Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradéttir, K. J. Healy, D. H. Withers, and B. L. Nelson

A GENERAL FRAMEWORK FOR LARGE SCALE SYSTEMS DEVELOPMENT

Aleks O. Gollu
Farokh H. Eskafi

Partners for Advance Transit and Highways (PATH) and
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, California 94720, U.S.A.

ABSTRACT

This paper describes a general framework for the
modeling, design, simulation, and prototyping of
large scale systems. The framework uses a coher-
ent set of tools that model the system at hand, take
a control design and analyze, verify, and simulate
it; and then can generate code that can be run in
a target real-time software platform in the physical
system. The paper emphasizes the specification lan-
guage SHIFT and the simulation tools used by the
framework. We present the development of the Au-
tomated Highway System as an example.

1 INTRODUCTION

Large engineering systems, such as automated high-
way systems (AHS), autonomous vehicle systems
(AVS), material handling systems, air traffic manage-
ment systems (ATMS) face the challenge of provid-
ing reliable services using scarce resources. Clients of
such systems demand performance, safety, comfort,
and efficiency.

The problem is often compounded by physical re-
sources that are saturated, inefficiently utilized, or
technologically outdated. In many industries, failure
to improve the performance of such systems results
in significant financial or social costs.

Due to the heterogeneity of the system elements
and the large system size, the planning and control
of such systems cannot always be done in a mathe-
matical framework. Experimentation with the actual
physical system is often not feasible; in many cases
the physical system is not yet built. Furthermore,
most real systems have an abundance of unstructured
information, too many superfluous details, no well-
defined observation and control mechanisms, and no
single access location due to their distributed nature.

Complex software applications are needed to spec-
ify, simulate, evaluate, and manage the behavior of
such large scale systems. Currently, there are no co-

1134

herent software tools that can facilitate large scale
system development from concept inception to actual
deployment. There is a gap between the specification
and implementation constructs required to build such
systems on the one hand, and the interfaces provided
by software design tools and programming languages
on the other hand.

This paper describes a general framework for
the modeling, design, simulation, and prototyping of
large scale systems. The framework uses a coherent
set of tools that model the system at hand. It can
take a control design and analyze, verify and simu-
late it, and then can generate code that can be run
in a target real-time software platform in the physi-
cal system. This paper emphasizes the specification
language SHIFT and the simulation tools used in the
framework.

The general framework as well as the tools that
implement it have evolved at PATH (Partners for Ad-
vance Transit and Highways) over the last seven years
as large number of researchers have worked on Intel-
ligent Transportation Systems, AHS, and AVS.

Our simulation tools have been evolving through
the years. Since the systems we were working on were
inherently complex the need for simulation was obvi-
ous and we have developed C and C++ based simula-
tion frameworks to evaluate PATH’s and other orga-
nizations’ proposals for highway automation (Eskafi
1995 and Gollit 1995). In parallel to our AHS work,
we were involved with several other projects, such
as ATMS, power transmission and distribution sys-
tems, and network management systems. In system
engineering, we have observed a general shift towards
hierarchical control of large systems that combined
classical continuous feedback systems, with more re-
cent discrete event based control algorithms and pro-
tocol specifications. This hybrid systems paradigm
has proven ideal for the specification, control, and
verification of such complex, large, dynamical sys-
tems.

Our experience with a multitude of such systems



A General Framework for Large Scale Systems Devel opment 1135

resulted in a set of requirements for frameworks for
the design, specification, control, simulation, and
evaluation of large systems. No language, product,
or tool in the market nor in academia came close to
satisfying all requirements. Many simulation frame-
works are available that consist of a set of class li-
braries developed in a programming language such
as C++. These frameworks impose semantic notions
such as inputs, outputs, events, differential equations
etc. onto the C++ syntax and expect the user to fol-
low framework rules for using the class libraries. This
approach does not provide the user with any syntactic
support for large scale system development. Several
discrete event simulation tools exist. However, these
tools do not provide enough support for continuous
evolution. Block-diagram based simulation tools are
easy to use, but do not provide the necessary expres-
sive power to represent dynamic interaction patterns
among the simulated objects. Consider vehicles mov-
ing on a highway, where the behavior of a vehicle de-
pends on the behavior of its front vehicle. The block
diagram paradigm may be able to define a single ve-
hicle, but fails to represent the “front vehicle” which
could be any vehicle in the simulation as time passes.

