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ABSTRACT

We present an extension to an existingARC V8 in-
structionse simulator, SmICS, to support accurate pro-
filing of branches and instruction cacmisses. ShICS
had previoust supported priiling data cacle efficiency
and virtualmemory perfomance TLB misses), and es-
timated execution profiling using sgling. The new
design allevs a gstam-level, threaded-cadsimulatar of

a canputer gstan to dficiently support a relatively
complete range of instraentation.Principd applications
include canputer architecture studieard perfommance
tuning of software Both application areas require rea-
sonable pdormance in order tsupportrealistic work-
loads, and both benefit ino the flexibility, generaliy,
and portabiliy of a fast threaded-codemulator. The
presented design supportaultiprocessor snulation,
system-levd (operating gstem) prograns, and, in princi-
ple, arbitraly user progras including run-tine generated
code. We evaluate the penfiaance using the SPECint95
benchmark suite, and the resultyith full profiled instru-
mentation enabled, is an executiomdi 26-108 times
slower than native execution.

1 INTRODUCTION

Instructionset simulators are usedylcomputer architects
ard progranmers for a varigt of tasks, including archi-
tecture design, porting/stem sditware ard pefformance
tuning of software.

The basic design ohodern instruction setrsulators
is often a variation d threaded code (Bell 1973Jhis
design can be extended gupport full system level
simulation (Bedichek 1990) andmultiprocessors
(Magnusson 19937An elanent that has beemissingin
instruction set snulators is efficiehsuppot for accurate
execution profiling and instruction caclneodeling. In-
struction cache behavior isnportant for conputer ar-
chitects and both instruction cache and execution pro-
fiing are mportant to support parmance tuning of
software.

Given their close relationshipith the threaded code
interprete itself, both aremost suitabj addressed by

designing a threaded code kernel that diyestipports
instruction cache and branch profilinghe designmust
be efficient enough to alle realistic workloads to be
studied aswell as supporting the reulation d a wide
range of architectures (notgbkharel memory multi-
processors) and workloads (notably operating systems).

We present such a solution in this paper, deskcribe
an mplementation of it in ShICS, a $ARC V8 simu-
lator. The design is irary ways similar to an earlier
design for memory simulation (Magnusson an@/erner
1994) We use the SPEC95 integer benehrk suitefor
evaluation Despite being enhancedith instruction
cachemodeling and accurate branch profiling, in addi-
tion to previousdata cache and translation look-aside
buffer (TLB) prdfiling, the resiting slovdown of Sim-
ICS is in the range of 26-108.

1.1 Instruction Set Simulation

Instruction set simulatorsun a progren by simulating
the effects of each instruction on a targechine one
instructin at a time. Instruction set siulators are at-
tractive for their flexibiliy: they can in principle model
ary computer, gather gnstatistic, ad run ary program
that the target architectungould run, including the oper-
ating ysten. They easiy sene as back-end to tradi-
tional debuggers asell as architecture design ts@uch
ascache shulators (Bedichek 1990, Dareet al 1992,
Lebeck and Wood 1994).

Naturally, this flexibility comes ata cost—instruction
set sinulators are fien slav, easiy over 3 orders of
maghnituck slower thannative execution. Such poor per-
formance severgl hampers thai practicaliy, limiting
them to toy benclmarks or vey patient users.This has
prompted severalefforts to mprove the pdormance of
traditiond simulation or to find alternatemethods. This
work hasmet with same success: several fast instruction
set sinulators have been developed over the last several
years (Bedichek 1990 and 1995, @elik and Keppel
1994 Goldschmidt 1993, Rosenbium et al. 1995, Veen-
stra and Fowler 1994, Witchel and Rosenblum 1996).
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1.2 Instruction Caches

An execution profile sheing the frequeng of execution
of ary line of code is a traditional cgponent in per-
formance tuning, andwill be meaningful tomost expe-
rienced progmammers. The importane of instruction
caches for perfonance, on the other hand,léss widely
known. Relativey recent studies, suchs ane by the
RS/6000 group at IBM (Maard etal. 1994) hasshown
that instruction cache behavior is oftesignificart fac-
tor for commercid workloads. In another camercial
system study that the author participated, ibetveen a
third ard a haf of potential peflormancewas lost to poor
instruction cache behavior (Wernemd Magnusson
1997).

