
EFFICIENT INSTRUCTION CACHE SIMULATION AND EXECUTION PROFILING
WITH A THREADED-CODE INTERPRETER

Peter S. Magnusson

Swedish Institute of Computer Science
Box 1263, S-164 28 Kista, SWEDEN
-

-

a-

5

-

o-

).

i-
e

r-

n
eral
designing a threaded code kernel that directly supports
instruction cache and branch profiling. The design must
be efficient enough to allow realistic workloads to be
studied, as well as supporting the simulation of a wide
range of architectures (notably shared memory multi-
processors) and workloads (notably operating systems

We present such a solution in this paper, and describe
an implementation of it in SimICS, a SPARC V8 simu-
lator. The design is in many ways similar to an earlier
design for memory simulation (Magnusson and Werner
1994). We use the SPEC95 integer benchmark suite for
evaluation. Despite being enhanced with instruction
cache modeling and accurate branch profiling, in add
tion to previous data cache and translation look-asid
buffer (TLB) profili ng, the resulting slowdown of Sim-
ICS is in the range of 26-108.

1.1 Instruction Set Simulation

Instruction set simulators run a program by simulating
the effects of each instruction on a target machine, one
instruction at a time. Instruction set simulators are at-
tractive for their flexibility: they can, in principle, model
any computer, gather any statistic, and run any program
that the target architecture would run, including the oper-
ating system. They easily serve as back-ends to tradi-
tional debuggers as well as architecture design tools such
as cache simulators (Bedichek 1990, Darcy et al 1992,
Lebeck and Wood 1994).

Naturally, this flexibility comes at a cost—instruction
set simulators are often slow, easily over 3 orders of
magnitude slower than native execution. Such poor pe
formance severely hampers their practicality, limiting
them to toy benchmarks or very patient users. This has
prompted several efforts to improve the performance of
traditional simulation or to find alternate methods. This
work has met with some success: several fast instructio
set simulators have been developed over the last sev
years (Bedichek 1990 and 1995, Cmelik and Keppel
1994, Goldschmidt 1993, Rosenblum et al. 1995, Veen-
stra and Fowler 1994, Witchel and Rosenblum 1996).
ABSTRACT

We present an extension to an existing SPARC V8 in-
struction set simulator, SimICS, to support accurate pro
filing of branches and instruction cache misses. SimICS
had previously supported profiling data cache eff iciency
and virtual memory performance (TLB misses), and es
timated execution profiling using sampling. The new
design allows a system-level, threaded-code simulator of
a computer system to eff iciently support a relatively
complete range of instrumentation. Principal applications
include computer architecture studies and performance
tuning of software. Both application areas require re
sonable performance in order to support realistic work-
loads, and both benefit from the flexibilit y, generality,
and portability of a fast threaded-code simulator. The
presented design supports multiprocessor simulation,
system-level (operating system) programs, and, in princi-
ple, arbitrary user programs including run-time generated
code. We evaluate the performance using the SPECint9
benchmark suite, and the result, with full profiled instru-
mentation enabled, is an execution time 26-108 times
slower than native execution.

1 INTRODUCTION

Instruction set simulators are used by computer architects
and programmers for a variety of tasks, including archi
tecture design, porting system software, and performance
tuning of software.

The basic design of modern instruction set simulators
is often a variation of threaded code (Bell 1973). This
design can be extended to support full system level
simulation (Bedichek 1990) and multiprocessors
(Magnusson 1993). An element that has been missing in
instruction set simulators is efficient support for accurate
execution profiling and instruction cache modeling. In-
struction cache behavior is important for computer ar-
chitects, and both instruction cache and execution pr
filing are important to support performance tuning of
software.

Given their close relationship with the threaded code
interpreter itself, both are most suitably addressed by

 of

t

rs

atc

int

f

ts

,

1094 Magnusson
1.2 Instruction Caches

An execution profile showing the frequency of execution
of any line of code is a traditional component in per-
formance tuning, and will be meaningful to most expe-
rienced programmers. The importance of instruction
caches for performance, on the other hand, is less widely
known. Relatively recent studies, such as one by the
RS/6000 group at IBM (Maynard et al. 1994), has shown
that instruction cache behavior is often a significant fac-
tor for commercial workloads. In another commercial
system study that the author participated in, between a
third and a half of potential performance was lost to poor
instruction cache behavior (Werner and Magnusson
1997).

