
A FRAMEWORK FOR DISTRIBUTED OBJECT-ORIENTED
MULTIMODELING AND SIMULATION

Robert M. Cubert
Paul A. Fishwick

Department of Computer and Information Science and Engineering
University of Florida

CSE Building, Room E301
Gainesville FL 32611-6120, U.S.A.
ABSTRACT

We have developed a multimodeling object-oriented
(OO) simulation environment (MOOSE), which is a
framework for modeling and developing simulation
software. Its architecture derives from Object Ori-
ented Physical Modeling (OOPM), which extends
classical object-oriented methodology to allow attri-
butes and methods to take on models as values. The
MOOSE Model Repository (MMR) allows distribu-
ted model definitions, and so supports “web-based
simulation”, integrated with the web and made avail-
able on the Internet. MOOSE features multimodel-
ing, an OO approach to model refinement and ab-
straction, allowing creation of heterogeneous hierar-
chical models. Dynamic models comprising multi-
models include Finite State Machines, Functional
Block Models, Equation Constraint Models, and Rule
Based Models. MOOSE emphasizes visualization, &
effective use of OO metaphors to connect conceptual
model to program, and to capture model geometry
and dynamics. The MOOSE human-computer inter-
face has two GUI’s: Modeler, for model design, and
Scenario, for model execution control and visualiza-
tion. MOOSE back end generates a model description
in a target language such as C++, then translates and
adds runtime support to form an Engine. Model exe-
cution consists of Engine running synchronously with
Scenario. The MOOSE approach facilitates model
development, models with greater intuitive appeal,
communication among model authors, better agree-
ment between simulation programs and their concep-
tual models, component reuse, and model/program
extensibility.

1 INTRODUCTION

The World Wide Web (often just referred to as “the
web”) represents a fertile area for computer simula-
tion research. Combining the web with computer sim-
ulation can have a key impact on future simulation
research. Among the directions one can take in this
endeavor are (1) parallel and distributed model exe-
cution, and (2) distributed model repositories. Both
these avenues are fruitful. We have narrowed our
focus to the area of distributed model repositories
since there has been less research in this area than in
the more mature field of distributed simulation (Fuji-
moto, 1990; Lin and Fishwick, 1996). Also, the con-
cept of model repository lends itself to the study of
how to organize model information. Since the web
is also concerned with how to effectively organize in-
formation, this appears to be a reasonable way to
blend the web with simulation. The web defines a
networked hypermedia approach to storing informa-
tion. Search engines exist to help a user browse or
perform a topical search. In simulation, information
is generally focused on physical objects. These phys-
ical objects, whether they are humans, milling ma-
chines or a container of fluid, have attributes and ex-
hibit behaviors. If we are to permit a situation where
physical object information is as freely available as
hypermedia to remote users on today’s web, then we
need to (1) formalize this information, (2) provide
a way to integrate to today’s web-based information,
and (3) effect mechanisms for searching and browsing
models. In this paper we explore these three issues in
the context of OOPM and MOOSE.

MOOSE is an acronym for “Multimodel Object
Oriented Simulation Environment”, a modeling and
simulation framework under development at Univer-
sity of Florida. MOOSE is an implementation of “Ob-
ject Oriented Physical Modeling” (OOPM) (Fishwick
1996), which is an approach to modeling and simu-
lation which defines a formal approach to capturing
physical knowledge in a form that extends the object
design principles specified in the fast-growing area of
object design within software engineering and pro-
gramming language design (Booch, 1994; Rumbaugh
et al., 1991) Some of the current object-oriented de-
sign methodology requires modification to support
physical modeling. Moreover, there does not cur-

1316 Cubert and Fishwick
rently exist a clearly-defined method of capturing
physical knowledge in an object-oriented modeling
framework even though many of the object-oriented
“nuts and bolts” exist to help structure the method.
The OOPM methodology satisfies the requirement of
development of a theoretical framework for physical
modeling, while allowing for legacy code insertion and
user-defined dynamic model and multimodel types.