The remainde of this paper organized a®llows.
Section 2 describes8ICS, an instruction setrsulator
that we will use as our gnulator platfom. In section 3
we describe the SPECIint95 bemadrk suite, eight pro-
grams which we use as our basifor peformance
evaluation of the final design. Section 4 is the core of
the paper. It describes the algonihard datastructures
usedto extendthe threaded code interpreter core oinSi
ICS. Section 5 presents the perfance of SnICS with
full instrumentation enabled, and contrastsvith native
execution. We conclude in section 6.

2 SIMICS

SIMICS is an instruction setraulator developedtahe
Swedidh Institute of Computer Science (SICS) that
simulatesmultiple SPARC V8 processors dnsupports
multiple physical address spaceystam-level code and
emulation of the SunOS %. executimm envirorment
(ABI) for direct analsis d userlevel prograns. SmICS
itself is sequential, allwing it to be fully deteministic, a
crucial feature for an instment. SMICS is publicly
available ahttp://www.sics.se/simics/

Themain design principle of 8ICS is to havea core
which is both general and efficient, and ghoevitably
very complex, in such away that even advanced users
need ony have a rough idea of haoit works. This allows
SIMICS to be reasonaplefficient, with a slowdown of
50-200 ard yet provide several hook®r enduser ex-
tensiors that can effectivey benefit fran this perfom-
ance.

2.1 Interpreter Core

The core of SnICS isa handwritten threaded-codn-
terpreter The simplest interpreters execute progiaby
running a central fetceade-executdoop. Threaded

code in contrast, separates the decode and dispatch

tasks, thus reducing the cost for decoding altowing
for innovative dispatch techniques (Bell 1973, Klint
1981).
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When applied to instruction setrgilation, tre target
program, in object code fonat, is translated to an in-
temediae format which isin turn interpreted. Whereas
the target instruction set is designed ifderpretatian by
hardvare, the SnICS intemediate fomat is designed to
be eay for sofvare. For each interediate fomat in-
struction there is angall segnent of code calleda serv-
ice routine that enulates the effects dha instruction,
as well as perfoming ary administrative tasks for the

simulation.
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Figure 1: SimICS Interpreter Core

Figure 1 illustrates thmain principles The designisa
variation d Bedicheks (Bedichek 1990Magnusen and
Samuelssonl1994). The target code consist§ mstruc-
tions for the target architectureThes are (1) lazily
translated to a fixed-sized, 64+-format (2) consistingof
a 32-bit pointa to a service routine (3), and 32 bits of
paraneta space These panmxeters generall contain
offsets into aregiste file (not shavn) and/or constants.
The choice of a 32bit paraneter field allows for a
pointer if more space is required.

The service routine (3) begins executiwith its 32
bits of paraneter in a specific global register. It does its
thing ard when finished peforms wo simple but key
operations in itsepilogue (4). First, it checks for an
evert by decrenenting a tine-to-next-event counter, and,
if no event is due, fetchespointe to the nex service
routine togethewith its paraneter throug by using the
intermediate code pointer (5), andmps tothe address
contained in the first.

Fall-throudh execution ismodeled ly simply incre-
menting the intenediate code pointeBrand instruc-
tions must calculate a me intemediate pointe first.
Note that the figure includesvd pointers,PC andnPC,
in order to support an architectuwith branch delay
slots (SPARC 1992).

