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ABSTRACT

This paper summarizes the design and application of a
discrete event simulation model and animation of an
intermodal transportation facility.  We discuss the study
objectives, the software selection criteria, the model
architecture, the model results and conclusions drawn
from the simulation study.  Distinguishing features of the
model architecture and development using SLX and
Proof Animation are presented in the context of the
application.  The model was used to investigate a number
of layout, operational, and scheduling issues.

1  INTRODUCTION

The Frankford Transportation Center (FTC) simulation
study combines bus, trackless trolley, automobile, train,
and pedestrian movements in an integrated model of the
proposed changes and additions to an intermodal facility
in eastern Philadelphia.

Section 2 of this paper provides a description of the
study with an overview of the system, the project goals
and objectives, and the simulation requirements.  Section
3 describes the software selection decisions framed in the
context of the FTC application.  Section 4 includes a
discussion of the model inputs, architecture, and outputs.
Section 5 provides general observations and specific
recommendations concerning the operating plan of the
FTC facility.  Finally, Section 6 presents the conclusions
concerning the facility design based on the simulation
study.

2  STUDY DESCRIPTION

2.1  System Overview

The Bridge-Pratt Street Station, the eastern terminus of
the Market-Frankford Subway Elevated (MFSE) line,
currently serves 17,600 boardings per day.  Transfers
from bus and trackless trolley routes serving the adjacent
Frankford Terminal facility represent 56 percent of the
daily boardings for the MFSE.  The Frankford Terminal
serves 23,000 boardings per day, with 50 percent
transferring from the MFSE.  More than 500 buses and
180 trains operate out of the Frankford Terminal facility
daily.

The proposed changes and additions to the joint
facility are designed to integrate the bus and rail
functions to improve the transfer between modes and to
increase vehicle and passenger capacity.  The changes to
the facility include:

• moving the station and associated tracks for the
MFSE closer to the Frankford Terminal,

• construction of a new, larger station and parking
structure,

• construction of bus islands around the new station
to facilitate transfers, and

• reconfiguration of the street network to improve
circulation of automobiles and buses.

2.2  Project Objectives

The model was developed to test the facility design and
assess the impact of current and future passenger demand
on the system.  The simulation model of the FTC facility
gives the project team the capability to:

• analyze the quality of service for bus and train
passengers as a function of schedule adherence,

• analyze the traffic patterns of buses inside the
facility based on drop zone and berth location,

• assess the contention for drop zones and berths as
a function of the bus schedule, physical layout,
and dedicated assignment,

• evaluate the effect of surface street congestion on
the bus schedule and bus activity inside the
facility,

• determine the impact of bus traffic on surface
street traffic, and

• analyze the effect of intersection signal phasing
on surface street congestion.
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2.3  Project Requirements

A partial list of the required features is included to
illustrate the breadth of scope and level of detail of the
model:

• routing for twenty-one bus services with shared
passenger drop zones and dedicated berth
locations (including bringing buses into service
and taking buses out of service from the storage
facility),

• terminal station operations of an elevated train
system (including bringing trains into service and
taking trains out of service at the yard leads),

• pedestrian movements including “choke points”
(doors, fare gates, escalators, etc…),

• signalized intersection control (e.g., red, yellow,
green, left turn arrow, right turn arrow) and
synchronized signals,

• detailed vehicle modeling including acceleration,
deceleration, and following distance,

• detailed driver behavior including left turn on
green across oncoming traffic (no arrow), right
turn on red, and stop signs.

3  SOFTWARE SELECTION

3.1  Software Considerations

The inclusion of vehicle acceleration, deceleration, and
following distance significantly increases the complexity
of vehicle modeling. The control of vehicles is based on
both the network layout (vehicle-to-network) and the
state of other vehicles (vehicle-to-vehicle).

In our experience, all of the simulation packages with
built-in vehicle movement systems (e.g., AGVs) can be
characterized as vehicle-to-network systems.  Typically
in these systems, vehicles are controlled by fixed points
attached to the network layout.  Vehicles proceed across
the network by claiming and later releasing forward
control points.  The conceptually simple task of
accumulating vehicles of different length is usually
difficult to model.