Initial development of MOOSE, focussed on an en-
vironment consisting of a single host system, has been
completed, with results reported in detail by Cubert
and Fishwick (1997a). The next step, now under-
way, involves expanding the environment to permit
model definitions to be distributed over any number
of hosts within the framework of the worldwide web.
There are two kinds of distributed operation to con-
sider: one is where model definitions are distributed,
with some classes defined here, others there; the sec-
ond is where model execution proceeds as a distribu-
ted simulation, executing simultaneously on a number
of hosts, with one object instantiated here, another
there. The MOOSE architecture supports both kinds
of distributed operation; with our emphasis being on
distributing definition of multimodels.

We first briefly summarize some of MOOSE’s fo-
cal ideas and properties, such as use of multimodels
to facilitate model refinement to achieve appropri-
ate levels of model fidelity, use of dynamic models,
and reuse by design. Fuller treatment of these top-
ics, as well as issues such as how MOOSE captures
the geometry of a model, relation between concep-
tual model and simulation program, relations such
as aggregation, containment, composition, usage, as-
sociation, generalization, and specialization, valida-
tion and verification, extensibility, speed of develop-
ment, and platforms and portability, have been ad-
dressed by the authors elsewhere (Cubert and Fish-
wick, 1997b). After presenting background on the
components of MOOSE and how they interact, in suf-
ficient detail to orient the reader, the major emphasis
will focus on MOOSE Model Repository (MMR), be-
cause this is the vehicle which expands the horizons
of MOOSE to the limits of the web.

Thus the balance of the paper is organized as fol-
lows. In Section 2 we briefly present focal issues such
as multimodels, dynamic models, and reuse. Section
3 covers the components of MOOSE and how they
interact. Section 4 goes into detail on MMR and dis-
tributed operation. Section 5 presents our conclu-
sions and directions for future work.
2 MULTIMODELS, DYNAMIC MODELS,
AND REUSE BY DESIGN

Derived from OOPM principles, MOOSE promises
not only to tightly couple a model’s human author
into the modeling and simulation process through an
intuitive human–computer interface (HCI), but also
to help a model author to perform any or all of the
following: (1) to think clearly about, to better un-
derstand, or to elucidate a model; (2) to participate
in a collaborative modeling effort; (3) to repeatedly
and painlessly refine a model as required, in order
to achieve adequate fidelity at minimal development
cost; (4) to painlessly build large models out of ex-
isting working smaller ones; (5) to start with a con-
ceptual model which is intuitively clear to domain ex-
perts, and to unambiguously and automatically con-
vert this to a simulation program; (6) to create or
change a simulation program without being a pro-
grammer; (7) to perform simulation model execution
and to present simulation results in a meaningful way
so as to facilitate the other objectives above.

The degree of detail in a model reflects the model
author’s abstraction perspective (Fishwick, 1988).
Refinement to greater detail is used to obtain model
fidelity that is adequate in the eyes of the model
author from a given abstraction perspective (Fish-
wick 1989), and with certain objectives for the model
or simulation to meet (Berzins 1986). MOOSE ad-
dresses this area with multimodeling, an approach
which glues together models of the same or differ-
ent types, produced during the activity of model re-
finement, and reflecting various abstraction perspec-
tives (Fishwick and Lee, 1996). Refinement can be
adjustable during model execution as well as dur-
ing model design. The pieces that are put together
to form a model, such as described above, are dy-
namic models. Dynamic model types supported in-
clude Finite State Machine (FSM), Functional Block
Model (FBM), Equation Constraint Model (EQN),
and Rule-based Model (RBM); alternatively, users
may create their own C++ “code models”; model
types may be freely combined. The dynamic model
types implemented so far form a popular collection of
approaches used in simulation (Fishwick, 1995); ad-
ditional dynamic model types will likely be added to
the MOOSE repertoire; MOOSE has been designed
to be extensible in this regard. In addition to model
refinement during development, multimodeling may
also be used during model execution: components of
a multimodel may be behaviorally abstracted to fit
time constraints placed upon model execution.

