
O

TOWARDS A WEB BASED SIMULATION ENVIRONMENT

Peter Lorenz
Heiko Dorwarth

Klaus-Christoph Ritter

Thomas J. Schriber

Faculty of Informatics
Institute for Simulation and Graphics (ISG)

tto von Guericke University of Magdeburg (UMD)
D-39106 Magdeburg, GERMANY

School of Business
Computer and Information Systems

The University of Michigan
Ann Arbor, Michigan 48109-1234, U.S.A.
ABSTRACT

Existing Simulation and Animation (S&A) software tools
are typically platform dependent and do not particularly
lend themselves to cooperative work within either the
Internet or an Intranet. This paper describes:
• Basic approaches toward achieving Web compliance

for S&A software; and
• Specific components for potential use in an open,

platform independent simulation environment for the
Internet or for corporate Intranets.

Requirements for a Web Based Simulation Environment
(WBSE) are also discussed.

1 INTRODUCTION

The current information technology (IT) revolution is
dominated by the Internet. Global and intra-corporate
access, platform independence, maintenance minimiza-
tion, reusability and interoperability are among the sig-
nificant aspects and requirements. These present chal-
lenges for all fields of IT application.

How will the simulation community take advantage of
these developments? When will S&A systems become
available within Web browsers? Can we expect to find
complete S&A environments in the Web? Does the Web
offer new opportunities for S&A applications? Do we
have new ideas for including S&A models in a Web
based cooperative work environment? When will the first
virtual S&A modeling school and the first virtual S&A
service provider incorporate and appear in the Web?

These are some questions for which no one currently
has definitive answers. An objective of this paper is to
provide partial answers to some of these questions.

In section 2 we present some contexts for platform
independent S&A Web applications. In section 3 we
classify several alternative S&A approaches to the Web.
Section 4 describes the embedding of simulation software
into the Web, using GPSS/H as an example. Section 5
reports on using a business graphic tool for presentation
of simulation results in the Web. Finally, Section 6 pres-
ents the architecture and the user interfaces for the Java
based 2D Animation tool, Skopeo.

2 S&A WEB APPLICATION CONTEXTS

In the following subsections we present two existing and
two hypothetical contexts for S&A Web applications.

2.1 Web Support for an S&A Course

Since 1995 the students attending an S&A course at the
University of Magdeburg (UMD) have been provided
with complete Internet-based information support. This
support includes:
• Lecture Notes with hypertext functionality;
• Executable GPSS/H (Henriksen and Crain 1998)

simulation models; and Skopeo (see the Web site ref-
erence given in Section 6) and Proof Animation
(Wolverine Software, 1996) animation models; and

• Assignments and Quizzes.
The advantages of this support system are its global

availability and its platform independence. The students
have easy access to the Web-based information and can
do their homework on any Web client. For details, see:

http://isgnw.cs.uni-magdeburg.de/~pelo/sim1d/sim1.htm.

2.2 Canal and Lock System in the Web

The Canal-and-Lock system is a “challenge” simulation
problem published in the Comparison series of
EUROSIM (Schriber 1996). Its objective is to force use
of various simulation techniques and tools for modeling
complex logic and control structures. Furthermore, vari-
ance reduction methods are to be implemented to support
statistical analysis of system performance. The Canal-
and-Lock problem can be found at:
http://eurosim.tuwien.ac.at/sne/.

Figure 1 (lower left hand corner) shows a static snap-
shot from a simulation of the Canal-and-Lock system,
which consists of a left canal, the lock, and a right canal

Towards a Web Based Simulation Environment 1339
and is used by barges moving from left to right or vice
versa. This reference problem and the corresponding
model provide the basis for our initial WBSE study: The
study has the objective of implementing Web support for
various phases of a simulation project. The phases in-
clude these:
• Input data acquisition;
• Control strategy selection;
• Model experiment definition;
• Control parameter optimization;
• Storing and presentation of results; and
• Process visualization through 2D Animation.
Details about the current state of the study can be found
at:

http://www.cs.uni-magdeburg.de/~seibt/labor/parameter.html.
model at all steps of the simulation study. He partici-
pates actively in the model design, in the debugging
and the validation stage and uses Web-based anima-
tion tools for evaluation purposes. He is able to exe-
cute his own model experiments by changing pa-
rameter values in an HTML data-entry form and
starting experiments on the provider’s Web server. He
has Web-based access to a database containing all re-
sults of the experiments.
Figure 1: Skopeo Animation with its Control(left side, embedded into the WWW-browser) and Visualization (right
side, separately generated window) windows for the Canal-and-Lock Reference Model
2.3 Providing Simulation Service

Web compliant S&A software can support various modes
of cooperation between a simulation service provider and
a simulation customer.
1. In one mode, the service provider can offer an S&A

software warehouse (models and tools) on his Web
server(s). Customers can work with modified models
or models of their own, prepared on their Web cli-
ent(s). The models can run applets on the client ma-
chine or on the service-provider’s server (with the re-
sults then being pushed to the client).