The design and implementation of a language
that addressed all the requirements required exper-
tise from several disciplines including computer sci-
ence, electrical engineering, and mechanical engineer-
ing. Such a multi-disciplinary team was assembled
at PATH/UC Berkeley and a new programming lan-
guage, SHIFT, was born.

The SHIFT formalism (Deshpande, Gollii, and Se-
menzato 1997a and 1997b) which we briefly discuss
in Section 4 is the first programming language with
well defined simulation semantics that addressed our
requirements. It combines system-theoretic concepts
into one comnsistent and uniform programming lan-
guage with object-oriented features. SHIFT is ideal
for the design, specification, simulation, control, and
evaluation of large dynamical systems that consist of
multiple interacting agents whose behavior are de-
scribed by state machines and ordinary differential
equations. SHIFT’s strength lies in the ability of in-
stantiating agents and evolving the interaction net-
work among them at run-time as part of the simula-
tion.

Our work on the general framework has been more
recent. As the control designs for automated vehicles
matured we started in-vehicle prototype experiments.
At this stage it became essential to streamline the
translation of the control law specifications that had
been simulated and verified into in-vehicle real-time
control instructions.

This paper is organized as follows. In Section 2 we

discuss the framework and the general methodology
for large scale system development. In Section 3 we
summarize requirements for simulation frameworks.
In Section 4 we discusses the SHIFT language that
is used as the specification and simulation language
of the overall framework. In Section 5 we use the
example of the AHS to describe how the methodology
is used. Section 6 has the conclusions.

2- GENERAL FRAMEWORK FOR LARGE
SCALE SYSTEM DESIGN

The overall methodology we use for large scale sys-
tem design, prototype, and deployment is depicted in
Figure 1.

Large scale system development goes through sev-
eral stages. The first stage typically consists of fea-
sibility studies that lead to models and designs on
paper. The second stage broadens the scope with
prototype experiments.

2.1- Stage One

Any large scale system design task requires the spec-
ification of an overall architecture within which con-
trollers can be designed to coordinate the system.
The architecture design decomposes the control de-
sign problem into the control of sub-systems.

The highway automation architecture of PATH is
briefly discussed in this paper. An architecture for
Air Traffic Control is proposed in Koo et al. (1997),
and an architecture for Autonomous Underwater Ve-
hicles is proposed in Sousa and Gollii (1997).

Architecture specification can go through several
steps of refinement. For AHS, the first step of de-
composition separates the roadside controllers from
in-vehicle controllers. In-vehicle controllers are fur-
ther decomposed into feedback controllers responsi-
ble for safe execution of follow, lane change, entry
and exit maneuvers, and coordination controllers for
tactical decisions as to what maneuver to perform.

The actual controllers may be implemented by
classical feedback systems, discrete event systems, or
hybrid systems that combine the two.- Other ap-
proaches such as rule-based systems and neural nets
can also be used.

Analysis, simulation, and verification tools are
needed within which these tasks can be carried out.
Verification tools provide guarantee conditions for
specific designs. In general, verification is possible
only with very high level abstractions or very iso-
lated subsystems. Analysis tools are useful for high
level models for which closed form solutions can be



1136 Gollu and Eskafi

INPUT FRAME WORK OUTPUT

Problem
Definition

Control/Algorithm > System Architecture
Designers Design
Model / Develop
Control / Algorithm

Tools:

Verification

Analysis, Simulation, —-

Control Design
Algorithm specification
Feasibility analysis

Automatic Translation

Run Time Code environment

prototyping
Test ENQiNeers | s and
testing

Control Design
— Prototype
Run Time Code

Figure 1: A General Framework for System Development

obtained. Simulation is needed to see the detailed
performance of a design.