In MOOSE, dynamic behavior of the system is
represented by dynamic models. Dynamic models
are methods of the various classes in the conceptual

A Framework for Distributed Object-Oriented Multimodeling and Simulation 1317
model. Dynamic models are readily added, changed,
and removed, as part of model development, at any
time. Here MOOSE makes good its promise to the
model author to be able to create or change a simula-
tion program without being a programmer. MOOSE
presently incorporates several kinds of dynamic mod-
el: FBM, FSM, EQN, and RBM, with others contem-
plated, such as Petri nets, and System Dynamics
models. From this ensemble of popular and capable
dynamic model types, the model author picks one or
more dynamic model types to define methods of the
classes of the model. Construction of each specific dy-
namic model typically involves drawing the kinds of
“pictures” that people tend to make on the back of an
envelope or a blackboard when informally describing
a model to someone else. The MOOSE HCI facili-
tates these constructions: allowing the model author
to specify components, connect components, provide
inputs, outputs, conditions, and so forth.

To support the kind of heterogeneous model hi-
erarchies shown abstractly in Figure 1, we must en-
sure that our models are closed under coupling. In
short, this suggests that the method of coupling one
model component to another must be clearly defined.
Two kinds of coupling exist: intralevel and inter-
level. Intralevel coupling reflects model components
coupled to one another in the same model. For ex-
ample, one needs to specify rules of how Petri nets,
compartmental models and System Dynamics graphs
are formed. With a System Dynamics graph, a rule
of model building defines that any level has an in-
put rate and an output rate. A more interesting
case arises in interlevel coupling since we must en-
sure that we define rules as to how model components
from one model can be refined into models of differ-
ent types. Can a finite state machine state be refined
into a Petri net, or can a functional block model con-
tain finite state machines (FSM) inside blocks? What
are the rules to guide this refinement? The rule for
intralevel coupling is based on functional composi-
tion. The primitive of function with its input and
output defines the coupling procedure in the following
way. All models are encapsulated in a single function.
This represents the outer shell to support interlevel
coupling. Within a model there are functional en-
try points. These are inner shells where new models
may be optionally inserted. Each model type has its
own entry point defined differently. For example, for
the model type “FSM”, we may define each state to
be of the form: v(state) = f() where f() is an arbi-
trary function and v(state) defines the value of the
attribute state. If state is not refined, then f() re-
turns the value of the state as a character string or
integer. If state is refined, then f() may be replaced
by any function—whether this function is a dynamic
Figure 1: Multimodeling Tree Structure for Model
Refinement; Polygons Depict the Heterogeneous Na-
ture of Multimodeling: each type of Polygon repre-
sents one type of Dynamic Model

model or a code method. The coupling approaches
are defined in more detail by Fishwick (1997).

Reuse of one’s own previous work, as well as by
one model author of the work of others, is encouraged
by availability of model repositories. An application
framework such as MOOSE is more than just a class
library. In an application framework, classes from the
library are related in such a way that a class is not
used in isolation but within a design encouraged and
supported by the framework. The MOOSE Model
Repository (MMR) is aptly named because it is not
just a class library; as a model repository, it stores not
only a collection of classes available for reuse, but also
the design which relates those classes as to how they
play together within the geometry and dynamics of
a particular model. This enables support for one of
Booch’s (1994) five attributes of a complex system:
“A complex system that works is invariably found to
have evolved from a simpler system that worked
A complex system designed from scratch never works
and cannot be patched up to make it work.”. Using
MMR, model authors can start from some piece of
their overall system that happens to appeal to them
intuitively. When several such pieces are working,
they may be combined into a more-complex (working)
system.

