
A HYBRID TOOL FOR THE PERFORMANCE EVALUATION OF NUMA
ARCHITECTURES

James Westall
Robert Geist

Department of Computer Science
Clemson University

Clemson, SC 19634–1906, U.S.A.
ABSTRACT

We present a system for describing and solving closed
queuing network models of the memory access perfor-
mance of NUMA architectures. The system consists
of a model description language, solver engines based
upon both discrete event simulation and derivatives
of the Mean Value Analysis (MVA) algorithm, and a
model manager used to translate model descriptions
to the forms required by the solvers.

A single model description file is used to describe
the essential elements that characterize the NUMA
system and its workload. During a single simulation
or MVA modeling run it is easy to dynamically vary
elements of the system model, such as mean device
service times, elements of the workload model such
as cache miss rates, or both. Use of the extremely
fast, but approximating, MVA solvers to interpolate
between design points computed by the slower simula-
tor allows the analyst to obtain detailed and accurate
results in minimal time.

Keywords: modeling methodology; discrete event
simulation; mean value analysis; NUMA architec-
tures.

1 INTRODUCTION

While small-scale shared memory multiprocessors,
consisting of tens of processors attached to a single
shared bus, have been available for many years, large-
scale systems with shared memory and scalable in-
terconnection structures are relatively new (Lenowski
and Weber, 1995). Currently available systems of this
type include the Cray T3D, HP-Convex Exemplar
SPP 1200, and Encore GigaMax. In these large-scale
systems, memories are logically shared but physically
distributed. Thus, the traditional assumption of con-
stant access time to main memory is no longer valid,
and so performance prediction tools must be adjusted
to account for non-uniform memory access (NUMA)
times.
Because of hardware imposed requirements for si-
multaneous possession of multiple resources, queue-
ing network models have not been well suited for the
performance evaluation of traditional shared mem-
ory multiprocessors. The use of split transaction
bus architecture with queueing in the interconnec-
tion network makes NUMA systems somewhat more
amenable to the use of queueing network based per-
formance tools. However, some significant obstacles
to their use must be overcome.

While queuing network models (Lazowska, Zahor-
jan, Graham, and Sevcik, 1984; Trivedi, 1983) can
provide extremely fast performance evaluation, ana-
lytic solutions of such models are provided under an
assumption that network devices are stochastically
equivalent to first- come, first-served (FCFS) servers
with exponentially distributed service times. Mean-
value analysis (MVA) (Lazowska, Zahorjan, Graham,
and Sevcik, 1984) is an easy to implement and widely
used technique for solving closed queuing networks
that satisfy these assumptions.

The MVA algorithm works as follows. For a closed
network of M servers, let qi,j denote the probability
that a request leaving server i next visits server j. If
Q = (qi,j) is the M ×M matrix of such probabilities,
then any vector solution, λ, to

λ = λQ (1)

contains the relative number of visits to each node in
the steady-state. It is only relative because (1) con-
tains 1 degree of freedom. The mean network per-
formance measures are then completely determined
by the vector λ and the mean service times at the
servers.

It turns out that expected response time at server
i with n customers in the network, E[Ri(n)], is re-
lated to expected customer population at that node,
E[Ni(n)], and expected service time at the node,
E[Si], by a simple formula:

E[Ri(n)] = E[Si](1 + E[Ni(n− 1)]) (2)

1030 Westall and Geist
Figure 1: A two-server network.

This is the key observation of the MVA technique.
Two applications of Little’s theorem relate expected
node throughput, E[Ti(n)], to each of these measures:

E[Ti(n)] =
n∑M

j=1
λj
λi
E[Rj(n)]

(3)

E[Ni(n)] = E[Ti(n)]×E[Ri(n)] (4)

The MVA technique starts with E[Ni(0)] = 0, and
then repeatedly applies equations (2) - (4) until net-
work customer population, n, reaches the desired
level.