These tools are used in successive iterations until
the first stage starts delivering satisfactory architec-
ture and control designs.

2.2- Stage Two

As the confidence in the system architecture and con-
trol designs grows the second stage starts which in-
volves physical prototype experiments.

At this stage it is essential to leverage the con-
trol specifications of the earlier stage into actual code
that can be used in physical experiments. This re-
quires the implementation of a real-time control en-
vironment in the actual devices that can execute con-
trol instructions. Such a run-time environment must
provide the necessary abstractions to interface with
sensory and communication inputs and outputs to ac-
tuators.

Once a real-time control environment is imple-
mented, it becomes possible to automatically trans-
late specifications from the design stage into the tar-
get physical prototype system. Such automatic trans-
lation increases efficiency of experiments and prevents
loss of information between the two stages.

Physical experiments may require further refine-
ment of the control designs or the overall architecture.

3- SIMULATION FRAMEWORKS

In this section we briefly discuss simulation frame-
works that facilitate the design, specification, simu-
lation, and evaluation of large scale systems.

Frameworks shield their users from software im-
plementation details and allow them to concentrate
on their particular specification or evaluation task.
The requirements for simulation frameworks were dis-
cussed in detail in Eskafi and Golli (1997).

These frameworks must address the needs of sev-



A General Framework for Large Scale Systems Devel opment 1137

eral categories of users who use it in successive stages.
System engineers develop automation architectures,
control and communication engineers design, imple-
ment, and test individual control algorithms; system
analysts test and evaluate the overall system; and
system planners select the automation strategy for
deployment based on evaluation results.

In addition to traditional software engineering re-
quirements, these frameworks must allow the design-
ers to use a specification language that fits their do-
main, in this case differential equations and finite
state machines; they must provide a structured speci-
fication, simulation, and evaluation environment with
formal semantics; they must represent dynamic inter-
action dependencies among components in the sys-
tem; and last but not least they must provide models
of entities that are particular to the application do-
main.

Our experience with generations of simulation
frameworks that we have implemented (Eskafi 1996,
Golli 1995) lead us to the conclusion that simulation
frameworks are best implemented in a programming
language with explicit simulation syntax and seman-
tics. Hence, we have developed the SHIFT language.

4- SHIFT PROGRAMMING LANGUAGE

4.1- Introduction

SHIFT is a special-purpose object-oriented program-
ming language designed to simulate large dynamical
systems. It bridges the gap between system and con-
trol theory, formal methods, and programming lan-
guages for a focused yet large class of applications.

SHIFT users define types (classes) with continu-
ous and discrete behavior. A simulation starts with
an initial set of components that are instantiations of
these types. The world-evolution is derived from the
behavior of these components.

The world evolves in a sequence of phases. Dur-
ing each phase, time flows while the configuration of
the world remains fixed. In the transition between
phases, time stops and the set of components in the
world and their configurations are allowed to change.

The data model of a type consists of numerical
variables, link variables, a set of discrete states, and
a set of event labels.- The variables are grouped
into input, internal (state), and output variables. A
type has read only access to its input variables and
read/write access to its internal and output variables.
Types can access other types through their link vari-
ables. Such access is limited to write only access for
inputs and to read only access for outputs.

In SHIFT, write access to a variable constitutes

the ability to define the evolution of that variable.
Read access constitutes the ability to use that vari-
able in specifying the evolution of variables.

The data model supports inheritance. A subtype
inherits the input and output variables and event la-
bels of its parents. It may add new variables and
event labels.

The behavior model is hybrid, i.e., the model has
both continuous and discrete behaviors. Each dis-
crete state has a set of differential equations and al-
gebraic definitions that govern the continuous evolu-
tion of numeric state and output variables. These
equations are based on all numeric variables of this
type and outputs of other types accessible through
link variables. The algebraic definitions cannot have
cyclic dependencies.