In order to implement vehicle following, there must be
a mechanism for communication between vehicles and
the capability to directly control individual vehicles (e.g.,
accelerate, decelerate, cruise).  The ability to modify a
vehicle’s behavior is required at an infinite number of
arbitrary points on the network layout.  For example, the
stop position of an individual vehicle at a red light is
predicated on the number and length of all preceding
vehicles.

Based on our collective modeling experience with the
built-in capabilities of vehicle movement systems in
existing simulation packages, we were left with the
following choice: attempt to build our application on top
of a movement system in an existing simulation package
that does not support our modeling needs directly versus
building a model from scratch in a general purpose
simulation language that fully supports our modeling
needs.  The team chose to develop the application from
scratch in a general purpose simulation language rather
than trying to force our application into the constructs of
an existing tool.

3.2  SLX and Proof Animation

The simulation model of the FTC application was
developed in SLX (Henriksen, 1996) and animated with
Proof Animation (Henriksen, 1996), both products of
Wolverine Software Corporation.  In addition, a number
of support scripts for input data processing were
developed using Perl.

SLX is a layered software system for discrete-event
simulation.  The motivation for using SLX stems from
the fact that the set of SLX kernel level simulation
primitives is both small and powerful.  Distinguishing
features of SLX include:

• user defined objects and types,
• sets,
• a generalized wait until mechanism, and
• a statement definition capability.

These features will be discussed in the context of the
FTC application, where appropriate, in the following
sections.

Proof Animation was chosen as the animation
package, in large part, based on its successful use in
earlier large-scale rapid transit studies (see Atala, Brill,
and Carson, 1992).  Proof is a general purpose, post-
processing animator designed for use with a wide variety
of simulation tools and application areas.  For the FTC
application, we used Proof as both the animator on the
“back-end” and as a graphical data entry tool on the
“front-end”.  The use of Proof on the front-end is
described in the Model Inputs section of this paper.

4  THE MODEL

4.1  Model Inputs

The model is driven by a number of external data files
provided by the user.  The input data files include:

• a bus schedule,
• a train schedule,
• automobile arrival rates and routing matrix,
• pedestrian arrival rates and routing matrix, and
• intersection signal phasing.
The input data files were created and maintained using

spreadsheets in file formats developed by the team
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members responsible for collecting the data.  Perl scripts
were written to translate the user input file formats to the
simulation model file formats.

One of the preliminary design goals for the model was
the ability to rapidly modify the automobile, train, and
pedestrian networks.  To support this goal, a pre-
processing program was written in SLX that reads a
Proof layout file and generates the necessary data file(s)
for the FTC simulation model.  This allowed the various
networks to be defined graphically using Proof.  Each
system (automobile, train, and pedestrian) was developed
and maintained in a separate Proof layout file.  An
additional Proof layout file contained the background
graphics and all other necessary animation constructs.
The “master” Proof animation layout file is generated on
demand by merging the relevant portions of the four
layout files together.

4.2  Model Architecture

For purposes of exposition, the project activity can be
divided into three distinct components: design and
implementation of the simulation engine, development of
the FTC application, and engineering analysis based on
model results.  Verification and validation spanned all
three phases of model development.  The simulation
engine and FTC application are addressed below; the
operations analysis is discussed in the Results and
Conclusions sections.

4.2.1  The Simulation Engine

In general, the internal architecture of the model is
hierarchical.  As we move up the hierarchy, we operate at
increasing levels of abstraction. For example, when we
route a bus through the facility, we do not want to be
concerned with the mechanics of vehicle movement, but
instead achieving the end goal of successfully arriving at
our desired destination.  We allow the implementation of
lower levels to handle the necessary details of vehicle
movement and interaction.