However, most devices in the NUMA architecture
(memories, buses) have deterministic (constant) ser-
vice times rather than exponential, and thus violate
the assumptions implicit in MVA. MVA solutions of
queuing networks having servers with deterministic
service times overestimate device contention and so
underestimate architecture performance.

As an example, consider the 2-server cycle shown
in figure 1. Each server has a mean delay of E[S].
Here λ = (1, 1), and so we obtain, for each node,

E[Ri(1)] = E[S]

E[Ti(1)] = 1/(2E[S])

E[Ni(1)] = 1/2

and so
E[Ri(2)] = (3/2)E[S]

Note, however, that if a 2-customer, 2-server cycle
had constant service times with value E[S] at each
server, the customers would ultimately move in tan-
dem between the servers, each experiencing no queu-
ing delay at all, and so we would have

E[Ri(2)] = E[S],

that is, 2/3 of the MVA value given above. This is
the essence of the inaccuracy in using standard ana-
lytic solutions of closed queuing network models when
representing networks with deterministic servers.

Discrete event simulation can, of course, provide
extremely accurate estimates. However, it is usually
too slow to allow a system designer to explore the
relative merits of a vast range of potential hardware
and workload configurations.

An analytic approximation technique that we term
“mean-based iterative estimation” has been used by
several authors. A general model of multiprocessor
systems with multiple memory modules was built by
Vernon and Holliday (1986) using a timed Petri net,
where the transition holding times were determinis-
tic or geometric. A more recent variation on mean-
based iterative estimation, due to Sevcik and Zhou
(1993) appears to be extremely accurate in estimating
mean network cycle time for a wide range of potential
NUMA architectures.

In (Geist, Smotherman, and Westall, 1996) and
(Geist and Westall, 1996) we describe an alterna-
tive analytic technique for estimating performance in-
dices of NUMA architectures. Our technique is based
on modifications to the Mean Value Analysis (MVA)
technique for solving a closed, multi-chain queuing
network model. It employs an iteration to conver-
gence to obtain node utilizations and thus draws from
both the Sevcik-Zhou approach and the theory of
queuing networks.

Our technique, called Deterministic Service Ap-
proximation (DSA) has been shown to provide very
accurate results over a range of problems, but we have
not been able to establish bounds on its error. Thus,
the technique is particularly appropriate for inclusion
in a hybrid solution system that employs simulation
to establish foundation data points and the fast ana-
lytic solver to interpolate between them.

A considerable amount of data is required to define
a model of a NUMA system and the characteristics
of its workload. When a hybrid solution system is
employed it is particularly desirable that:

• the model description be completely de-coupled
from the model solution

• both the simulation and the analytic solvers be
driven by the identical model description.

In the remainder of the paper we describe an ap-
proach to satisfying those objectives. In section 2
we review closed queuing networks and describe how
transaction routing is specified in multi-chain mod-
els having intra-chain routing requirements that are
dependent on the present state of a transaction. We
describe the structure of our model description lan-
guage in section 3 and show how it is used by the
model manager in section 4. In section 5 we provide
an example application to a hypothetical 8-processor
architecture. Conclusions follow in section 6.

2

A
s
fl
i
t
fi
t
c
W
t
s

s
a
s
i
o
fi
v
n
c
i

s
t

A Hybrid Tool for the Performance Evaluation of NUMA Architectures 1031
cpu_0 cpu_1 cpu_2 cpu_3

cpu_4 cpu_5 cpu_6 cpu_7

L2_0 L2_1 L2_2 L2_3

L2_4 L2_5 L2_6 L2_7

BUS_0

BUS_1

SCI_ 1SCI_0

MEM_0

MEM_1

MCACHE0

MCACHE1

TCACHE0

TCACHE1

SCI

INTF_0

SCI

INTF_1

Figure 2: A hypothetical NUMA system

 QUEUING NETWORK MODELS

closed queuing network consists of a collection of
ervers along with a fixed number of transactions that
ow among the servers. An example of such a model
s shown in figure 2. We use the term system model
o refer to the part of a model specification that de-
nes the servers and their associated service charac-
eristics. Service characteristics include queuing dis-
ipline, server capacity, and service time distribution.
e assume FCFS servers with capacity one transac-

ion. We support only exponential and deterministic
ervice times.