The remainder of this paper organized as follows.
Section 2 describes SimICS, an instruction set simulator
that we wil l use as our simulator platform. In section 3
we describe the SPECint95 benchmark suite, eight pro-
grams which we use as our basis for performance
evaluation of the final design. Section 4 is the core
the paper. It describes the algorithms and data structures
used to extend the threaded code interpreter core of Sim-
ICS. Section 5 presents the performance of SimICS with
full instrumentation enabled, and contrasts it with native
execution. We conclude in section 6.

2 SIMICS

SIMICS is an instruction set simulator developed at the
Swedish Institute of Computer Science (SICS) tha
simulates multiple SPARC V8 processors and supports
multiple physical address spaces, system-level code, and
emulation of the SunOS 5.x execution environment
(ABI) for direct analysis of user-level programs. SimICS
itself is sequential, allowing it to be fully deterministic, a
crucial feature for an instrument. SIMICS is publicly
available at http://www.sics.se/simics/

The main design principle of SimICS is to have a core
which is both general and efficient, and thus inevitably
very complex, in such a way that even advanced use
need only have a rough idea of how it works. This allows
SimICS to be reasonably efficient, with a slowdown of
50-200, and yet provide several hooks for end-user ex-
tensions that can effectively benefit from this perform-
ance.

2.1 Interpreter Core

The core of SimICS is a hand-written threaded-code in-
terpreter. The simplest interpreters execute programs by
running a central fetch-decode-execute loop. Threaded
code, in contrast, separates the decode and disp
tasks, thus reducing the cost for decoding and allowing
for innovative dispatch techniques (Bell 1973, Kl
1981).
h

When applied to instruction set simulation, the target
program, in object code format, is translated to an in-
termediate format which is in turn interpreted. Whereas
the target instruction set is designed for interpretation by
hardware, the SimICS intermediate format is designed to
be easy for software. For each intermediate format in-
struction there is a small segment of code, called a serv-
ice routine, that emulates the effects of that instruction,
as well as performing any administrative tasks for the
simulation.

Figure 1 illustrates the main principles. The design is a
variation of Bedichek’s (Bedichek 1990, Magnusson and
Samuelsson 1994). The target code consists of instruc-
tions for the target architecture. These are (1) lazily
translated to a fixed-sized, 64-bit format (2) consisting of
a 32-bit pointer to a service routine (3), and 32 bits o
parameter space. These parameters generally contain
offsets into a register file (not shown) and/or constants.
The choice of a 32-bit parameter field allows for a
pointer if more space is required.

The service routine (3) begins execution with its 32
bits of parameter in a specific global register. It does i
thing and when finished performs two simple but key
operations in its epilogue (4). First, it checks for an
event by decrementing a time-to-next-event counter, and
if no event is due, fetches a pointer to the next service
routine together with its parameter through by using the
intermediate code pointer (5), and jumps to the address
contained in the first.

Fall-through execution is modeled by simply incre-
menting the intermediate code pointer. Branch instruc-
tions must calculate a new intermediate pointer first.
Note that the figure includes two pointers, PC and nPC,
in order to support an architecture with branch delay
slots (SPARC 1992).

Most service routines are simple, typically 15-30 host
processor instructions, of which 6 constitute the standard
epilogue (4). This sets an upper limit on performance for
this technique of about 20 times slower than native exe-
cution. Achieving significantly better performance than
this requires more sophisticated translation, including
run-time generation of host code (Magnusson 1993,
Witchel and Rosenblum 1996).

Figure 1: SimICS Interpreter Core

Efficient Instruction Cache Simulation with a Threaded-Code Interpreter 1095
Table 1: Characteristics of the SPECint95 Programs
go m88ksim gcc compress li ijpeg perl vortex