Most service routines arersple, typically 15-30 host
processoinstructions of which 6 constitute the standard
epilogue (4)This sets an uppemtit on perfomance for
this technique of about 20meés slaver than native exe-
cution. Achieving significanyl bette performance than
this requiresmore sophisticated translatioincluding
runtime generation fo host code (Magnussoth993,
Witchel and Rosenblum 1996).
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Table 1: Characteristics of the SPECint95 Programs
go m88ksim gcc compress li ijpeg perl vortex

Instructions (1000:s) 512297 131531 1221510 38363 185427 1986703 2361542 2410224
Data cache miss rate 0.12% 0.88% 1.0% 3.4% 1.7% 0.55% 1.4% 0.72%
Instr. cache miss rate 0.11% 0.000% 0.12% 0.000% 0.000%| 0.001% 0.000% 0.072%
Unique instructions 12348 2676 33439 722 1485 3118 8140 15339
Size of binary (Kbyte) 750 1138 3352 257 417 1304 906 2920
Instr:s per TLB miss 2464 29326 1268 1444 816860 67951 1868 384
Native execution (sec) 3.2 0.5 8.1 0.1 1.0 8.3 14.5 13.0
Branches (1000:s) 52779 19969 189037 4461 28298 166501 383110 321047
relative on page 75% 68% 73% 79% 65% 67% 68% 65%
relative off page 13% 16% 12% 0.42% 7.6% 20% 13% 16%
absolute on page 1.0% 2.2% 6.2% 21% 20% 1.1% 2.6% 2.2%
absolute off page 11% 14% 9.0% 0.039% 7.5% 11% 16% 16%
annulled instructions 6688 2370 29816 521 3716 14954 50350 22382

SIMICS enulates a SunOS 5.x kernel kexplicitly
emulating canmon g/stan calls. This includes support
for running multiple prograns (multitasking) aswell as
running prograns on several processors
(multiprocessing). $nICS can alsadisabe Unix emu-
lation ard run systan-level code; the S®RC port of
Linux can run unmodified on SimICS.

3 BENCHMARKS

The most canmon use for SNICS thatwe anticipag is
to support advanced germance debgging. A repre-
sentatie workload is therefore the PECint95 bench-
mark suite from the Standard Perfoance Evaluation
Corporation.This suite consists of 8 ogute-intensive
programs tha emphasize the péormance é the proces-
sa and memory systam. We've conpiled then using
GCC versim 2.7.2.1, with the “-O2 -g -static” flags.
GCC is not the fastestPBRC campiler, but has ta ad-
vantage 6 not only beingwidely available, bubld ver-
sions tend to be available aJsimplifying future repeti-
tion of experiments.

The SPECInt95 progras can runwith one d three
input data sets: test, train, aneference.Testinput is
self-explanatay, train input is meant fo profile-driven
compilation, andreferenceinput is for canputer manu-
facturers to use for publishable results. We choagsé
the train input dataas these are large enough to be sig-
nificant yet more manageable for expenentation than
referene data sets.

Table 1 gives samne detailed characteristics on each
progran. All quantitative data giwe on the SPECint95
progransin this paper have been gathered usinglS5.
The native executionries were measured oran Ultra
Enterprise,with four 248MHz UltraSRRC-II proces-
sors and 1Glmain memory, using the gstam time facil-
ity andtaking the median of five runsThe “unique in-
struction$ countis the nunber of code addresses that
were actualy fetched The binaly size is of the non-
stripped, staticajl linked progran. Instructions peffLB
miss indicates the frequegcof misses to the address
translation cache; the mier is the averagdistane in
instructionsbetveenmisses,which are causedybeither

instructionor data accesseAll percentages are relative
to number of instructions.

For the evaluation in this paperye’'ve modeled the
first-levd dat and instruction caches of the Super-
SPARC processor (16 Kie 4way associative data
cachewith 32-byte cache lines, a20 Kbyte 5-way as-
sociative instruction cacheith 32-byte lines and 64-byte
tag allocation). The translation lookaside-buffewe
modd is fully associative with 64 entries, also
corresponding to the SuperSPARC processor.