The term workload model refers to the part of a
pecification that defines the number of transactions
nd their routing as the flow from server to server. In
imple CQN models, the routing of transactions flow-
ng among the servers is defined by a single matrix Q
f branching probabilities. The value of Q(i, j) speci-
es the probability that a transaction completing ser-
ice at server i will proceed to server j. Such queueing
etworks are referred to as single chain networks be-
ause all transactions are routed in a stochastically
dentical way.

In contrast, transactions (memory references) is-
ued by one CPU in a NUMA system migrate through
he memory subsystem (tag and data caches, busses,
BusSameTCtoData

TCacheSameOut

BusSameOut

L2OwnOut

L2SameOut

BusSameIn

L2OwnIn

BusSametoSCI

SCIIntfSameOut MCacheSameOut

SCIOut BusSameSCItoData

MemSameOut

SCIIn

Figure 3: Routing classes for chain 0

and memories) but always return to the CPU that
issued the transaction. Thus, the routing behavior of
the system cannot be specified by a single matrix of
branching probabilities. In the standard terminology
of CQN’s, a unique routing chain must be associated
with each processor. In multi-chain queueing network
a unique matrix of branching probabilities, Qc(i, j),
must be specified for each independently routed chain
c. Thus, in a NUMA model, one would expect to have
to specify a routing matrix for each processor.

Further complicating the issue is the fact that the
routing behavior of a transaction within a given rout-
ing chain of a NUMA model cannot be specified by a
single matrix that specifies the branching probabili-
ties among devices. Each memory access transaction
proceeds outward to the storage element that con-
tains the target data item, but then returns directly
to the CPU that issued it. Therefore the outbound
path of the transaction is stochastic, but the return
path is deterministic. In the example system of fig-
ure 2, when an outbound transaction associated with
CPU 0 completes service at Bus 0, it might proceed
to Mem 0, MCache0, TCache0, SCIIntf 0, or another
L2 cache. However, an inbound transaction associ-
ated with CPU 0 must necessarily proceed to L2 0
after receiving service at Bus 0.

If each physical server is viewed as a collection of

1032 Westall and Geist
logical service classes, it is possible to specify the
routing behavior of a given chain c with a single ma-
trix Qc. The service classes used in routing chain
0 transactions in our example system are shown in
figure 3. Bus 0 server classes include logical service
classes BusSame In and BusSame Out. A chain 0
transaction leaving BusSame In proceeds to server
class L2Own In with probability 1.0, but a chain 0
transaction leaving BusSame Out proceeds stochas-
tically to a class associated with one of the devices
Mem 0, MCache0, TCache0, or SCIIntf 0. When this
approach is used, the value of Qc(i, j) specifies the
probability that a transaction completing service at
logical service class i will proceed to logical service
class j.

For the eight processor system shown in figure 2,
we use 27 different logical service classes. A subset of
these is shown in figure 3. Since an inbound transac-
tion associated with chain 1 proceeds to server L2 1
instead of L2 0 it would appear that each of the eight
routing chains requires a unique 27 by 27 matrix of
branching probabilities. However, only one such ma-
trix is required if the workload possesses a sufficient
degree of symmetry. In this case a single set of service
classes can be used to characterize the routing of all
chains and the Q matrix used for chain 0 defines the
branching probabilities of the remaining chains. The
requirement that, at the physical server level, routing
be chain dependent is met through the use of a single
mapping function that binds logical service class to
physical server in a chain dependent way.