Instructions (1000:s) 512297 131531 1221510 38363 185427 1986703 2361542 2410224
Data cache miss rate 0.12% 0.88% 1.0% 3.4% 1.7% 0.55% 1.4% 0.72%
Instr. cache miss rate 0.11% 0.000% 0.12% 0.000% 0.000% 0.001% 0.000% 0.072%
Unique instructions 12348 2676 33439 722 1485 3118 8140 15339
Size of binary (Kbyte) 750 1138 3352 257 417 1304 906 2920
Instr:s per TLB miss 2464 29326 1268 1444 816860 67951 1868 384
Native execution (sec) 3.2 0.5 8.1 0.1 1.0 8.3 14.5 13.0
Branches (1000:s) 52779 19969 189037 4461 28298 166501 383110 321047
relative on page 75% 68% 73% 79% 65% 67% 68% 65%
relative off page 13% 16% 12% 0.42% 7.6% 20% 13% 16%
absolute on page 1.0% 2.2% 6.2% 21% 20% 1.1% 2.6% 2.2%
absolute off page 11% 14% 9.0% 0.039% 7.5% 11% 16% 16%
annulled instructions 6688 2370 29816 521 3716 14954 50350 22382
rs

ig-

ch

at

s

r-

e-
SimICS emulates a SunOS 5.x kernel by explicitly
emulating common system calls. This includes support
for running multiple programs (multitasking) as well as
running programs on several processo
(multiprocessing). SimICS can also disable Unix emu-
lation and run system-level code; the SPARC port of
Linux can run unmodified on SimICS.

3 BENCHMARKS

The most common use for SimICS that we anticipate is
to support advanced performance debugging. A repre-
sentative workload is therefore the SPECint95 bench-
mark suite from the Standard Performance Evaluation
Corporation. This suite consists of 8 compute-intensive
programs that emphasize the performance of the proces-
sor and memory system. We’ve compiled them using
GCC version 2.7.2.1, with the “-O2 -g -static” flags.
GCC is not the fastest SPARC compiler, but has the ad-
vantage of not only being widely available, but old ver-
sions tend to be available also, simplifying future repeti-
tion of experiments.

The SPECint95 programs can run with one of three
input data sets: test, train, and reference. Test input is
self-explanatory, train input is meant for profile-driven
compilation, and reference input is for computer manu-
facturers to use for publishable results. We chose to use
the train input data as these are large enough to be s
nificant yet more manageable for experimentation than
reference data sets.

Table 1 gives some detailed characteristics on ea
program. All quantitative data given on the SPECint95
programs in this paper have been gathered using SimICS.
The native execution times were measured on an Ultra
Enterprise, with four 248MHz UltraSPARC-II proces-
sors and 1Gb main memory, using the system time facil-
ity and taking the median of five runs. The “unique in-
structions” count is the number of code addresses th
were actually fetched. The binary size is of the non-
stripped, statically linked program. Instructions per TLB
miss indicates the frequency of misses to the addres
translation cache; the number is the average distance in
instructions between misses, which are caused by either
instruction or data accesses. All percentages are relative
to number of instructions.

For the evaluation in this paper, we’ve modeled the
first-level data and instruction caches of the Supe
SPARC processor (16 Kbyte 4-way associative data
cache with 32-byte cache lines, and 20 Kbyte 5-way as-
sociative instruction cache with 32-byte lines and 64-byte
tag allocation). The translation lookaside-buffer we
model is fully associative with 64 entries, also
corresponding to the SuperSPARC processor.

4 BRANCH SIMULATION

In general when profiling code, we have the choice of
counting basic blocks or jumps, or a mixture. An exe-
cution diagram consists of a weighted directed graph,
where the weights of the nodes correspond to the number
of times the corresponding basic block has been ex
cuted, and the weights of the arcs to the number of times
the corresponding branch was taken. For any given
node, the sum of the input arcs equals the weight of the
node equals the sum of the output arcs. As shown by
Ball and Larus (1992), the node weights can always be
deduced by the arc weights, but not vice versa. Also, the
minimum cost to gather the necessary information to
reconstruct the diagram is generally achieved by a mix-
ture of arc and node counters in the code. However,
node counters requires identifying all basic block entry
points, which is difficult in the general case. Thus, a
practical and reasonably efficient method to generate an
execution diagram is to count all taken branches.

Furthermore, to simulate the instruction cache we need
to check the validity of all branches, explicitly or implic-
itly.

Therefore, we choose to perform an operation on
every taken branch that:

• increments a counter for that branch,
• checks access rights, and
• checks instruction cache and TLB presence of the

target instruction.
We begin by stating some “known” characteristics of
mainstream computers:

nd

i-

e

ss

he

bly

s

rs
w

1096 Magnusson
• instruction cache misses are expensive on
the target machine,

• the most common branch type is an on-
page, PC-indirect conditional jump, and

• changing page is infrequent.
A “page” here is the largest sequence of instructions
guaranteed to be contiguous in both virtual and physical
address space. For our target, this is 4kbyte, or 1024
instructions.