3 COMPONENTS OF MOOSE

Components of MOOSE fall into three groups: Hu-
man Computer Interface (HCI), Library, and Back
End. The HCI is comprised of two components: Mod-
eler and Scenario. Modeler interacts with the human
model author via graphical user interface (GUI) to
construct the model. In simulation parlance, this
is model design. Modeler relies on the Library (dis-
cussed below) to store model definitions. Scenario is

1318 Cubert and Fishwick
Author
Model

MMR

MOS

Modeler Translator

Scenario Engine

Back End

Library

HCI

Figure 2: The three Components of MOOSE (HCI,
Library, and Back End) shown outlined with dashed
line Boxes; Parts within each Component are shown
outlined with solid Boxes

a visualizer employing a GUI. Scenario activates and
initializes simulation model execution (which we call
Engine) at the behest of user (who may or may not
be the original model author). Scenario maintains
synchronous interaction with Engine, visualizing En-
gine output in a form meaningful to user, optionally
allowing user to interact with Engine, including mod-
ifying simulation parameters and changing the rate of
simulation progress.

Modeler GUI’s “main” part defines classes and
objects and relations among classes (aggregation and
specialization or generalization) on one or more can-
vases. On the canvas, rectangles represent classes.
These rectangles are joined by relations to form a tree,
or, more generally, a graph, reflecting relations in the
system being modeled. Some models look cleaner if
aggregations and specializations are kept on separate
canvases; this is supported but not required. Simi-
larly, some models are large enough that several can-
vases are needed to capture the representation. Each
class is a box which, when opened, reveals more in-
formation, and permits the model author to define
the name of the class, its attributes, its methods, and
its named objects. Within each method, the model
author may specify input parameters and output pa-
rameters, as well as identifying which dynamic model
type the method is to be. In addition to the “main”
GUI presented above, there is a GUI editor for each
dynamic model type, i.e.: the FSM editor for finite
state machines, the FBM editor for functional block
models, the EQN editor for equation constraint mod-
els, and the RBM editor for rule-based models.

The Back End has two components: Translator
and Engine. Translator is a bridge between model
design and model execution: Translator reads from
the Library a language-neutral model definition pro-
duced by Modeler, and emits a complete computer
program for the model, in Translator Target Lan-
guage (TTL). Presently MOOSE TTL is C++; po-
tentially, TTL can be Java or another language. This
simulation program emitted by Translator in TTL
is called Engine. Once compiled and linked with
runtime support, the Engine executable is activated
under control of Scenario to perform model execu-
tion. Library has two components: MOOSE Model
Repository (MMR) and MOOSE Object Store (MOS).
MOS holds object data and MMR holds object meta-
data. MMR keeps track of models as they are be-
ing built. MMR servers provide a database manage-
ment system (DBMS) for model definitions. MMR
clients work with Modeler and Translator to define
and use model definitions. Models and model com-
ponents created by other model authors (or the same
model author previously) are available for browsing,
inclusion, and/or reuse. Base classes such as sets for
modeling collections and popular geometries for spa-
tial models are available to the model author. An
MMR client can simultaneously maintain conversa-
tions with several MMR servers on different hosts,
thus permitting model definitions to be distributed.
An MMR Server can simultaneously maintain con-
versations with several MMR clients, on the same or
different hosts, which permits collaboration on model
development. MOS does for objects much of what
MMR does for models. MOS works with Engine and
Scenario, in similar fashion to the way MMR works
with Modeler and Translator. MOS manages object
persistence. The architecture permits MOS to be
capable of distributed operation, just like MMR, al-
though this is not our focus in MOOSE.

4 MOOSE MODEL REPOSITORY (MMR)
AND DISTRIBUTED OPERATION

There are two kinds of distributed operation to con-
sider: one is where model definitions are distributed,
with some classes defined here, others there; the sec-
ond is where model execution proceeds as a distrib-
uted simulation, executing simultaneously on a num-
ber of hosts, with one object instantiated here, an-
other there. The MOOSE architecture supports both
kinds of distributed operation; the present implemen-
tation supports distributing definition of multimod-
els, as this is our primary research focus.