3 THE MODEL DESCRIPTION LAN-
GUAGE

In this section we discuss the model description lan-
guage in the context of the example system of figures
2 and 3. The system consists of two four-processor
boards that are connected by an SCI (scalable coher-
ent interconnect) type bus. Each processor has a pri-
vate L2 cache. A local bus connects the L2 caches, the
local memory, a level 3 memory cache, a tag cache,
and a combined directory and SCI interconnect con-
troller. The interconnect between the two boards is
modeled as a slotted ring consisting of two unidirec-
tional segments capable of overlapped operation.

3.1 THE SYSTEM MODEL

The first section of the model description file defines
the physical device classes. Each physical device class
has four parameters: the name of the device class; the
number of instances; the service discipline (only E
(exponential) and D (deterministic) are supported);
and the mean service time in processor cycles.
Device Classes

{

CPU 8 E 6.66667

L2 8 D 6.00

Mem 2 D 20.00

MCache 2 D 10.00

TCache 2 D 1.00

Bus 2 D 4.00

SCIIntf 2 D 4.00

SCI 2 D 6.00

}

The CPU service time of 6 2/3 implies that there is an
average of 6 2/3 cycles between level one cache misses.
Service time values used here do not reflect the character-
istics of any real system.

3.2 THE WORKLOAD MODEL

The first section of the workload model defines both the
logical service classes used in routing and the function
used to bind service classes to physical devices in a chain
dependent way. Each physical device class must have at
least one logical service class. Each service class has three
parameters: the service class name (which by convention
begins with the device class name); the associated device
class name; and an expression that computes the relative
device number within the physical device class as a func-
tion of the chain identifier. In the example shown below
the class BusSame Out maps to Bus 0 for chains 0, 1, 2,
and 3 but maps to Bus 1 for chains 4, 5, 6, 7.

Service Classes

{

CPU CPU chainid

L2Own_Out L2 chainid

L2Own_In L2 chainid

BusSame_Out Bus chainid / 4

BusSame_In Bus chainid / 4

BusSame_ToSCI Bus chainid / 4

BusSame_ToData Bus chainid / 4

MemSame_Out Mem chainid / 4

MemOther_Out Mem 1 - chainid / 4

MCacheSame_Out MCache chainid / 4

:

:

}

The remainder of the workload model definition is
used to define the Q matrix for chain 0. It is here
that “end user” measures such as miss rates must be
mapped to service class branching probabilities. The
mapping must be manually performed in C language
statements as shown below. This is clearly the most
tedious and error prone step in the model definition
process, but we know of no general way to automate
it. (It is possible to provide post- definition tests for
inconsistent and incomplete specification, and we do
so.)

A Hybrid Tool for the Performance Evaluation of NUMA Architectures 1033
The variables and parameters sections are used to
construct expressions that define service class branch-
ing probabilities in the routing section, which follows.
Variables are initialized once by the model manager,
exported to the application, and are not touched by
the model manager thereafter. They may be varied
by the application during a modeling run. For exam-
ple, in a given study L2MissRate might be varied
from 0.02 to 0.20 in steps of 0.02.

Variables

{

L2MissRate 0.50

LocRef 0.50

L2Local 0.10

MCacheLoc 0.20

MemLocal 0.70

:

:

}

The values specified as parameters are recomputed
by the model manager each time model initialization
is performed. In the hypothetical study proposed
above, as the application varied L2MissRate, the re-
mainder of the values in the variables section would
remain fixed, but the values declared below would be
recomputed by the model manager at each initializa-
tion call.