The discrete behavior is given by a set of transi-
tions among the discrete states. A transition is given
by a from state, to state, a set of events, a guard, and
reset actions. Events consist of event labels of this
type (local events), and event labels on types acces-
sible through link variables (external events). Exter-
nal events create a connection (synchronization) be-
tween transitions in different components and require
concurrent execution of such transitions. Transitions
are executed when guard conditions on variables and
synchronization requirements on events hold. When
a transition is executed numerical and link variable
values may be changed and new components can be
created as part of the reset actions.

A type can establish input output connections
among variables of types accessible through its link
variables. Alternatively, a type can provide algebraic
or constant definitions for other types’ inputs.

At this time the behavior model does not support
inheritance.

Components evolve in time according to their con-
tinuous behavior rules until a discrete transition be-
comes possible. At that point the discrete transition
is executed in zero time. Several transitions can be
executed before time passage resumes.

Under the current implementation SHIFT pro-
grams are translated into C code and linked with
SHIFT run-time libraries to create an executable.
SHIFT programs can link in C functions. The run-
time executable supports programmatic, command-
line, and graphical interfaces for user interaction.

4.2- SHIFT Use

Currently, we are using SHIFT to implement the
controllers to populate SmartAHS (the AHS simu-
lator) structure. We describe the structure in Sec-
tion 5. Other frameworks under implementation in



1138

the SHIFT language include air traffic management
planning, underwater submarine operation, and cel-
lular mobile frequency allocation schemes.

We used SHIFT extensively to generate dynamical
models of entities in various fields, effectively creat-
ing class libraries for other users. Control engineers
have used the language to design and specify con-
trol algorithms to manage and improve the behavior
of large system. And test engineers have used the
language to evaluate systems designed by domain ex-
perts and control engineers. They have implemented
simple types to monitor the system and collect statis-
tics as the system evolves during successive simula-
tion runs.

To see examples of the SHIFT specification lan-
guage, user and programmers manuals, and up-to-
date information about SHIFT and the developed
frameworks, we refer the interested parties to our
home-page,
http://www.path.berkeley.edu/shift.

5- DESIGN OF THE AUTOMATED HIGH-
WAY SYSTEM

5.1- Introduction to AHS Controllers

The Automated Highway System consists of two main
elements: the automated highway and the automated
vehicle. The technical challenge facing any AHS pro-
posal is the design, development, and testing of a set
of controllers both on the highway and in the vehicle
that result in superior performance compared to to-
day. In general, the controllers on the highway should
help the driver choose the route with the shortest
travel time, and the controllers on the vehicle should
be able to drive the vehicle safely and efliciently. We
can, therefore, group the controllers in loosely cou-
pled control layers according to their function and do-
main of operation. This allows for independent design
and development of controllers by different groups of
control engineers, so long as we can define a robust
interface among the layers.

A hierarchical control design proposed originally
in a 1991 PATH report (Varaiya and Shladover 1991)
and later extended in Varaiya (1993) has four lay-
ers: network, link, coordination, and regulation lay-
ers. The first two layers are on the highway and the
last two on the vehicle. This proposal, though orig-
inally designed for the PATH-AHS proposal, is the
most elaborate proposal in terms of generality and
completeness. It only specifies the control layers and
not any specific controller, and it encompasses both
the highway and the vehicle.

Gollu and Eskafi

5.2- SmartAHS Building Blocks

Basic SmartAHS building blocks provided by Smar-
tAHS developers are discussed in Deshpande (1996).
The highway library provides building blocks to cre-
ate arbitrary highways. A highway topology is divided
into sections. A section has a specific length defined
as the length of the inner most lane within that sec-
tion (lane 1 or the high speed lane). The only require-
ment for a section is that it should have the same
number of lanes throughout its length, and all the
lanes within a section have the same geometry. How-
ever, the number of lanes from one section to another
can change. Every section comprises a number of seg-
ments. A segment can be either a line or an arc; in
the former case its only attribute is its length, but in
the latter case it has length, the arc radius, and the
direction of turn which can be left or right.