SLX provides both data and procedural abstraction
mechanisms.  Data abstraction is provided by the ability
to define new data types and to build classes which are
aggregations of both native SLX and user-defined data
types.  Procedural abstraction is provided by a statement
definition capability. The statement definition capability
allows the introduction of new statements into the
language.  Statement definitions are compiled by SLX,
effectively extending the native SLX compiler.  This
capability can be further exploited to generate SLX data
types and procedural code definitions at compile-time.
In essence, a model can build its own data and code
support during compilation.
The implementation of the simulation engine takes full
advantage of the abstraction mechanisms of SLX.
Higher level functionality “encapsulates” lower level
implementation details.  At the lowest level, the
simulation engine contains a general network data
structure and the relevant code support for construction
and maintenance of an arbitrary number of network
instances.  In fact, all three movement systems
(automobile, train, and pedestrian) are built on top of the
same underlying network data structure.  Similarly, the
automobile and train systems are built upon the same
vehicle movement system.

The vehicle movement system is comprised of all
vehicle-to-network and vehicle-to-vehicle control
mechanisms.  Characteristics of an individual vehicle
include: length, acceleration rate, deceleration rate,
following time, and maximum allowed speed.  Note that
vehicle following is defined as a constant time.  This
yields a non-linear following distance that is a function
of the vehicle characteristics of both the leader and
follower.  As a vehicle moves across the network, the
vehicle following time is converted to a target following
distance and the appropriate vehicle action is taken
(accelerate, decelerate, maintain speed).

All vehicles are autonomous “drones” subject to the
actions of surrounding vehicles and any network control
(e.g., stop lights).  A state change of a single vehicle may
(or may not) trigger a state change in one or more
surrounding vehicles.  For example, as a stream of cars
approaches an intersection at which the signal is red, the
lead car begins to slow down.  In turn, following cars
will begin to slow down.  Eventually, all of the cars will
come to rest forming a line end-to-end.

The communication mechanism between vehicles was
built primarily with pointers to SLX objects and sets.  Set
construction primitives include insertion and deletion.
Iteration primitives for sets include the first, last,
predecessor, and successor objects.  Additionally, sets
can be ranked on any number of object attributes.  Sets
provide a built-in mechanism for list construction and
maintenance.

Each edge (or link) in the vehicle network has an
associated SLX set.  Each vehicle has an object
associated with its head (leading edge), middle, and tail
(trailing edge).  As the vehicle traverses the network, the
objects for the vehicle are continuously inserted into and
removed from the relevant network edge sets.  To find a
following vehicle, the successor object to the tail of the
vehicle in the associated network set is evaluated.  When
the successor is null, there is not a following vehicle on
the current network link.  If desired, the network can be
“searched” backward looking for one or more vehicles
based on the network connectivity. When a vehicle
changes state, following vehicles are notified so that they
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may act accordingly.  Similarly, the network can be
searched forward for preceding vehicles.  A forward
search is usually used to determine the distance between
two or more vehicles.

The vehicle-to-network control is implemented
through control points and fixed points.  Control points
and fixed points are physically attached to the network
layout.  Control points have an associated speed.  When
we want vehicles to stop at a control point, we assign a
speed of zero.  When we want vehicles to slow down
when approaching a control point (e.g., for a turn), the
associated speed is specified as needed.  Posted speed
limits are implemented in this manner.  Control points
provide the capability to anticipate upstream speed
restrictions.  User code can be called when an
approaching vehicle “hits” the speed profile associated
with a control point and when an approaching vehicle
passes over, or stops on, a control point.  Fixed points do
not have an associated speed.  Therefore, user code is
executed only when a vehicle passes over a fixed point.
The user routines associated with control points and
fixed points are referred to as handlers.  Handlers are
discussed in the next section.

4.2.2  The FTC Application

The simulation engine provides upper layers with all the
functionality required to simulate complex vehicle
behavior.  The FTC application was built on top of the
simulation engine primarily through the use of event
handlers.  SLX does not directly support a “pointer to a
procedure” mechanism.  However, the statement
definition capability allowed us to develop a mechanism
that is a proxy for a pointer to a function.  The details of
the handler implementation are encapsulated into a
handful of user level statements.  The user receives the
functional benefit without being concerned with the
implementation details.