4 BRANCH SIMULATION

In generalwhen profiling codewe havethe choice of
counting basic blocks or jumps, or a mixture. An exe-
cution diagran consists of aweighted directé graph,
whete the weights of the nodes correspond to thenber
of times the corresponding basic block has been exe-
cuted, and theveights of the aixto the number of times
the corresponding brancivas taken. For angiven
node the sum of the input arcs equals theeight of the
node equalsthe sum of the output arcs.As shavn by
Ball ard Larus(1992) the nodeweights can alays be
deduce by the arcweights, but not vice versalso, the
minimum cost to gather the necessanformation to
reconstrut the diagran is generaly achieved { a mix-
ture d arc and node counters the code However,
node counters requires idemtifg all bast block entry
points, which is difficult in the gener& case Thus a
practica and reasonabplefficient method to generate an
execution diagram is to count all taken branches.

Furthemore, to sinulate the instructiocacte we need
to check the validyt of all branches, explicitlor implic-
itly.

Therdore we choose to pdéorm an operation on
every taken branch that:
* increments a counter for that branch,
e checks access rights, and
e checls instruction cache an@LB presence of the

target instruction.

We begin by stating sme “known” characteristics of
mainstream computers:
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instruction cachamisses a& expensie on

the target machine,

the most canmon branch ype & an on-

page, PC-indirect conditional jump, and
changing page is infrequent.

A “page” here is the largesequene of instructions
guaranteedo be contiguous in both virtual and psical
address space. For our target, tikigikbyte, or 1024
instructions.

Table 1 also shes sane statistics frm our bench-
marks to support our brangklated clans. In the table
we classify branches as either relative or absolute, and
with targets being either on thensa page as the branch
instruction or another pagef{opage) On the SPARC
architecture, relative branches are fixed off$sim the
progran counter and absolute branches are register indi-
rect. The numbers are all ghamic, i.e. they classil taken
branches. For copleteness, the last line of the table
shaws thousandsfaannulled branche3hes correspond
to untaken branchewhere tke instructionin the delay
slot of the branch instructiors ignored(annulled) From
Table 1 we can deduce thate should opthize for the
cae of relative on-pa@ branchesbut that none of the
branchtypes are ystematically rare enough to be ig-
nored.

Comment Any system-level simulation involves three
address spacewhich we shall callogical, physicaland
real. The logical (orvirtual) addres space is the one
seen B a traditional, user-level progra Fa evely ac-
cess, thesmust be translated to a correspondamysical
address.The real addres is the location of shulated
data in the virtual address space of our simulator process.

41 Branch Simulation Overview

Figure 2 illustrates theajor control flov for simulating
branches A service routine is dispatched based on the
contents of intanediate code (1). If the bramés taken,
the instruction hache table is first chedK@), which, if
successfyl will i mmediate} provide agy information
neededThis data structurevill be describedn Section
4.3 (wherewe will also explainwhy hacheis nd a mis-
spelled hash.

If this lookup fails, a general branchiss handler is
invoked (3). It will confer with several generaiod-
ules—4, 5, and 6.These dl havein common that they
may be replaced {ghamically at run-time if so desired)
by codewritten by an end-user of thsimulator, using a
set of simple programming interfaces.

The first module is tle TLB (translation look-aside
buffer) which handles translation fro virtual to plysical
addresses (4). In our basic configuratitis simulates a
simple, 64-entry TLB with round-robin replacement.

Magnusson
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Figure 2: Branch Simulation Overview

The secondnodule is the braricpredictian simulator
(5), which is optional but gives sone support to simu-
lating simple branch prediction schemes.

Finally, thememory hierarcly (6) is passed memory
transactio for an instruction fetch fra the target ad-
dress. This module pically simulates an instruction
cacle or a shared data and instruction cache, possibly
also modeling cache coheregcbetveen multiple proc-
essors.