Parameters

{

RmtRef 1 - LocRef

TCacheMissRate 0.50 /* Raw tag cache misses */

L2OwnHit 1 - L2MissRate

L2OwnMiss L2MissRate

L2SameHit LocRef * L2Local

L2SameMiss 1 - L2SameHit

PctTCacheLoc LocRef*(MCacheLoc+MemLocal)/

(RmtRef+LocRef*(MCacheLoc+MemLocal))

TCacheHit (1-TCacheMissRate)*PctTCacheLoc

TCacheMiss 1 - TCacheHit

:

:

}

These parameter definitions are necessarily based
on request routing protocols for the architecture un-
der consideration. For the example architecture of
figure 2, an L2 miss goes over the local bus either
to the tag cache or to one of the other three local
L2 caches. From the tag cache it may proceed either
to the local memory, the level 3 memory cache, or
the SCI controller which contains the complete tag
directory. Thus an L1 miss can be satisfied locally
in four ways: an L2 hit (L2OwnHit), by another L2
on the same bus (L2SameHit), a local memory hit
(MemLocal), or a memory cache hit (MCacheLoc).

The service class branching probabilities for rout-
ing chain 0, (Q0(i, j)), are defined in terms of the
variables and parameters in the routing section. Each
service class must have a line specifying the service
class name and the number of associated non- zero
branching probabilities. Following this line each ser-
vice class fed by this service class must be defined by
a line that contains the target service class and the
branching probability.

Routing

{

CPU 1

L2Own_Out 1.0

L2Own_Out 2

BusSame_Out L2OwnMiss

CPU L2OwnHit

BusSame_Out 4

L2Same0_Out L2SameHit / 3

L2Same1_Out L2SameHit / 3

L2Same2_Out L2SameHit / 3

TCacheSame_Out L2SameMiss

L2Own_In 1

CPU 1.0

BusSame_In 1

L2Own_In 1.0

BusSame_ToSCI 1

SCIIntfSame_Out 1.0

}

The variable definitions and statements included
in the variables, parameters, and routing section are
used to construct a C-language function that is dy-
namically linked by the model manager and is used to
construct the Q matrix at run time. This approach
makes it easy to perform studies that require alter-
ing elements of the workload model without having
to precompute, store, and reload a large collection of
Q matrices.

4 THE MODEL MANAGER AND NET-
WORK SOLVERS

The model manager is responsible for converting a
model description such as the one shown above into
the input data required by the Mean Value Analysis

1034 Westall and Geist
(MVA) and simulation solvers. The four MVA based
solvers are discussed first.

Solving a closed queuing network refers to the pro-
cess of determining the mean utilization, throughput,
population, and response at each server. Input data
required for a multi-chain MVA solution includes the
mean service time for each server, the population of
each chain, and for each chain and server the relative
number of visits made by that chain to that server.
Our chain populations are one and the mean service
times are specified directly in the system model de-
scription.

The per chain device visit ratios may be computed
as follows. If Q is the class branching probability
matrix for chain 0, then the class visit ratios V for
chain 0 satisfy the equation V = V Q. The system as
specified possesses 1 degree of freedom and cannot be
directly solved for V . However, if V (0) is arbitrarily
assigned the value 1.0, the system can be reduced in
rank and solved for the remaining visit ratios. The
model manager performs this step and assigns the
class visit ratios to the array chain0vr. The device
mapping function is then used to compute the device
visit ratios for all chains in the following way (class 0
is assumed to be the CPU class):

for (ch = 0; ch < n_chains; ch++)

{

dev = DevMap(ch, 0);

d_vratio[ch][dev] = 1.0;

for (cl = 1; cl < n_classes; cl++)

{

dev = DevMap(ch, cl);

d_vratio[ch][dev] += chain0vr[cl];