Sink and source types provide the flows of vehi-
cles facilitating the representation of desired origin-
destination patterns and flow volumes.

A basic automated wvehicle consists of several
types. It contains a vehicle which models vehicle dy-
namics, a controller which is to provide the throt-
tle, steering, and braking inputs, and a vehicle road-
way environment processor, which provides informa-
tion regarding the environment (e.g., highway, lane,
curvature, etc.) to the vehicle. The automated vehicle
also contains sensors and communication devices.

On the Roadside there may be communication de-
vices for message transmissions and receptions, con-
trollers to provide routing and traffic guidance to the
vehicles, and sensors and monitors to gather informa-
tion about the status of traffic.

5.3- SmartAHS Methodology

SmartAHS is extended and used by a series of users.

Domain experts use the SHIFT syntax and the
SmartAHS framework to provide detailed vehicle dy-
namics, sensor, actuator, and communication device
models. The types provided by these libraries can
be used interchangeably and can be combined within
the same simulation since they all support the same
input and output interfaces.

Concept designers use these libraries to decide
how to best represent a concept by a set of available
types. This step combines bottom-up and top-down
design, since for the Control types they only specify
the input/output interfaces and delegate their design
and implementation to the next set of users. The
overall architecture created at this level localizes and
simplifies the design task for the control and commu-
nication engineers that are the next set of users of the
framework.



A General Framework for Large Scale Systems Devel opment 1139

The control designers may further decompose the
controller into a hierarchy, such as feedback con-
trollers responsible for safe execution off follow, lane
change, entry and exit activities, and coordination
controllers for tactical decisions and for executing
inter-vehicle protocol actions which coordinate the
maneuvers possibly involving multiple vehicles and
the roadway infrastructure. The behavior specifica-
tion syntax of the SHIFT language merges the de-
sign and implementation of controllers. State ma-
chines, discrete events, differential equations, and ex-
istential queries are used in the specification of con-
trollers. Controllers specified by different users can
easily be integrated into future SmartAHS releases.
Upon completion of this stage an overall concept and
control design is ready for evaluation.

To simulate the system we create a scenario by in-
stantiating an initial set of components. The Scenario
creation steps are: highway geometry description,
placement of sinks and sources to represent origin-
destination data and flow volumes, specification of
weather and road conditions, and placement of de-
tailed monitors to generate the data to be used for
concept evaluation.

For more information on SmartAHS release, see

http://www.path.berkeley.edu/smart-ahs

The next step is to implement the controllers on
the actual vehicles.

5.4- Implementation and Prototyping

The automated translation of control specifications
into the real time control environment is our current
focus.

For early experiments, control specifications were
translated manually. This translation was costly and
prone to unwanted errors caused by the translators.
Nonetheless the controllers have successfully been in-
stalled and tested on the vehicles.

6- CONCLUSION AND CURRENT STA-
TUS

We have presented a general framework for model-
ing, simulation, verification, and prototyping of con-
trollers in a large scale system. We have illustrated
the framework for the automated highway system ap-
plication. Other similar systems that are using this
approach include ATMS, autonomous underwater ve-
hicles, and wireless communication systems.

This paper emphasized simulation frameworks
and the SHIFT simulation language that is used by
the framework.

Currently, we are focusing our effort on provid-
ing the verification of SHIFT specifications and their
direct translation into control instructions to run on
real-time operating systems.

REFERENCES

Deshpande, A. 1996. AHS components in SHIFT,
PATH technical report.

Deshpande, A., A. Golli, and L. Semenzato. 1997a.
The SHIFT programming language and run-time
system for dynamic networks of hybrid automata.
California PATH Technical Report UCB-ITS-
PRR-97-7.

Deshpande, A., A. Golli, and L. Semenzato. 1997b.
SHIFT reference manual, California PATH Tech-
nical Report UCB-ITS-PRR-97-8.