The MMR originated in a perceived need which
arose in the stand-alone version of MOOSE to un-
burden the Conceptual Modeler in the MOOSE HCI
from maintaining complex structures and relations
among classes, objects, attributes, methods, and pa-
rameters. Originally, the model definition provided as

A Framework for Distributed Object-Oriented Multimodeling and Simulation 1319
output of the HCI was a set of flat text files, similar
in some ways to the HTML (hypertext mark up lan-
guage) now ubiquitous on the web. We had already
developed in the MOOSE Translator a capability to
read and parse this model definition and build the
aforementioned structures and relations, so it was a
relatively simple matter to reuse this code, and add
a sockets-based (TCP) communications layer. This
effort not only succeeded, it also paved the way for
extending the horizon of MOOSE from stand-alone
system to web operation. Along the way, we kept the
flat file format we had designed, and thus preserved
the capability to load the MMR from one or more
sets of flat files describing any numbers of previously-
constructed models. This capability now makes it
easy for an MMR to import model definitions cre-
ated or modified by hand, which are easy to handle,
transmit, and modify because of the flat text file for-
mat. We back up the MMR into this format; we
dump model definitions into this format. While the
format can be readily machine generated, it is also
amenable (just like HTML) to being edited by hand
with one’s favorite text editor.

The MMR has a client/server architecture, with
each MMR server maintaining a database of model
definitions. MMR is in some ways is patterned after
the CORBA (Common Object Request Broker Ar-
chitecture) IR (Interface Repository) (Orfali, 1996).
MMR as a MOOSE component does its part to sup-
port an overall model/view architecture, with mul-
tiple views being possible for a single model, and
similarly, with multiple models being present in a
single view. In the original stand-alone mode, the
clients were the MOOSE Conceptual Modeler and
the MOOSE Translator, with the Conceptual Mod-
eler updating the MMR server, and the Translator
querying it in order to emit Engine code in TTL.
There was one MMR server, and it was co-located on
the same host with the two aforementioned clients. In
web-wide operating mode, MMR servers can be any-
where, can exist in any number, and can be shared; if
each host has an MMR server, then the system offers
greatest robustness in the face of network outage, but
the architecture does not require it. MMR clients will
usually be MOOSE HCI’s and Translators; several
HCI’s located far from one another may collaborate to
share and reuse model components; or, several Trans-
lators located far apart and unaware of one another’s
existence can be interested in using the same model
or component definition. However, it is also part of
the plan to expose an interface for other clients, which
may be programs of any kind, including perhaps web
browsers or other programs. This open architecture
invites use of distributed model definitions outside of
MOOSE to broader realms, as a more general object-
Figure 3: MOOSE Model Repository (MMR) Inter-
nals; Client above, Server below, each surrounded
with dashed line; detail in accompanying text

oriented application framework. Time will tell if this
idea will gain acceptance. The underlying MMR de-
sign is independent of whether MOOSE operates in
stand-alone mode, or with clients and servers in any
number and located far apart.

We now examine the MMR architecture which ap-
pears in Figure 3. Clients communicate with MMR
using client side support. Two API’s are shown: one
for C++ code and one for TclTk, which support our
Translator and HCI, respectively. Other API’s are
possible, should support for client code in other lan-
guages be needed. The client side support is layered
as shown. Presently, our client side support is rel-
atively thin. The diagnostic driver, providing built
in support for test and development, is GUI-based,
and allows developers and system maintenance tech-
nicians to operate the interface to the MMR server
without a client program, permitting tests of Proxy
and Client transport layers of client side support, as
well as all of the server. The client communicates
with the server using sockets, which are supported
in both our platforms of choice (Windows NT and
Solaris Unix), enabling client and/or server to be
positioned on either platform with complete trans-
parency. Sockets work whether clients and server are
located on the same or different hosts. Client trans-
port service is written in TclTk in a style which ap-
plies the OO principles available (encapsulation and
information hiding). Server transport service is writ-
ten in C++ with class names such as Sockets, Hosts,
and Circuits. Proxy’s counterpart on the server side is
Request handler. Proxy and Request Handler work
together. To the extent that we want to stage or
cache information on the client side, this is hidden
within Proxy. As previously stated our intent is a thin