The gener& brand miss handlemwill update the in-
structionhactle table unless either ahodules 4, 5, and 6
have vetoed such insertioif.hus, the hache table serves
as a filter, handling #ncommon case efficiently and
invoking camplex modules ony when saomething
“interesting” occurs.

42 Deducing the Execution Profile

We mentioned earlier that a set of branch arc counters
are sufficient to deduce the execution graph. We now
describe more precisely how this works.

A
B

Figure 3: Execution Profile Deduction

An executim profile is a list of instruction addresses
and for each instruction a count ofvhaary timesit has
been executed. Given a set of arc counteescan de-
duce a profile for anexecutiondiagran using the fol-
lowing relationship, see Figure 3:

E(B) = E(A) + BT(B) - BF(A).
A ard B are two consecutive instructions, B&) is the
number of taken branchesfrom instruction A, BI(B) is
the number of taken branchese instruction B, and E(A)
is the number of times instruction A was executed.

An execution prfile can thus b deducd from a re-
cursiwe relationship. This recursion startaith BT() at
the beginning of a page, becawse b not allow “fall
through” execution across page boundari@hat is to
say, evely execution across a page bourydarexplicitly
represented by a from-to arc.

—> BF(A)

—_—>

BT(B)
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The situation is amplicated inpractie by the simu-
lator being interactive and supportibgth multitasking

and multiprocessing.Thus, there arise several special

cases where the nature of tHéranch” becmes unclear.
For example, atrap instruction can be wied as an in-
direct branch over the contents of thepttable We re-
solve suchissues as thg occur, into acompensation
tablewhich is pemitted to contain branchesghere either
source or target is undefined.

43 Instruction Hache Table

Changing pages requires recalculation imrmediate
progran pointers, including possiplsimulating aTLB
miss Within a pagewe take advantage of the colinearity
of virtual, ptysical, and intanediak progran addresses.
Thus, we set:

v_diff =PC - (i_PC >>9),
where S is the difference beteen the sizes of a target
instruction and the interediate code fonat, in bas 2
logarithm. In our case, target instructions are ytés and
intermediate code is 8yles, sdSis1. We keep the value
v_diff in a glob4register.PCis the (virtual address)
progran counter, and_PC its corresponding intete-
diate code pointer (see Figure 1).

(A variable-length instruction sevould requirea dif-
ferent schme for v_diff , but the implementation of
c_diff  should be applicable; themportant charac-
teristic forc_diff  is that & intermediat codelocation
corresponds to a unique physical address.)

Thus, as long ase ranain on the sae page,the vir-
tual addressfoour progran counter can alays be recon-
structed as follows:

PC = v_diff + (i_PC >> S),
whenwe change pagee reevaluate_diff , othewvise
we thus allev PC and nPC to be mplicit in our inter-
mediate code pointers.This saves updating thefor
evel interpreted instructionAn alternativewould be to
maintain a separate pointer to the cutremtua code
page but in that casge would need a second pointer for
the current intanediate page sincedtatter is arbitrarily
aligned—is size cannot be ample multiple of a host
page because it needs special case mesliate code
pointers past its end to handle events inclgdiall-
through execution to the next page.

Given thatwe need to update_diff on every
change of pageye can use amilar trick to implement a
hash table.

Sincewe wish to count evertaken junp, thismeans
tha we need to locate afrom-to” pair. We choose to
identify thes by their physical, as opposed to their vir-
tual, addres since therep we’re independent of othe
virtual memory is implemented.
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Figure 4: "from" Table in Instruction STC

We locate this pair in a table,esEigure 4. We call
this table ahache table, since it caches data rfroa
slower, complete data structure using anall hash table.
Another smilarity with caches is that the preseraf an
ently canhave a seantic implication. The hache table
consistsof two sets 6 two words, separatedyba fixed
distane (3) known at canpile time. Wemake this hache
table as large as an intanediate code page. Notice how
each enty in the first half (1) is as large as emermedi-
ate coce ently in Figure 1.Thus,we can use the s&
trick as we usedwith v_diff , namely, we form
c_diff

c_diff = (page(PC) << S)-i_PC +
code_table_start,
which allovs us to fom the hak table lookup function
simply by addngi_PC andc_diff to get the address
of (1). Thepage() function gives theoffset on apage,
which in our case is the lower 12 bits.

