consisting of 40 nodes highly interconnected
with 50 OC48 links, 150 OC12 links and OC3 links to
the external systems (OC48 is Optical Carrier 48, at
2.488 Gbps, OC12 is 622 Mbps and OC3 is 155
Mbps) and where the typical path has an external link
on each end, four nodes and three trunk links.  Given
that we want to calculate propagation delay on each
link, bit errors, queuing at each port and switching, we
need 200 floating point operations (FLO) for each
object we model going through this system.  If we
model at the bit level and we believe the average
traffic on this network will be 100 Gbps, then for each
second of simulation time, we will need 20,000
gigaFLO, or 20 teraFLO.  At the time of this writing,
there is a major effort under way to build machines
(for example, Intel's ASCI Red) capable of 1 teraFLO
per second (teraFLOPS) (Pountain 1997).  Even with
this  machine, not yet available, each second of
simulated time would take 20 seconds to compute.
   This factor of 20 wouldn't be so bad if we only had
to simulate just certain short time intervals which have
particularly interesting dynamics.  However, we
usually also have to let the simulation run for a while
to 'settle'.  That is, to let events that are temporally
correlated come to an equilibrium. In the
telecommunications arena, this is mainly the call
duration; a call is initiated and a sequence of signalling
ensues that allows the resources to be allocated to
service that call.  When the call is terminated, the
resources are deallocated (the call is torn down).
These are the two events that have the most effect on
other calls and, for voice connections, they are
typically separated by three minutes.  Settling, if we
start from an empty system, takes at least three times
this length, though the system still hasn't usually
completely settled that early.  Even then, we are
talking about 9 minutes of simulation time, which
would take 180 minutes (20 times longer) on the not
yet existing teraFLOPS machine and that just gets us to
a settled state.  We still need to add time to do
whatever experiments we wish to do.
   Thus, a given run for this system would take three
hours and the course of runs needed to answer an
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important design question might take several days, just
in run time.  And, the system posed here is not nearly
as large as some telecommunication models that have
been successfully simulated, and those have been
simulated on machines substantially less powerful than
the teraFLOPS machine still being designed.  In other
words, for most real problems, we cannot rely on
hardware to provide us sufficient computational
capacity to perform the simulations we require.
Rather, we are going to have to intelligently decide just
what needs to be modeled and so constrain our
simulation size.