1320 Cubert and Fishwick
Figure 4: MOOSE Model Repository (MMR) as de-
ployed on the Web; Dashed line is Firewall, above
which is an Intranet; Heavy double line represents
the Internet

client, but the presence of Proxy provides the ability
to “thicken” the client side in the interest of perfor-
mance, should that become necessary. Finally, the
Back end provides data structures, linkage, and rela-
tions for classes, objects, attributes, methods, param-
eters, aggregation, association, containment, general-
ization, specialization, and inheritance; in short, the
things one needs to know about a conceptual model.

Server Transport Service incorporates the initial
sequence: create socket, set nonblocking, bind, and
listen. Then periodically two activities are performed:
accept’ing new connection requests, and servicing re-
quests on existing connections, with priority given to
the latter, and round-robin service policy. A dynam-
ically-allocated self-expanding list of virtual circuits
(connections) is maintained, so that an MMR Server
can maintain any number of conversations with any
number of clients and keep them all separate. Client
Transport Service functions with send/receive pairs.
Its receive is nonblocking; when there is no reply, the
code is able to distinguish end of file from no data yet.
This permits a client to retrieve long multi-message
responses, and never to block. An interesting exam-
ple of code reuse of the Client and Server Transport
Services is this code also serves to synchronize Sce-
nario and Engine, with Client Transport Service em-
bedded into Scenario and Server Transport Service
included in Engine runtime support.

Having examined MMR internal architecture, we
now turn to two external views of MMR: first, the
original stand-alone MOOSE which runs all processes
on one host; second, distributed MOOSE which per-
mits any number of MMR clients, any number of
MMR servers, and located on an arbitrary collection
of hosts. The first view appears in Figure 2, and
is relatively simple, where the MMR clients are the
(conceptual) Modeler and the Translator as discussed
above. The second view appears in Figure 4, and to
this we now turn our attention. Above the dashed
line appear three hosts, connected in an intranet.
The dashed line is a firewall. A random collection
of four client applications are shown; typically, these
are instanmces of MOOSE (Conceptual) Modeler and
Translator. Also above the dashed line firewall is an
MMR private server, which is accessible to all clients
in the intranet but not to any clients outside (below
the dashed line). Just below the dashed line firewall
appears an MMR public server. This server is acces-
sible not only to clients above the dashed line but also
to clients throughout the web. The heavy double line
represents the internet and TCP/IP MMR protocol.
Several distant MMR servers are shown at various
web sites. Specifically, suppose that Client 1 is an
instance of (Conceptual) Modeler which is building a
model some of whose components are stored locally,
in either the private or public server, with other com-
ponents located at the MMR at site 1 and at the
MMR at site 2. Client 1 is able to construct its large
model from the various small ones transparently with
respect to the location of the components. The illu-
sion that the model definition is all stored locally is
maintained by cooperation among the MMR client-
side support services attached to Client 1 on Host A,
the MMR Public Server on Host C, and the (distant)
MMR Servers at sites 1 and 2.

Present plans call for the MMR protocol to be
identical to the format already in use for the stand-
alone version of MOOSE; this format appears in the
flat text files which describe MOOSE conceptual mo-
dels, and is HTML-like in the sense that it can be
inspected and modified with almost any text editor,
to facilitate diagnostic work as well as customization.
Since the web is a network of multimedia documents,
we propose a way of integrating the MMR with the
web. This is done by a simple mechanism: permit-
ting an object attribute to be of type URL, a class
whose instances are URL’s. Thus, documentation is
an attribute of an object and within a web document,
a conceptual model may be inserted as a basic URL
type, e.g., model. Accordingly, to retrieve a concep-
tual model of a six-cylinder automobile engine from
Detroit, the following hypothetical URL would be ac-
cessed: model://models.gm.com/eng6cyl.mod. This
permits a tightly-coupled, interwoven effect between
the web and a MOOSE conceptual model. MMR
Servers will support this proposed framework when
it is available; in the interim, they can communicate
with TCP/IP, until there is demand to implement the

A Framework for Distributed Object-Oriented Multimodeling and Simulation 1321
proposed mechanism.