The first set ofwo 32-bt words contairs the source
and target addresses of the braach(storal pre-trans-
lated to intermediate code pointers) and a counter. We

canfit a counter since 12 bits of the source address are

redundantasthe hashtable is direcimapped on 10 bits,
ard the bottom 2 bits are alays zero since instructions
are word-aligned. We form a tag comparison as follows:
(i_PC_targ " target) |

((i_PC_src Mi_PC) & ~0x7ff),
wherewe use logical operators expressed iny@tax:
the " operator is bivise exclusive or , "[0'" is bitwise
not , and "&” is bitwise and. This expression copiles
to 4 host instructions.

Essentialy, we canpare the top 21 bits of étrcurrent
instructin pointe in parallelwith all the bits of the tar-
get instruction pointer, and if bothatc (i.e. the resut is
zero) then we have a “hit".

Notice that since 12 bits are redundant, ogaring 21
bits is one bit too mary. We use the 12bit as an over-
flow bit, initially setting it to a valid value fahe ently (a
zero for the first 512 entries, a @nfor the next 512).
When the counter overflzs, we get animpossibé tag
value andwill thus “miss” the hash tableThe counter
thus utilizes 11 bits, and can count up to 2047.

Upon a hit,we have alreadloaded the counter inta
register, and can reply write back tle (incremented)
value to memory and proceed with the branch.
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1 if (take branch)

2 target =i_PC + offset;

3 (i_PC_src, i_PC_targ) = *(i_PC + c_diff)
4 i_PC_src ++;

5 if ((i_PC_targ " target) |

((i_PC_src ~i_PC) & ~0x7ff) == 0)
*(i_PC + c_diff) =i_PC_src;

i PC=i_nPC;

i_nPC = target;

dispatch(i_PC);

10 else

11 do_it_the_slow_way();

12 else

13 i_PC=i nPC;

14 i nPC ++;

15 dispatch(i_PC)

Figure 5: Pseudo code for on-page, conditional branch

Rk RN

©ow~NoO
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Entries are put into this table if the follwing is true
for thetargetaddress:

+ itis allowed to execute,

» itis resident in the instruction cache,

« the target addressould hit in the brand prediction
table, if simulated,

* it has previousl been executed, such thacounter
has beenallocatel and the proper data structures set
up, and

e the target virtual-to-pysical address translation is
valid.

The lag two points brings us to the second setwofrds,
(2) in Figure 4.This contains a pointer toraain counter
for that branch arc. When the table gni kicked out,
we simply accumulate the cachecounte into this main
counter, making invalidation a cheap operation.

The othe word in part (2) d¢ the data structure con-
tains thev_diff  value for the target pageThe table
thus also caches virtual-to-pfsical translations. This
allows register indirect branchesshich are infrequent
but for a smulator potentialf very expensive—to also
use the table.

In summary, this 4word data structure contairthe
following information for a specific branch arc:

» intermediate code address of source,

e virtual address of target,

« intermediate code address of target,

e counter, up to 2047 taken branches,

» overflow bit for counter, and

* pointer to amain counter, up to 4illion taken
branches.

The plysical addresses of both soei@nd targd can
be derivad from the intemediate code addresses since
these are unique in the direction imediate] physical
(they are not unique in the other direction since the
simulator may generate different versionsyhis trans-
lation is done P maintaining a sorted lif intermediate
page addresses and using unrolled lyisaarch tdocate
the entry (Knuth 1973).