Table 1 also shows some statistics from our bench-
marks to support our branch-related claims. In the table
we classify branches as either relative or absolute, a
with targets being either on the same page as the branch
instruction or another page (off page). On the SPARC
architecture, relative branches are fixed offsets from the
program counter, and absolute branches are register ind
rect. The numbers are all dynamic, i.e. they classify taken
branches. For completeness, the last line of the tabl
shows thousands of annulled branches. These correspond
to untaken branches where the instruction in the delay
slot of the branch instruction is ignored (annulled). From
Table 1 we can deduce that we should optimize for the
case of relative on-page branches, but that none of the
branch types are systematically rare enough to be ig-
nored.

Comment: Any system-level simulation involves three
address spaces, which we shall call logical, physical, and
real. The logical (or virtual) address space is the one
seen by a traditional, user-level program. For every ac-
cess, these must be translated to a corresponding physical
address. The real address is the location of simulated
data in the virtual address space of our simulator proce

4.1 Branch Simulation Overview

Figure 2 illustrates the major control flow for simulating
branches. A service routine is dispatched based on t
contents of intermediate code (1). If the branch is taken,
the instruction hache table is first checked (2), which, if
successful, will i mmediately provide any information
needed. This data structure will be described in Section
4.3 (where we will also explain why hache is not a mis-
spelled hash).

If this lookup fails, a general branch miss handler is
invoked (3). It will confer with several general mod-
ules—4, 5, and 6. These all have in common that they
may be replaced (dynamically at run-time if so desired)
by code written by an end-user of the simulator, using a
set of simple programming interfaces.

The first module is the TLB (translation look-aside
buffer) which handles translation from virtual to physical
addresses (4). In our basic configuration, this simulates a
simple, 64-entry TLB with round-robin replacement.
.

The second module is the branch prediction simulator
(5), which is optional but gives some support to simu-
lating simple branch prediction schemes.

Finally, the memory hierarchy (6) is passed a memory
transaction for an instruction fetch from the target ad-
dress. This module typically simulates an instruction
cache or a shared data and instruction cache, possi
also modeling cache coherency between multiple proc-
essors.

The general branch miss handler will update the in-
struction hache table unless either of modules 4, 5, and 6
have vetoed such insertion. Thus, the hache table serve
as a filter, handling the common cases efficiently and
invoking complex modules only when something
“interesting” occurs.

4.2 Deducing the Execution Profile

We mentioned earlier that a set of branch arc counte
are sufficient to deduce the execution graph. We no
describe more precisely how this works.

Figure 3: Execution Profile Deduction

An execution profile is a list of instruction addresses
and for each instruction a count of how many times it has
been executed. Given a set of arc counters, we can de-
duce a profile for any execution diagram using the fol-
lowing relationship, see Figure 3:

E(B) = E(A) + BT(B) - BF(A).

A and B are two consecutive instructions, BF(A) is the
number of taken branches from instruction A, BT(B) is
the number of taken branches to instruction B, and E(A)
is the number of times instruction A was executed.

An execution profile can thus be deduced from a re-
cursive relationship. This recursion starts with BT() at
the beginning of a page, because we do not allow “ fall
through” execution across page boundaries. That is to
say, every execution across a page boundary is explicitly
represented by a from-to arc.

Figure 2: Branch Simulation Overview

ial

ty

t

)

r

-

e
are

:

Efficient Instruction Cache Simulation with a Threaded-Code Interpreter 1097
The situation is complicated in practice by the simu-
lator being interactive and supporting both multitasking
and multiprocessing. Thus, there arise several spec
cases where the nature of the “branch” becomes unclear.
For example, a trap instruction can be viewed as an in-
direct branch over the contents of the trap table. We re-
solve such issues, as they occur, into a compensation
table which is permitted to contain branches where either
source or target is undefined.

4.3 Instruction Hache Table

Changing pages requires recalculation of intermediate
program pointers, including possibly simulating a TLB
miss. Within a page, we take advantage of the colineari
of virtual, physical, and intermediate program addresses.
Thus, we set:

v_diff = PC - (i_PC >> S),

where S is the difference between the sizes of a targe
instruction and the intermediate code format, in base 2
logarithm. In our case, target instructions are 4 bytes and
intermediate code is 8 bytes, so S is 1. We keep the value
v_diff in a global register. PC is the (virtual address
program counter, and i_PC its corresponding interme-
diate code pointer (see Figure 1).