5 CONCLUSIONS AND FUTURE DIREC-
TIONS

To date MOOSE has fulfilled each promise we had
for its capabilities. We are gratified that OOPM has
provided both a sound theoretical footing as well as
a guide for our intuition as we develop MOOSE. Sev-
eral research projects (e.g., a study of the Everglades
ecosystem) are planning to work with MOOSE, and
this fall students will use MOOSE in homework and
projects for the graduate course in Simulation Prin-
ciples at University of Florida, providing what is cer-
tain to be valuable feedback.

Distributed web-based operation is leading in new
directions. Distributed operation questions include
(1) how to categorize and locate components for re-
use, (2) whether dynamic binding is the most ap-
propriate binding time for component definitions, (3)
how scalable the MMR will turn out to be, (4) what
relation if any will exist between MOOSE, CORBA,
and DCOM, and (5) how successful will be our ap-
proach to embedding legacy code as MOOSE models.
Other questions include (6) whether Java will dis-
place TclTk as primary language for MOOSE HCI’s,
(7) how to apply distinctions with greater sophisti-
cation among the relations containment, usage, com-
position, and association, (8) how best to extend the
existing MOOSE repertoire for dealing with collec-
tions of objects to make it better serve model authors’
needs, and (9) how to make Scenario’s visualizer as
generic as the rest of the model definition.

ACKNOWLEDGMENTS

We would like to thank the following funding sources
that have contributed towards our study of model-
ing and implementation of a multimodeling simula-
tion environment for analysis and planning: (1) Rome
Laboratory, Griffiss Air Force Base, New York under
contract F30602-95-C-0267 and grant F30602-95-1-
0031; (2) Department of the Interior under grant 14-
45-0009-1544-154 and the (3) National Science Foun-
dation Engineering Research Center (ERC) in Parti-
cle Science and Technology at the University of Flo-
rida (with Industrial Partners of the ERC) under
grant EEC-94-02989. We acknowledge with thanks
the software development efforts of: Tolga Goktekin
for the Conceptual Modeler, Youngsup Kim for the
Functional Block Model Editor, and Gyooseok Kim
for the Rule-Based Modeler. We are grateful to Kang-
sun Lee for assistance with model development, and
to Jim Klosterboer of GRC International for provid-
ing some sockets code.
REFERENCES

Berzins, V., M. Gray, and D. Naumann. 1986. Ab-
straction Based Software Development. Commu-
nications of the ACM. 29 (5): 402–415.

Booch, G. 1994. Object-Oriented Analysis and De-
sign with applications, 2nd ed. Reading, Mas-
sachusetts: Addison-Wesley.

Cubert, R. M. and P. A. Fishwick. 1997a. MOOSE:
architecture of an object-oriented multimodeling
simulation system. In Proceedings of SPIE – So-
ciety of Photo-optical Instrumentation Engineers;
Enabling Technology for Simulation Science, ed.
A. F. Sisti, 3083:78–88. Bellingham, Washing-
ton: Society of Photo-optical Instrumentation En-
gineers.

Cubert, R. M. and P. A. Fishwick. 1997b. MOOSE:
an object-oriented multimodeling and simulation
application framework. To appear in Object-Ori-
ented Application Frameworks, ed. M. Fayad, D.
Schmidt, and R. Johnson. New York : John Wiley
and Sons.

Fishwick, P. A. 1988. The Role of Process Abstrac-
tion in Simulation. IEEE Transactions on Sys-
tems, Man and Cybernetics. 18 (1): 18–39.

Fishwick, P. A. 1989. Abstraction Level Traversal in
Hierarchical Modeling. Modeling and Simulation
Methodology: Knowledge Systems Paradigms, Zei-
gler, B. P., M. Elzas, and T. Oren, eds. Elsevier
North Holland. 393–429.