Each code handler is defined with a unique name.
Once defined, a handler can be registered with any
number of control points, fixed points, or even called
directly from other handlers.  The handler mechanism
allows us to write short paragraphs of control logic and
attach this logic directly to the network layout.  As
vehicles move across the network, the handlers are
automatically called by the simulation engine.  When a
handler is called, a pointer to the  vehicle and a pointer
to the control/fixed point are automatically passed to the
handler code by the simulation engine.  This allows
references to the vehicle (and surrounding vehicles) and
to the network itself.  Arbitrarily complex control logic
can be developed by developing handlers and graphically
placing control/fixed points.
A discussion of the control logic for routing vehicles
through an intersection highlights the fundamental
concepts of handlers, control points, fixed points, and
SLX “wait until”.  Figure 1 shows the Frankford Avenue
and Pratt Street intersection.  The arrows indicate the
direction of travel.  The paths into and out of the
intersection are labeled with the origin or destination
direction (NB = North Bound, SB = South Bound, EB =
East Bound, WB = West Bound) and lane number when
there are multiple lanes.

Figure 1: Frankford Ave. and Pratt St. Intersection

For example, there is one lane entering the
intersection traveling north (left to right) on Frankford
Avenue.  For vehicles turning left from Frankford
Avenue onto Pratt Street, there are two westbound lanes
(1 and 2) exiting the intersection.  For vehicles
continuing north on  Frankford Avenue, there is one
northbound lane exiting the intersection.  For vehicles
turning right from Frankford Avenue onto Pratt Street,
there is one eastbound lane exiting the intersection.

For discussion, the notation “NB-WB2” indicates the
direction and lane (if necessary) for entering the
intersection and the direction and lane (if necessary) for
exiting the intersection.  Thus, “NB-WB2” is the path
entering the intersection northbound  and exiting the
intersection westbound in lane 2.  This is a left turn from
Frankford Avenue onto Pratt Street.

The dashed rectangle represents the extents of the
intersection for control purposes.  The intersection stop
lines are located at the intersection of the dashed
rectangle and the entrance paths of the intersection.  The
stop lines are modeled with zero speed control points.
The intersection of the dashed rectangle and the exit
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paths of the intersection are modeled with fixed points.
These fixed points represent the physical point at which a
vehicle leaves the intersection.  Each path through the
intersection can be described by a unique control point
and fixed point pair.  A vehicle enters the intersection
passing over a control point and leaves the intersection
passing over a fixed point.

Control points and fixed points are associated with
either the leading edge, center, or trailing edge of a
vehicle.  For intersections, the stop lines are modeled as
leading edge control points (i.e., the speed profile is
computed based on the leading edge of the vehicle
coming to rest on the control point).  The fixed points
exiting the intersection are based on the trailing edge of
the vehicles (i.e., the handler is called when the tail of a
vehicle passes over the fixed point).

All vehicles that enter the intersection in Figure 1
northbound on Frankford Avenue will stop, if necessary,
at the same control point regardless of their destination
path (i.e., the paths “NB-WB1”, “NB-WB2”, “NB-NB”,
and “NB-EB” all share the same entrance location).
However, the decision logic for proceeding through the
intersection is very different for each possible path.
Each path through the intersection has an associated
handler for logical control of the intersection.  When a
vehicle hits the speed profile for a stop line control point,
the route list of the vehicle is searched for an exit fixed
point of the intersection.  Once an exit fixed point is
found, the handler associated with the control point/
fixed point pair is called.

The speed profile represents the critical point (based
on vehicle speed and remaining distance to the control
point) for deciding whether to stop at, or continue
beyond, the control point.  Once called, the vehicle will
decelerate and/or remain at rest at the control point as
long as the handler is active.  As soon as the handler
becomes inactive, the vehicle may proceed through the
intersection.  Since the mechanics of vehicle control are
automatically handled by the simulation engine, our
focus at this level is on the logical control of the
intersection.  The handlers for intersection control
typically tend to be very small (most are 4 statements).