2   ADDRESSING RESOURCE LIMITATIONS

To most modelers, the example above would seem
strained, since they would almost certainly not model
at the bit level.  Rather, they would aggregate to the
packet level (in the example above, the packets would
be ATM cells which are 424 bits) achieving a
compression factor of the packet size (taking our run
time from 180 minutes to 25 seconds).  And, in fact,
they would model large parts of the network at the call
level; that is, start a stream of a certain number of
packets per second at one time, then terminate it at a
later time.  This number of packets is deducted from
the capacity of the nodes the stream travels through.
The action of all these packets is thus expressed with
only two computer objects, the start object and the
terminate object, as opposed to having a computer
object for each packet.  If the streams typically transfer
many packets, this approach offers substantial
compression.  Often, some streams will be modeled at
the packet level to get fine level resolution, but most of
the network would be at the coarser call level.  In fact,
the nodes not on the paths of interest may be
aggregated into a bulk resource usage representing the
totality of calls originating or terminating in that
subnetwork.
   This telecommunications example is an example of
the discrete event simulator methodology as opposed
to the time difference methodology.  An  analogous
example could be constructed for the time difference
methodology and the compression approach for that
methodology is to coarsen the time resolution, at least
for parts of the system.
   The discussion so far has seemed to indicate that the
only way to address computational resource constraints
is to decrease the number of objects being simulated.
However, for many other large scale computational
efforts, an  approach being increasingly used is to
distribute the processing over several CPUs.  The
CPUs may be in the same box (such as symmetric
multiprocessors), or they could be spread over several
boxes connected over LANs and even WANs.
Simulations, as opposed to activities such as data base
service, have the additional constraint that the
simulation of different components must be
synchronized.  In other words, if we've divided the
simulation into processes depicting different modules
of the system and have distributed these processes,  we
need to ensure that when the true system modules
would interact, the appropriate simulation processes
must be able to interact.  But if one of these processes
runs substantially slower than expected, then all the
other processes that could be affected by it must either
wait for it or will have to roll back if they have
proceeded on. There are, of course, some types of
simulation where all the processes run at about the
same speed, computational fluid dynamics being a
prime example, and thus synchronization is not a
problem.  But where we are modeling a system
consisting of different components, such as
telecommunications models, the processes will likely
not have the same run times and, in fact, may be very
hard to predict a priori.  For these type models,
distributing a single simulator over several processors
is still a research issue and is not an available option
on current commercial simulation tools (Ho,
Cassandras and Makhlouf, 1993 and Bhatti and Vakili,
1996).
   Even though modelers have been forced to use a
single processor, large systems are successfully
simulated.  In some of these, aggregation methods do
not suffice to provide the requisite compression, and
something like distributed processing is necessary.  In
these cases, instead of distributing the processes at run
time, some modules are extensively simulated by
themselves (or empirical data is collected for them)
before run time so that we have an easily calculated
method for determining that module's behavior at run
time.  There are two major classes: 1) analytic (for
instance, the pressure-volume-temperature formula for
the aggregate behavior of immense numbers of
individual gas molecules) or 2) stochastic (the "combat
results tables" of military board games are drawn from
historic evidence, either from real life or from
simulations and allow a dice toss to determine the
results of a given engagement).  This will only work if
we can decompose the system; that is, divide it into
subsystems and determine where the boundaries can be
drawn between these subsystems, the 'interfaces'
between them, so that we can have assurance that the
coupling between them is substantially captured by one
of these mechanisms, the analytic or the stochastic.
   Most real systems will admit a decomposition into
subsystems, and may well admit analytic expressions
of their behavior.  But, these analytic expressions may
involve tens or hundreds of variables.  In that case, we
will look for the expressions that either utilize very few
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variables or utilize variables we would be working
with anyway in other subsystems.  Even though our
original expressions may have been analytic, these
aggregated expressions will typically be stochastic to
capture the range of affects of the unexpressed
variables.  Our framework process uses the
decomposition into subsystems along with efficient
stochastic combination techniques to track our results
achieved and to help guide our next efforts.
   In sum, in this section we have discussed three ways
to deal with the limitations of computational resources:
1)  Decrease the number of objects by aggregating
some.
2)  Coarsen the temporal resolution for some portions
of the model
3)  Build several models, each addressing different
facets
Each of these approaches has issues, which we'll
discuss in the next section.

3   THE EXPERIMENTAL FRAMEWORK

To control our run time, as we've seen in the previous
section, we try to break the system into subsystems
which interact with each other utilizing a sufficiently
small number of variables.  In addition to the
subsystems of the system, we must also consider the
environment the system acts in.  In the framework
approach, we treat the relation of a subsystem to the
system as if it were the relation of a system to its
environment.  So, focussing on a particular element,
whether it is a system or a subsystem, there is a
'possibility' space that we work in, that is, the space of
what we believe to be the likely states of the
environment our element will have to work in.  We
typically set up our modeling program by dividing this
'possibility' space into extreme subspaces,
i.e.,scenarios, where the rest of the 'possibility' space is
believed to lie within the realm defined by these
extreme cases.  The 3-D spatial analog of this is a
tetrahedron where the extremes of the 3-D figure are
the 0-D extreme subspaces (the apexes), the 1-D
extreme subspaces (the edges) and the 2-D extreme
subspaces, the faces.   If we choose a set of these
subspaces correctly, the rest of the points in the
possibility space are linear combinations of these.  So
if we run simulations on these subspaces getting
estimates of behavior on each, we could combine these
to obtain estimated behavior for the other points of the
possibility space.  Thus, we compress the experimental
program because we now only have to test a much
smaller number of points, those within these scenarios.
   Looking at it abstractly, our possibility space is a
bounded, convex body of some finite dimensionality.
The different scenarios represent extreme subsets of
that body having lower dimensionality.  However,
there are variables the simulations must consider that
are not represented in this possibility space and the
purpose of doing multiple runs of a given scenario is to
test their affect and the effect of varying the values of
the scenario variables, if the scenario subset has non-
zero dimensionality.  Thus, the results of a course of
runs will form a distribution.  What we wish to do is to
combine these distributions to get estimated
distributions for the points of the possibility space not
in the selected test sets, the scenarios.  Note that if we
can break subsystems into subsubsystems, we can use
the same process to compress the experimental course
for them, as well.
   Combining distributions has always been somewhat
problematic.  If the underlying relation is linear and
the component distributions are symmetric, then the
method of moments (that is, combine the averages and
combine the variances) will work.  However, if the
distributions are skewed, or the relations are nonlinear,
the method of moments yields a less satisfactory result.
   Of course, we could use Monte Carlo techniques to
combine the distributions, but this puts us pretty much
back where we were.  Another method, the Dynamic
Focusing Approach (DFA) uses what could be thought
of as a controlled Monte Carlo approach (Fall 1997).
Instead of selecting from the component distributions
randomly, it guides each choice.  An important
consequence of this is that, if there is a region of the
estimated combined distribution in which we're
interested, we know which choices of the component
distributions got us there.  From examining those
choices, we can tell which components were the
strongest determiners of that region, and thus we can
focus on those for more detailed study.