}

}

The MVA algorithm provides exact solutions for
closed queuing networks of the type known as
product-form. Product-form networks include those
whose servers use a FCFS queuing discipline and ex-
ponentially distributed service times, but do not in-
clude networks having any FCFS servers with deter-
ministic service times. If the service time distribu-
tion is assumed exponential when it is actually de-
terministic (as in most NUMA system components),
throughputs are underestimated and queuing delays
are overestimated. These observations motivated the
development of our MVA-DSA (deterministic service-
time approximation) algorithm. In MVA-DSA the
service time used in the MVA computation is dy-
namically reduced as a function of server load. The
MVA-DSA approach is shown to match the results of
simulation much more closely than does true MVA in
(Geist, Smotherman, and Westall, 1996) and (Geist
and Westall, 1996).
The use of the multi-chain version of the ex-
act MVA algorithm is restricted to models of small
NUMA systems because both the space and time
complexity of the algorithm grow exponentially with
the number of chains (processors). We have found
the practical limit for the use of the exact MVA algo-
rithm (with or without the DSA approximation) to
be 8 processors. For larger models or for very fast
performance on small models the approximate MVA
algorithm is a better choice.

Approximate MVA is an iterative algorithm, and
incorporating DSA is straightforward. After each of
the normal approximate MVA solution steps, the ser-
vice times of deterministic servers are adjusted using
the normal DSA approximation. In all cases in which
we have applied the algorithm we obtain convergence
within 20 iterations.

The simulation solver is a typical discrete event
simulation in which events represent arrivals and ser-
vice completions at server nodes. Server parameters
include service distribution (deterministic or expo-
nential) and mean service times. For efficiency in
routing, the workload manager converts the Q matrix
for chain 0 into a compact representation which con-
tains for each source service class only the destination
service classes for which the branching probability is
non-zero.

A transaction record is associated with each rout-
ing chain and carries the chain identity in element
xachain and current service class of the transaction
in element xaclass. When a transaction completes
service, the following algorithm computes the iden-
tity of the next server to be visited:

rnum = random();

sre = &simroute[xact->xaclass];

for (i = 0; i < sre->count; i++)

{

if (rnum <= sre->prob[i])

{

nextclass = sre->target[i];

break;

}

}

xact->xaclass = nextclass;

nextserver = DevMap(xact->xachain,

xact->xaclass);

The pointer sre points to the compact represen-
tation of the distribution function for the branching
probabilities associated with the current service class.
The DevMap function performs its usual function of
mapping a (chain, class) pair to the associated real
device.

The use of service class based routing within the
simulation is the key to the simplicity of the routing

A Hybrid Tool for the Performance Evaluation of NUMA Architectures 1035
and the decoupling of the model description from the
simulation solver. If device based routing were used,
it would be necessary to carry explicitly in the trans-
action record the state information (e.g., outgoing or
incoming transaction) that is implicitly carried in the
service class representation. It would then also be
necessary to imbed in the simulation solver the logic
required to act upon this explicit state information.

5 EXAMPLE

The system described in the previous sections was
used to drive both simulation and MVA solvers. The
value of L2MissRate was varied in steps of 0.05 from
0.05 to 0.65. The memory delay experienced by a
transaction is the end-to-end time that elapses be-
tween the time a memory transaction leaves its CPU
and the time it returns. The average memory delay
reported by the exact MVA, approximate MVA with
DSA, and the simulation solvers is shown in figure
4. Values reported by exact MVA with DSA are vir-
tually identical to those of approximate MVA with
DSA.

Simulation results are the average of 24 runs of
1,000,000 simulated processor cycles for each of the
13 data points (L2 miss rates) computed. Estimated
confidence intervals range in size from 0.08 to 0.17 at
a 90 % confidence level. The lack of smoothness in
the simulation curve is a characteristic of determinis-
tic service times and disappears, as one would expect,
when exponential service times are used.

Elapsed time for the simulation was slightly more
than 8 hours on a 486-66 PC. Elapsed time for com-
puting the 13 data points with exact MVA was less
than 10 seconds. Elapsed time for approximate MVA
with DSA was less than 1 second.

6 CONCLUSION

The model description language provides a mecha-
nism for describing a NUMA system and its workload
in a way that is succinct yet quite readable. By us-
ing the model manager, the system designer can work
from a single model description and conviently inves-
tigate the effects of varying both system and workload
parameters. The extremely fast, but approximating,
MVA-DSA solver can be used to interpolate between
design points computed by simulation to provide de-
tailed and accurate results in minimal time.