(A variable-length instruction set would require a dif-
ferent scheme for v_diff , but the implementation of
c_diff should be applicable; the important charac-
teristic for c_diff is that an intermediate code location
corresponds to a unique physical address.)

Thus, as long as we remain on the same page, the vir-
tual address of our program counter can always be recon-
structed as follows:

PC = v_diff + (i_PC >> S),

when we change page we reevaluate v_diff , otherwise
we thus allow PC and nPC to be implicit in our inter-
mediate code pointers. This saves updating them for
every interpreted instruction. An alternative would be to
maintain a separate pointer to the current virtual code
page, but in that case we would need a second pointer fo
the current intermediate page since the latter is arbitrarily
aligned—its size cannot be a simple multiple of a host
page because it needs special case intermediate code
pointers past its end to handle events including fall-
through execution to the next page.

Given that we need to update v_diff on every
change of page, we can use a similar trick to implement a
hash table.

Since we wish to count every taken jump, this means
that we need to locate a “ from-to” pair. We choose to
identify these by their physical, as opposed to their vir
tual, address since thereby we’re independent of how the
virtual memory is implemented.
We locate this pair in a table, see Figure 4. We call
this table a hache table, since it caches data from a
slower, complete data structure using a small hash table.
Another similarity with caches is that the presence of an
entry can have a semantic implication. The hache table
consists of two sets of two words, separated by a fixed
distance (3) known at compile time. We make this hache
table as large as an intermediate code page. Notice how
each entry in the first half (1) is as large as an intermedi-
ate code entry in Figure 1. Thus, we can use the same
trick as we used with v_diff , namely, we form
c_diff :

c_diff = (page(PC) << S) - i_PC +
code_table_start,

which allows us to form the hash table lookup function
simply by adding i_PC and c_diff to get the address
of (1). The page() function gives the offset on a page,
which in our case is the lower 12 bits.

The first set of two 32-bit words contains the source
and target addresses of the branch arc (stored pre-trans-
lated to intermediate code pointers) and a counter. W
can fi t a counter since 12 bits of the source address
redundant as the hash table is direct-mapped on 10 bits,
and the bottom 2 bits are always zero since instructions
are word-aligned. We form a tag comparison as follows

(i_PC_targ ^ target) |
((i_PC_src ^ i_PC) & ~0x7ff),

where we use logical operators expressed in C syntax:
the ”^” operator is bitwise exclusive or , ”∼” is bitwise
not , and ”&” is bitwise and . This expression compiles
to 4 host instructions.

Essentially, we compare the top 21 bits of the current
instruction pointer in parallel with all the bits of the tar-
get instruction pointer, and if both match (i.e. the result is
zero) then we have a “hit”.

Notice that since 12 bits are redundant, comparing 21
bits is one bit too many. We use the 12th bit as an over-
flow bit, initially setting it to a valid value for the entry (a
zero for the first 512 entries, a one for the next 512).
When the counter overflows, we get an impossible tag
value and will thus “miss” the hash table. The counter
thus utilizes 11 bits, and can count up to 2047.

Upon a hit, we have already loaded the counter into a
register, and can simply write back the (incremented)
value to memory and proceed with the branch.

Figure 4: "from" Table in Instruction STC

et

e

s

r

h

1098 Magnusson
Entries are put into this table if the following is true
for the target address:
• it is allowed to execute,
• it is resident in the instruction cache,
• the target address would hit in the branch prediction

table, if simulated,
• it has previously been executed, such that a counter

has been allocated and the proper data structures s
up, and

• the target virtual-to-physical address translation is
valid.

The last two points brings us to the second set of words,
(2) in Figure 4. This contains a pointer to a main counter
for that branch arc. When the table entry is kicked out,
we simply accumulate the cached counter into this main
counter, making invalidation a cheap operation.

The other word in part (2) of the data structure con-
tains the v_diff value for the target page. The table
thus also caches virtual-to-physical translations. This
allows register indirect branches—which are infrequent
but for a simulator potentially very expensive—to also
use the table.