4   OPERATION OF THE FRAMEWORK

The framework process described here assumes that
we can break the system into subsystems and that,
though the knowledge of the subsystem's behavior
might be fuzzy, we do know how those behaviors
combine to provide the system's behavior. In most
cases, we have real systems that serve as starting
points for the system we are studying.  The historic
evidence of their behaviors provide us the delineations
we need.  In the cases where we don't have parent
systems, our course of action is determined by what
our objectives are.  If we are on a very short fuse,
where some evidence must be quickly obtained, then
we just run simulations up to the time limit, trying to
spot any interesting behavior that could be focussed
on, and report out what we've seen.  If we have more
time, we run these simulations until we can identify
where the likely divisions into subsystems should be
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and what the relation is that combines those up into the
total system.  Note that for the simulation to be
explainable, we really have to achieve this
decomposition.
   If we have been able to define appropriate
subsystems, we can compress our simulation.  One
method, if appropriate, is to simulate the subsystems
and combine using method of moments or DFA.  The
other is to aggregate some of the subsystems.
Typically, we then present the coarse portions to those
modeled at a finer level by having the coarse ones
modify the stochastic choices the finer would make.
That is, the coarser express themselves as 'bulk'
phenomena; for instance, the telecommunications
traffic we model in bulk expresses itself by taking up
resources.  A message stream being modeled at the
finer level would be seeing buffers and switches
handling their packets in a fashion corresponding to
the bulk load imposed by the coarse components.  This
addresses the issue of how to mix levels of
aggregation.  The issue of whether the right objects are
being modeled is an analysis issue, determined from
the data that was used to delineate classification
boundaries.
   The temporal resolution approach has the same
issues which are similarly addressed
   The last approach,  where we have built several
models to capture the system, can use method of
moments or DFA to utilize these components to form a
comprehensive model.  One should note that, since
DFA is a controlled Monte Carlo approach, for a given
enquiry, which will typically regard a particular region
of the combined distribution, we can trace back to
which components most determined that region.  Thus,
we have a mechanism that helps us focus on those
component models that are most important to the
enquiry.
   In sum, to be able to compress our simulation
experimentation sufficiently to stay within our resource
constraints, several approaches are typically used that
reduce the size of our simulation.  Though these have
issues, the framework approach described here has
substantially addressed them.

REFERENCES

Bhatti, G.M. and P. Vakili. 1996. Parallel/distributed
simulation for parametric study of wireless
communication networks. Submitted to IEEE
Transactions on Parallel and Distributed Systems.

Fall, T.C. 1997.  Dynamic focusing approach to mixed
level simulation.  In Proceedings of Enabling
Technology for Simulation Science, ed. A. Sisti,
22-30.  SPIE, Bellingham, Washington.

Ho, Y.C., C.G. Cassandras and M.R. Makhlouf. 1993.
Parallel simulation of real-time systems via the
standard clock approach.  Mathematics and
Computers in Simulation 35(1):33-41.

Pountain, D. 1997. Parallel goes populist. Byte 22(3):
88NA3-88NA8.

AUTHOR BIOGRAPHY

THOMAS C. FALL is a Principal Systems Engineer
at Lockheed Martin Western Development
Laboratories.  He is leading a team charged with
simulating very large telecommunications networks.
He has also been involved with various aspects of
information integration for decision makers including
evidential reasoning and modeling and simulation and
has used models to assist the evidential reasoning
process for event classification, for data fusion and for
capacity management.    He received his B.S. in
Physical Chemistry  and his Ph.D. in Mathematics,
both from UC Berkeley.


	A FRAMEWORK FOR THE SIMULATION EXPERIMENTATION PROCESS
	ABSTRACT
	1 CONSTRAIN SIMULATION SIZE
	2 ADDRESSING RESOURCE LIMITATIONS
	3 THE EXPERIMENTAL FRAMEWORK
	4 OPERATION OF THE FRAMEWORK
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 974
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