Eskafi, F., D. Khorramabadi, and P. Varaiya. 1995.
An automated highway system simulator, Trans-
portation Research Journal, part C, 3(1): 1-17.

Eskafi, F. 1996.- Modeling and Simulation of the
Automated Highway System, Ph.D. Thesis, UC
Berkeley 1996. Also Path Report UCB-ITS-PRR-
96-19.

Eskafi, F., and A. Gollii. 1997. Simulation require-
ments and methodologies in automated highway
planning, to appear in TRANSACTIONS of the
Society for Computer Simulation.

Golli, A. 1995. Object Management Systems, 1995.
Ph.D. Thesis, UC Berkeley 1995. Also Path Re-
port UCB-ITS-PRR-95-19.

Koo, T. J., Y. Ma, G. J. Pappas, and C. Tomlin.
1997. SmartATMS: A Simulator for Air Traffic
Management Systems, to appear in Proceedings
of the 1997 Winter Simulation Conference, ed. S.
Andradéttir, K. J. Healy, D. H. Withers, and B. L.
Nelson, IEEE, Piscataway, New Jersey.

Sousa, J., and A. Golli. 1997. A simulation envi-
ronment of the coordinated operation of multi-
ple autonomous underwater vehicles, to appear in
Proceedings of the 1997 Winter Simulation Con-
ference, ed. S. Andradéttir, K. J. Healy, D. H.
Withers, and B. L. Nelson, IEEE, Piscataway,
New Jersey.

Varaiya, P., and S. Shladover. 1991. Sketch of an
IVHS systems architecture, Proceedings of the Ve-
hicle Navigation and Information Systems Con-
ference, 909-922.

Varaiya, P. 1993. Smart cars on smart roads: prob-
lems of control, IEEE Transactions on Automatic
Control, 38(2): 195-207.



1140 Gollu and Eskafi
AUTHOR BIOGRAPHIES

ALEKS GOLLU received his B.S. in Electrical En-
gineering from Massachusetts Institute of Technology
in '87 and his M.S. and Ph.D. in Electrical Engi-
neering and Computer Science from UC Berkeley in
89 and 95 respectively. He was a Systems Engi-
neer and Project Manager at Teknekron Communi-
cations (’90-’92) Systems and a Software Engineer at
Oracle (’89-90). Currently he is a Research Engi-
neer at PATH/UC Berkeley where his research in-
terrests include simulation, modeling, real-time con-
trol of hybrid systems. His domain expertise includes
telecommunications, power distribution, highway au-
tomation, large-scale software development, database
management systems, and control technologies.

FAROKH ESKAFT received his B.S., M.S., and
Ph.D. in 1991, 1992, and 1996, respectively, all in
Electrical Engineering and Computer Science from
University of California at Berkeley. Currently he is
a research engineer at U.C. Berkeley and the project
leader for integration and implementation of the ve-
hicle controllers and communication protocols for the
Automated Highway System. His current research
interests include simulation as applied to large scale
hybrid systems, distribution and parallelization of
strongly coupled systems, and integration of simula-
tion and verification processes of control algorithms.



	A GENERAL FRAMEWORK FOR LARGE SCALE SYSTEMS DEVELOPMENT
	ABSTRACT
	1 INTRODUCTION
	2 GENERAL FRAMEWORK FOR LARGE SCALE SYSTEM DESIGN
	2.1 Stage One
	2.2 Stage Two

	3 SIMULATION FRAMEWORKS
	4 SHIFT PROGRAMMING LANGUAGE
	4.1 Introduction
	4.2 SHIFT Use

	5 DESIGN OF THE AUTOMATED HIGH- WAY SYSTEM
	5.1 Introduction to AHS Controllers
	5.2 SmartAHS Building Blocks
	5.3 SmartAHS Methodology
	5.4 Implementation and Prototyping

	6 CONCLUSION AND CURRENT STATUS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 1134
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