Fishwick, P. A. 1995. Simulation Model Design and
Execution : Building Digital Worlds. Englewood
Cliffs, New Jersey: Prentice-Hall.

Fishwick, P. A. 1996. Extending Object Oriented De-
sign for Physical Modeling. ACM Transactions on
Modeling and Computer Simulation. Submitted
July 1996.

Fishwick, P. A. and K. Lee. 1996. Two Methods
for Exploiting Abstraction in Systems. AI, Simu-
lation and Planning in High Autonomy Systems.
257–264.

Fishwick, P. A. 1997. A Visual Object-Oriented Mul-
timodeling Design Approach for Physical Model-
ing. Submitted April 1997 to ACM Transactions
on Modeling and Computer Simulation.

Fujimoto, R. M. 1990. Parallel Discrete Event Simu-
lation. Communications of the ACM. 33 (10):31–
53.

Lin, Y. B. and P. A. Fishwick. 1996. Asynchronous
Parallel Discrete Event Simulation. IEEE Trans-
actions on Systems, Man and Cybernetics. 26
(4):397–412.

Orfali, R., D. Harkey, and J. Edwards. 1996. The Es-
sential Distributed Objects Survival Guide. New
York : John Wiley and Sons.

1322 Cubert and Fishwick
Rumbaugh, J., M. Blaha, W. Premerlani, E. Fred-
erick, and W. Lorenson. 1991. Object-Oriented
Modeling and Design. Englewood Cliffs, New Jer-
sey: Prentice Hall.

AUTHOR BIOGRAPHIES

ROBERT M. CUBERT is a Ph.D. student in the
Department of Computer and Information Science
and Engineering at University of Florida. His re-
search interest is distributed object-oriented model-
ing and simulation. He holds BS degrees in EE from
MIT and in Zoology from University of Oklahoma,
and an MS in Computer Science from University of
Oklahoma. He spent 3 years on Computer Science
faculty at California State University, Sacramento,
and has a decade of industry experience writing soft-
ware for realtime control systems and communica-
tions.

PAUL A. FISHWICK is an associate professor in
the Department of Computer and Information Sci-
ences at the University of Florida. He received the
BS in Mathematics from the Pennsylvania State Uni-
versity, MS in Applied Science from the College of
William and Mary, and PhD in Computer and Infor-
mation Science from the University of Pennsylvania in
1986. He also has six years of industrial/government
production and research experience working at New-
port News Shipbuilding and Dry Dock Co. (doing
CAD/CAM parts definition research) and at NASA
Langley Research Center (studying engineering data
base models for structural engineering). His research
interests are in computer simulation modeling and
analysis methods for complex systems. He is a senior
member of the IEEE and the Society for Computer
Simulation. He is also a member of the IEEE So-
ciety for Systems, Man and Cybernetics, ACM and
AAAI. Dr. Fishwick founded the comp.simulation In-
ternet news group (Simulation Digest) in 1987, which
now serves over 15,000 subscribers. He was chair-
man of the IEEE Computer Society technical com-
mittee on simulation (TCSIM) for two years (1988-
1990) and he is on the editorial boards of several
journals including the ACM Transactions on Mod-
eling and Computer Simulation, IEEE Transactions
on Systems, Man and Cybernetics, The Transactions
of the Society for Computer Simulation, International
Journal of Computer Simulation, and the Journal of
Systems Engineering.

	A FRAMEWORK FOR DISTRIBUTED OBJECT-ORIENTED MULTIMODELING AND SIMULATION
	ABSTRACT
	1 INTRODUCTION
	2 MULTIMODELS, DYNAMIC MODELS, AND REUSE BY DESIGN
	3 COMPONENTS OF MOOSE
	4 MOOSE MODEL REPOSITORY (MMR) AND DISTRIBUTED OPERATION
	5 CONCLUSIONS AND FUTURE DIREC- TIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 1315
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