There are clearly a number of ways in which the ex-
isting tool might be improved. Included among them
are the following: addition of a graphical front end
for creating model descriptions; development of au-
tomated ways to derive branching probabilities from
high-level workload characteristics; and, last but not
least, verification of predicted results on a real NUMA
system.

REFERENCES

R. Geist, M. Smotherman, and J. Westall. 1996.
Performance evaluation of numa architectures. In
Proc. 34th Annual ACM Southeast Conf., 78–85,
Tuskegee, AL.

R. Geist and J. Westall. 1996. Performance and
availability evaluation of numa architectures. In
Proc. 2nd Annual IEEE Intl. Computer Perfor-
mance and Dependability Symposium, 271–280, Ur-
bana, Il.

E.D. Lazowska, J. Zahorjan, G.S. Graham, and
K.C. Sevcik. 1984. Quantitative System Perfor-
mance: Computer System Analysis using Queueing
Network Models. New York: Prentice-Hall.

D.E. Lenoski and W.D. Weber. 1995. Scalable
Shared-Memory Multiprocessing. San Francisco:
Morgan Kaufmann..

K. Sevcik and S. Zhou. 1993. Performance benefits
and limitations of large numa multiprocessors. In
Proc. 16th IFIP Int. Symp. on Computer Per-
formance Modeling, Measurement, and Evaluation
(PERFORMANCE ’93), 183–204, Rome, Italy.

K.S. Trivedi. 1983 Probability and Statistics with Re-
liability, Queueing, and Computer Science Appli-
cations. Prentice-Hall, Englewood Cliffs, NJ.

M.K. Vernon and M.A. Holliday. 1986. Performance
analysis of multiprocessor cache consistency proto-
cols using generalized timed petri nets. In Proc.
Performance ’86 and ACM SIGMETRICS 1986,
9–17, Raleigh, NC.

AUTHOR BIOGRAPHIES

ROBERT GEIST is a Professor in the Department
of Computer Science at Clemson University. He re-
ceived a B.A. degree in mathematics and an M.A.
degree in computer science from Duke University in
1970 and 1980 respectively, and he received M.S. and
Ph.D. degrees in mathematics from the University
of Notre Dame in 1973 and 1974 respectively. His
research interests are in performance and reliability
modeling of computer and communication systems
and stochastic modeling in computer graphics.

JAMES WESTALL is a Professor in the Depart-
ment of Computer Science at Clemson University. He
received a B.S. degree in mathematics from Davidson
College in 1968, a Ph.D in mathematics in 1973 and

1036 Westall and Geist
0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
ea

n
M

em
or

y
D

el
ay

 (c
yc

le
s)

L2 Cache Miss Rate

Exact MVA

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
ea

n
M

em
or

y
D

el
ay

 (c
yc

le
s)

L2 Cache Miss Rate

Exact MVA
AppMVA-DSA

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

M
ea

n
M

em
or

y
D

el
ay

 (c
yc

le
s)

L2 Cache Miss Rate

Exact MVA
AppMVA-DSA

Simulation

Figure 4: Comparison of analytic and simulation results
an M.S. in computer science in 1978 from the Uni-
versity of North Carolina at Chapel Hill. His present
research interests include performance measurement
and modelling of computer systems and networks and
segmentation and recognition of of handwritten char-
acters.

	A HYBRID TOOL FOR THE PERFORMANCE EVALUATION OF NUMA ARCHITECTURES
	ABSTRACT
	1 INTRODUCTION
	2 QUEUING NETWORK MODELS
	3 THE MODEL DESCRIPTION LANGUAGE
	3.1 THE SYSTEM MODEL
	3.2 THE WORKLOAD MODEL

	4 THE MODEL MANAGERAND NETWORK SOLVERS
	5 EXAMPLE
	6 CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 1029
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