In summary, this 4-word data structure contains the
following information for a specific branch arc:

• intermediate code address of source,
• virtual address of target,
• intermediate code address of target,
• counter, up to 2047 taken branches,
• overflow bit for counter, and
• pointer to a main counter, up to 4 billion taken

branches.
The physical addresses of both source and target can

be derived from the intermediate code addresses sinc
these are unique in the direction intermediate ⇒ physical
(they are not unique in the other direction since the
simulator may generate different versions). This trans-
lation is done by maintaining a sorted list of intermediate
page addresses and using unrolled binary search to locate
the entry (Knuth 1973).

 1 if (take branch) 2
 2 target = i_PC + offset; 1
 3 (i_PC_src, i_PC_targ) = *(i_PC + c_diff) 1
 4 i_PC_src ++; 1
 5 if ((i_PC_targ ^ target) |
 ((i_PC_src ^ i_PC) & ~0x7ff) == 0) 5
 6 *(i_PC + c_diff) = i_PC_src; 1
 7 i_PC = i_nPC; 1
 8 i_nPC = target; 1
 9 dispatch(i_PC); 4
10 else
11 do_it_the_slow_way();
12 else
13 i_PC = i_nPC;
14 i_nPC ++;
15 dispatch(i_PC)

Figure 5: Pseudo code for on-page, conditional branc
Figure 5 shows the pseudo code for simulating an on-
page, conditional, program-counter-relative jump in-
struction. As we noted in the beginning of Section 4, thi
is the worst common branch case, representing between
two-thirds and three-quarters of taken branches.

On line (1) in the listing, some condition triggers the
branch, typically simulated condition codes. We first
calculate the target instruction, using the parameter offset
which is part of our intermediate format. We next fetch
the 64-bit instruction STC entry (3), increment the em-
bedded counter (4), and perform the parallel tag com-
parison (5). If we hit in this hash table (5), we first write
back the top 32-bits of the instruction STC entry con-
taining the updated counter (6), and finally on lines (7)
through (9) complete the branch. The numbers on the
right of the listing show the number of host SPARC in-
structions corresponding to a compiled version of the
common path in the listing—a total of 17 instructions.
Only 3 of these instructions are memory operations.

4.4 Improving Hit Rate

As with any caching-like structure, collisions are a key
concern. The performance of the table as described thus
far was poor. We take two steps to improve it, which we
describe only briefly for lack of space.

We first introduce a “to” table. It is identical in design
to the “ from” table in Figure 4, except that source and
target addresses change places. This allows us to decide
whether the from-to pair is faster to find via the source o
target address. This also provides a mechanism to avoid
some systematic collisions.

Second, and equally important, we increase the size of
the tables significantly, to several thousand entries.

Large ISTC tables become sparse if event frequencies
are high—for example when modeling small caches or
running programs with high TLB miss rate. We therefore
need to handle invalidations efficiently.

Invalidations are primarily one of two types invalida-
tion of all entries for a particular virtual page; and the
removal of an entry relating to a particular physical ad-
dress.

We currently solve this problem by maintaining com-
pletely separate data structures. In the case of virtual
invalidations, we are aided by the fact that these can only
be relevant for cross-page jumps, since on-page jumps
wil l be implicitly valid by the execution of the source
instruction.

We have not found a correspondingly elegant insight
for physical invalidations, so currently a binary tree is
maintained that is consulted for every addition or re-
moval of a valid instruction cache line. This tree cur-
rently absorbs over 10% of execution.

Efficient Instruction Cache Simulation with a Threaded-Code Interpreter 1099
 Table 2: SimICS Performance
caches TLB go m88ksim gcc li ijpeg perl vortex

Native execution (sec) N/A N/A 3.2 0.5 8.1 1.0 8.3 14.5 13.0
Native MIPS 160 260 150 190 240 160 190
Sim 1 (sec) infinite 1024 84.5 19.2 267.7 33.0 216.8 574.5 491.8
 MIPS 6.0 6.9 4.6 5.6 9.2 4.1 4.9
 Slowdown x26 x38 x33 x32 x26 x40 x38
Sim 2 (sec) 16k/20k 64 137.2 23.9 584.4 52.9 257.6 810.1 1401.8
 MIPS 3.7 5.5 2.1 3.5 7.7 2.9 1.7
 Slowdown x43 x48 x72 x52 x31 x56 x108
fil-

t

ion

-

 a

-

4.5 Instruction Cache Modeling

To support instruction cache modeling, we need a second
element, in addition to branch target control and pro
ing. This regards handling fall-through execution across
instruction cache line borders.

Again, unfortunately, this is a common operation. In
our implementation, we support a granularity of 32 bytes,
thus every 8th sequential instruction needs to check tha
it is permitted to execute.