Magnusson

Figure 5 shwis the pseudo coder simulating anon-
page, conditional, prognacounter-relative jump in-
struction As we noted in the beginning of Section 4, this
is theworst canmon branchcase representingoetveen
two-thirds and three-quarters of taken branches.

On line (1) in the listing, sme condition triggers the
branch, ypically simulated conditio codes We first
calculate the target instruction, ugitihe paranete offset
which is part of our intenediate fomat. Wenex fetch
the 64-bit instruction S C enty (3), increnent the en-
bedded counter (4), and pemm the parallel tagcom-
parison (5). Ifwe hit in this hash table (5\e first write
back the top 32-bits of the instructiomS ently con-
taining the updated counter (6), and figadin lines (7)
throuch (9) complete the branchThe numbers on the
right of the listing shav the number of host BARC in-
structiors correspondig to a canpiled version of the
common pah in the listing—a total of 17 instructions.
Only 3 of these instructions are memory operations.

44 Improving Hit Rate

As with ary caching-like structure, collisiorsre akey
concern.The peformance @ the table as described thus
farwas poor. We tee wo steps tormprove it, which we
describe only briefly for lack of space.

We first introduce a “to” table. It is identicen design
to the“from” table in Figure 4, excepha soure and
target addresses change pladdss allovs us b decide
whethe the fran-to pair is faster to find via the source or
target addressThis also provides anechanis to avoid
some systematic collisions.

Second, and equglimportant,we increas the size of
the tables significantly, to several thousand entries.

Large ISTC tables becme sparse if event frequencies
are high—for example when modeling snall caches or
running prograns with high TLB miss rate We therefore
need to handle invalidations efficiently.

Invalidations are pmarily one of wo types invalida-
tion of all entries fo a particularvirtual page;and the
removal of an ent relating toa particularphysical ad-
dress

We currenty solve this proble by maintaining con-
pletely separate data structures. In the caseiafial
invalidations we are aided by the fact that these can only
be relevant for cross-pagenjps since on-pag jumps
will be implicitly valid by the execution of the source
instruction.

We havenot found a orrepondingly elegant insight
for physicd invalidations, so currentla binay tree is
maintained that is consulted for eyeaddition or re-
moval of a valid instruction cache lin@his tree cur-
rently absorbs over 10% of execution.
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Table 2: SimICS Performance

caches TLB go m88ksim gce li ijpeg perl vortex

Native execution (sec) | N/A N/A 3.2 0.5 8.1 1.0 8.3 14.5 13.0
Native MIPS 160 260 150 190 240 160 190
Sim 1 (sec) infinite 1024 84.5 19.2 267.7 33.0 216.8 574.5 491.8
MIPS 6.0 6.9 4.6 5.6 9.2 4.1 4.9
Slowdown X26 x38 x33 x32 X26 x40 x38
Sim 2 (sec) 16k/20k 64 137.2 239 584.4 52.9 257.6 810.1 1401.8
MIPS 3.7 55 2.1 3.5 7.7 29 1.7
Slowdown x43 x48 X72 x52 x31 x56 x108

45 Instruction Cache Modeling
To support instruction cachmodeling,we need a second

element, in addition to branch target control and profil-

ing. This regards handling fall-through execut@cross
instruction cache line borders.

Again, unfortunatsl, this is a coomon operation In
our implementationwe support a granulagitof 32 bytes,
thusevel 8th sequentikinstruction needs to check that
it is permitted to execute.

To implemert this, we extend the smsantics of our
“to” table such that an entiis ore of three types invalid,
valid branch arc, and valid instruction cachee lgnoss-
ing. We then insert an artificial instruction inranter-
mediate code that asserts that'tte& table enty is either
a valid branch arwith the instruction caahline as target
(in which case itmust be valid to fall into)or a special
cache line crossing emtrThe latterwill be treated as
invalid by the brand handlers.This is done ¥ putting a
magic value inv_diff  in the“to” table corresponding
to (2) in Figure 4.