The primary statement in an intersection handler is an
elaborate “wait until” expression.  All of the necessary
conditions for intersection control can be specified in a
single statement.  The wait until expressions can be
decomposed into three logical groups, all of which must
be satisfied simultaneously: (1) the signal aspect is
favorable and all rules-of-the-road are satisfied, (2) there
is available capacity on the destination link, and (3) there
are no vehicles that have been granted conflicting routes.
The first group is used to test the signal aspect and
governs driver behavior (e.g., left turn arrow is green,
right turn on red is okay, etc…). The second group
guarantees that there is room for the vehicle upon exiting
the intersection (i.e., vehicles are not allowed to stop in
the middle of an intersection).  The third group is “zone
control” (i.e., there are no vehicles with conflicting
routes about to enter, or still in, the intersection).

In the FTC application, each logical group is
comprised of a list of sub-expressions.  For example, the
entire wait until statement for the path “NB-WB1”
contains seventeen (17) terms.  Even though the wait
until statements tend to be lengthy, this mechanism is
dramatically easier (and less error prone) than the
alternative of managing the model state changes and re-
evaluating the necessary conditions ourselves.

4.3  Model Outputs

The outputs from the simulation model include a
summary report, detailed boarding and alighting logs,
and the animation trace file.

The summary report provides the number of buses,
automobiles, and cars to enter and leave the simulation.
In addition, the number of automobiles by entry location,
the number of buses by service, and the number of
passengers picked-up and dropped-off by service is
reported.  The information contained in the summary
report is a reflection of the input data.

The boarding log provides an entry for each pick-up
event.  Each entry is composed of the service, berth
location, arrival time, departure time, scheduled
departure time, total dwell time, number of passengers
boarded, and the number of passengers left waiting (if
any).  The number of passengers left waiting is an
indication that the headway between buses is too long
(poor scheduling) and/or significant delays due to
congestion, drop zone availability, or berth availability.

Similarly, the alighting log includes an entry for each
drop-off event.  The alighting log includes the service,
drop zone (location name and position), arrival time,
departure time, and the number of passengers to alight.

Features of the animation include the road boundaries
and lane markings for the entire study, the building and
street furniture outlines, all vehicle movements (bus,
trolley, and MFSE rail), pedestrian counts (numerical
values at places of interest), and traffic signal aspects at
each intersection.

The animation proved to be a valuable tool for
evaluating and resolving schedule conflicts.  The
interaction and competition between buses, services,
drop zones, berths, and passengers becomes evident by
viewing the animation.  Modifications to the schedule
could be tested and compared under identical system
conditions.
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5  RESULTS

For the most part, the design of the proposed facility
works well under the current bus and train schedules.
However, certain changes to the operating plan will
improve overall reliability at the FTC.  The following are
general observations and specific recommendations
concerning the operating plan:

• Where there are 2 or more boarding berths, buses
seldom if ever wait for a berth to clear.  The few
conflicts can be corrected easily by small shifts in
the schedule.

• Where there are shared berths, care must be taken
to schedule arrivals at appropriate intervals so
that conflicts are minimized.

• Where there are single berths, care must be taken
to schedule revenue moves and pull-outs to
minimize conflicts.

• Layover/recovery time for all routes must be
reduced at FTC by moving the layover/recovery
time to the other end of each route.  Minimizing
the time at FTC will provide greater reliability
and throughput.

• Spare boarding berths located close to the
designated berths provides an easy fix to
unanticipated conflicts.  Placing the spare berths
near to the designated berths will reduce
confusion to passengers.

• Unloading berths can be reduced in length.  The
number of buses unloading concurrently was
consistantly less than expected.  The free space
can be used for spare loading berths.

6  CONCLUSIONS

The simulation model and animation allowed the project
engineers to evaluate bus and train schedules against the
physical layout, assignment of drop zones, assignment of
berth locations, intersection signal phasing, and the
quality of service for passengers.  The simulation results
showed that the facility, as designed, provides for future
expansion of bus and rail service.  There were no
significant delays to vehicles or passengers during the
AM or PM peak periods.
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