To implement this, we extend the semantics of our
“to” table such that an entry is one of three types: invalid,
valid branch arc, and valid instruction cache line cross-
ing. We then insert an artificial instruction in our inter-
mediate code that asserts that the “ to” table entry is either
a valid branch arc with the instruction cache line as target
(in which case it must be valid to fall into), or a special
cache line crossing entry. The latter will be treated as
invalid by the branch handlers. This is done by putting a
magic value in v_diff in the “ to” table, corresponding
to (2) in Figure 4.

In uniprocessor mode, we simplify this by using the
intermediate code to book-keep which instruction cache
lines can be crossed (as suggested by Bedichek 1990).
This does not work for multiprocessors, however, unless
we wish to replicate all intermediate code. This in turn is
probably not a good idea since we will rapidly worsen
the data cache performance of our host.

4.6 Multiple Processors and System Level Code

Since the design presented in the previous section sup-
ports virtual memory and arbitrary execution flow, it
therefore supports running system-level software such as
operating systems.

It’s ability to support multiple processors is a little
more subtle. SimICS uses the same intermediate code for
all processors within the same physical address space in
order to reduce pressure on the host data cache when
simulating large multiprocessors. Notice that only a sin-
gle (global register) value characterizes the instruct
cache and branch arc status of a page of intermediate
code, namely v_diff . Therefore, we only need to
change v_dif f upon switching simulated processor.
This is fortunate since we wish to have a very low over-
head for processor switching so as to allow for fine-
grained interleaving of events. Currently the cost of
switching processor on SimICS is equivalent to 2 or 3
simulated instructions, which allows simulation runs to
have an interleaving on the order of 10-50 “cycles” and
remain reasonable efficient. Our design wil l not signifi-
cantly worsen this performance.

5 EVALUATION

Table 2 shows the relative performance of SimICS over
native execution. The timings were performed on an Ul-
tra Enterprise, with the median of 5 time measurements
shown (we’ve omitted compress since its native execu
tion time was too small). The table shows a range of per-
formance of 26-108 for different configurations of Sim-
ICS. This resonates fairly well with our goal of main-
taining the historical performance of SimICS of 50-200
while at the same time adding significant new instru-
mentation.

We show two different runs of SimICS. The first,
Sim 1, is with infinite data and instruction caches, and
very large TLB (1024 entries). Thus in Sim 1 the tables
are used to maximum effect. In the second configuration,
we simulate small on-chip caches (see Section 3).

All simulation runs generated full profiling of data
cache read and write misses, instruction cache misses,
TLB misses, and branch arc counts. Execution profiling
is included in all runs.

As the caches and the TLB gets smaller, the frequency
of expensive events increases and worsens our slow-
down. The baseline performance with minimum activity
is close to the expected peak performance of the inter-
preter technique that we use, which is in the vicinity of
20. The performance loss for more realistic resource re
strictions remains reasonable. The only benchmark with a
slowdown worse than 72 is vortex, and this is caused by
simulating a realistic TLB. Referring back to Table 1,
vortex encounters TLB misses every 384 instructions!
The poor performance for vortex could be improved—
running vortex on SimICS on SimICS (recursively)
shows that the data structures being used to handle TLB
invalidations behave poorly.

The level of detail provided by the instrumentation
during these runs was suff icient to support performance
tuning of both parallel and sequential programs
(Magnusson and Montelius 1997).

e

.

,

-

,

1100 Magnusson
6 CONCLUSIONS

We have presented a significant redesign of the threaded
code interpreter core of an existing instruction set simu-
lator, SimICS. The design does not significantly change
the overall performance, which has historically been in
the range of a slowdown of 50-200 for realistic work-
loads and significant instrumentation. Despite adding
detailed profiling of instruction flow and instruction
cache performance, the simulator runs the SPECint95
benchmark suite with slowdowns in the range 26-108
while generating a detailed profile on data cache events,
TLB misses, instruction cache misses, and taken
branches. The result is an increased range of instrumen-
tation at a similar performance penalty, with direct appli-
cation in computer architecture studies and performance
debugging tasks.

ACKNOWLEDGMENT

The author would like to thank Bengt Werner for valu-
able comments on earlier drafts of this paper.