In uniprocesso mode, we simplify this by using the
intermediak code to book-keepwhich instruction cache
lines can be crossed (as suggestgdBedichek1990).
This does nowork for multiprocessorshowever, unless
we wish to replicate all intenediate codeThis in turn is
probaby not a good idea sincee will rapidly worsen
the data cache performance of our host.

46 Multiple Processors and System Level Code

Since the design presented ire fhrevioussectionsup-
ports virtual memory and arbitray execution flav, it
therdore supportsunning ystan-level softvare suchas
operating systems.

It's ability to supportmultiple processors is a little
more subtle. 3NICS uses the sae intemediate code for
all processorsvithin the sane plysicd addres spae in
ordea to redue pressue on the host data cachehen
simulating largemultiprocessors. Notice that gné sin-

gle (global register) value characterizes the instruction

cache and branch arc status of a pafjentermediate
code, nanely v_diff . Therdore, we only need to
changev_dif f upon switching simulated processor.
This is fortunatesincewe wish to have a vgrlow over-
head for processorwdiching so as to alle for fine-
grained interleaving of events. Currgntlhe cost of

switching processoron SmICS is equivalent to 2 or 3
simulated instructionswhich allovs simulation rurs to
have an interleaving on the orddr 10-50 “cycles” and
remain reasonable efficient. Our desigill not signifi-
cantly worsen this performance.

5 EVALUATION

Table 2 shows the relative péormance & SmICS over
native executionThe timings were perfomed on anJl-
tra Enterprisewith the median of 5time measurenents
shavn (we've amitted compresssince its native execu-
tion time wastoo small). The table shavs a range foper-
formance of 26-108 for different cofigurations ¢ Sim-
ICS. This resonate fairly well with our goal ofmain-
taining the historical pefformance & SmICS o 50-200
while at the sae time addirg significart new instru-
mentation.

We show two different runs & SimICS. The first,
Sim 1, is with infinite data and instruction caches, and a
very largeTLB (1024 entries)Thus in Sin 1 the tables
are used tonaximum effect In the secondconfiguration,
we simulate small on-chip caches (see Section 3).

All simulation runs generated full profiing afata
cacle read ard write misses, instruction cachmisses,
TLB misses, and branchacounts Executio profiling
is included in all runs.

Asthe caches and thELB gets snaller, the frequency
of expensive events increases amdrsers our slow-
down. The baseline perfatancewith minimum activity
is close to the expected peak perfmance of the inter-
prete technique that we use,which is in the viciniy of
20. The pefformane lossfor more realistic resource re-
strictions renains reasonabl&he ony bencimark with a
slowdown worse than 72 isvortex, and this is caused by
simulating a realisticTLB. Referring back torable 1,
vortex encountersTLB misses ever 384 instructions!
The poor pdiormancefor vortex could be mproved—
running vortex on SMICS on SMICS (recursivel)
shaws that the data structures being used to hahdi
invalidations behave poorly.

The level of detail providedybthe instrumentation
during the® runswas stficient to support péormance
tuning of both parallel ad segential programs
(Magnusson and Montelius 1997).
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6 CONCLUSIONS

We have presented a significant redesign efthireaded
code interpreter core of an existing instructsa simu-
lator, SImMICS. The design does not significantthange
the overall perfanance,which has historicajl beenin
the range d a slavdown of 50-200 for realistic work-
loads and significart instrumentation. Despite adding
detailed profiling of instruction fl@ and instruction
cache perfanance, the siulator runsthe SPECint95
benchmark suite with slowdowns in the range 26108
while generating a detailed profile on @ahcle events,
TLB misses, instruction caeh misses ard taken
branchesThe resut is an increased range of ingtren-
tation at a similar performance penayt, with direct appli-
cation in conputer architecture studies and penfiance
debugging tasks.
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