REFERENCES

Ball, T., and J. R. Larus. 1992. Optimally profiling and
tracing programs. In Conference Records of th
Nineteenth ACM Symposium on Principles of Pro-
gramming Language, 59-70.

Bedichek, R. C. 1990. Some eff icient architecture simu-
lation techniques. In Proceedings of Winter ’90
USENIX, 53-63.

Bedichek, R. C. 1995. Talisman: Fast and accurate mul-
ticomputer simulation. In Proceedings of the ’95
SIGMETRICS Conference, 14-24.

Bell, J. R. 1973. Threaded code. Communications of the
ACM, 16(6):370-372.

Cmelik, R. F., and D. Keppel. 1994. Shade: A fast in-
struction-set simulator for execution profiling. In Pro-
ceedings of the ’94 SIGMETRICS Conference, 128-
137.

Darcy, G. A., R. F. Brender, S. J. Morris, and M. V. Iles
1992. Using simulation to develop and port software.
Digital Technical Journal, 4(4), 181-92.

Goldschmidt, S. R. 1993. Simulation of multiprocessors:
Accuracy and performance. Ph.D. thesis, Stanford
University, Dept of Electrical Engineering.

Klint, P. 1981. Interpretation techniques. Software -
Practice and Experience, 11(9):963-973.

Knuth, D. E. 1973. Art of Computer Programming. Vol.
3, Sorting and Searching. Addison-Wesley, Reading.

Lebeck, A. R., and D. A. Wood. 1994. Cache profiling
and the SPEC benchmarks: A case study. IEEE Com-
puter, 27(10):15-26.

Magnusson, P. S. 1993. A design for eff icient simulation
of a multiprocessor. In Proceedings of MASCOTS'93
69-78.
Magnusson, P. S. 1993. Partial translation. SICS Tech-
nical Report T93:05, ISSN 1100-3154.

Magnusson, P. S., and D. Samuelsson. 1994. A compact
intermediate format for SimICS. SICS Research Re
port, R94:17, ISSN 0283-3638.

Magnusson, P. S., and B. Werner. 1995. Eff icient mem-
ory simulation in SimICS. In Proceedings of the 28th
Annual Simulation Symposium, 62-73.

Magnusson, P. S., and J. Montelius. 1997. Performance
debugging and tuning using an instruction-set simula-
tor. SICS Technical Report T97:02.

Maynard, A. M. G., C. M. Donnelly, and B. R.
Olszewski. 1994. Contrasting characteristics and
cache performance of technical and multi-user com-
mercial workloads. In Proceedings of ASPLOS VI
145-155.

Rosenblum, M., S. Herrod, E. Witchell, and A. Gupta.
1995. Complete computer system simulation: The
SimOS approach. IEEE Parallel and Distributed
Technology, 34-43.

SPARC International, Inc. 1992. The SPARC Architec-
ture Manual, Version 8.

Veenstra, J. E., and R. J. Fowler. 1994 MINT: A front
end for efficient simulation of shared memory multi-
processors. In Proceedings of MASCOTS ‘94, 201-
207.

Werner, B., and P. S. Magnusson. 1997. A hybrid simu-
lation approach enabling performance characterization
of large software systems. In Proceedings of MAS-
COTS 97, 73-80.

Witchel, E., and M. Rosenblum. 1996. Embra: Fast and
flexible machine simulation. In Proceedings of the ‘96
SIGMETRICS Conference, 68-79.

AUTHOR BIOGRAPHY

PETER S. MAGNUSSON is a researcher at the Swed-
ish Institute of Computer Science. He received his MBA
from the Stockholm School of Economics in 1991, and
his M.Sc. from the Royal Institute of Technology in
1992. His research focus is instruction set simulation,
including software engineering issues, efficient instru-
mentation, and performance modeling.

	EFFICIENT INSTRUCTION CACHE SIMULATION AND EXECUTION PROFILING WITH A THREADED-CODE INTERPRETER
	ABSTRACT
	1 INTRODUCTION
	1.1 Instruction Set Simulation
	1.2 Instruction Caches

	2 SIMICS
	2.1 Interpreter Core

	3 BENCHMARKS
	4 BRANCH SIMULATION
	4.1 Branch Simulation Overview
	4.2 Deducing the Execution Profile
	4.3 Instruction Hache Table
	4.4 Improving Hit Rate
	4.5 Instruction Cache Modeling
	4.6 Multiple Processors and System Level Code

	5 EVALUATION
	6 CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 1093
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