2. In an alternative mode, the service provider can build
a customized model and carry out a complete simula-
tion study. The customer has Web-based access to the
2.4 Cooperative Problem Solving

This hypothetical scenario illustrates possibilities for a
cooperative undertaking in modeling a manufacturing
chain. Figure 2 describes the relationship between two
sections in a factory that provides the basis for the sce-
nario.

In the scenario, section B produces final products,
using parts delivered by section A. If A delivers to B too
early, additional storage costs arise in B. If A delivers to
B too late, B has to pay a lateness penalty to the final
customer. There is usually a delivery date that would be
optimal for section A but not section B, and vice versa.
Section A incurs additional costs for meeting an earlier

1340 Lorenz, Dorwarth, Ritter, and Schriber
delivery date and incurs storage costs for using a later
delivery date.

Section A
Produces components;
Prefers to deliver them

on Tuesdays

Section B
Assembles components;
Prefers to receive them

on Mondays

Coordination or Decision Support Center
Has access to Public Interfaces,

Starts experiments with A and B models
 Searches for an optimum

A-specific process and
cost model with access
to A-internal data bases

B-specific process and
cost model with access
to B-internal data bases

 Public Interface Public Interface

Figure 2: Decision support with distributed models

This seems to be a classic warehousing problem. The
traditional solution is to work with a common model for
both sections. A network based solution allows experi-
ments with two internal section-specific models with
public interfaces and hidden, private data bases that
can only be viewed by each section internally. In this
example a coordination center with access to the public
interfaces can run experiments and look for a compro-
mise.

3 BASIC APPROACHES

This section describes three approaches for simulation
and animation in the Web.

3.1 Remote S&A

In remote S&A (see Figure 3), the user specifies values
of parameters for a simulation model in an HTML data-
entry form, submits the form to a server and starts the
simulation by pushing the START-button on the form. A
Common Gateway Interface (CGI) is used to transfer the
data to the server. A CGI script starts the simulation after
the data have been received.

Internet

WWW-
Server

WWW-
Client

Simulator 1. Parameters
2. Simulatio n start
3. Results

3
3

1

2

Figure 3: Remote S&A and data transfer
When the simulation has finished, the CGI-script prints
the results (including the URL of files that have been
created to show results) in a new HTML page and trans-
mits it back to the client. This technique is called dy-
namic document generation.

The remote S&A approach is suitable for existing S&A
software. It is not well qualified for observing dynamic
processes at work and does not allow the user to interrupt
a running simulation, because the server sends the results
only at completion, or at predetermined points in time.

3.2 Local S&A Based on Loading Applets

In local S&A based on loading applets (see Figure 4), the
user loads a Java simulation applet into the Web-
browser, which then runs the simulation on the client
machine. This approach supports the incorporation of
user interaction and animation into the simulation applet.
Existing simulation and animation tools are not suitable
for this approach. Suitable tools should be able to create
S&A models as applets.

Internet

WWW-
Server

WWW-
Client

1. Call for a n applet
2. Downloa d the applet
3. Run the apple t and sho w results

2

1

3

Figure4: Client-Site simulation with loaded applets

3.3 Animation and Manipulation
using a Java Data Server

This S&A approach, pictured in Figure 5, was introduced
by Berger and Leiner (1997). It uses a WWW- and-Java
server.

Internet

WWW- and
JAVA-Server

WWW-
Client

Simulator
1. Callin g the WWW-Server
2. Configuratio n and downloa d applets
3. Server - clien t connection

4. Simulatio n contro l and results

3
1

2

4

Figure 5:Remote Simulation and Local Visu-
alization

Towards a Web Based Simulation Environment 1341
The simulation runs remotely on a simulation server. The
results are transferred to the client and visualized locally.
The user begins by loading some applets. After these
applets have started, a connection to the Java server is
built and simulation data are transmitted to the Web
browser. The data can change continuously, delayed only
by the executing simulation model and transmission time
on the Internet.

The user can interact with the model by using buttons
on the HTML page or by clicking into a graphical repre-
sentation of the model.

4 SIMULATORS IN THE WEB

Among the central components of a Web-Based Simula-
tion Environment are interfaces to simulators. Figure 6
shows how one such interface, the Common Gateway
Interface (CGI), can be used to support the transfer of
data from an HTML-page across the network and the
starting of a CGI-script on a server. CGI scripts using the
transferred data are commonly written in PERL, as sug-
gested in Figure 6, but other programming languages
could be used, too.

Using a simulator with the CGI-interface for simulation
on the Web is possible only if the simulator supports two
properties:
1. It must be possible to start the simulator from a com-
mand line. PERL scripts can not “simulate” the “pushing
of a button” in a GUI. The simulator must support com-
mand lines like:

system(’gpssh modelfilename’)
2. The simulator has to be able to accept the simulation
model and simulation parameters as a file and has to be
able to write simulation results into a file, which the CGI
interface can return to a Web-page. The user puts his
model or model parameters into a FORM container on an
HTML page. A FORM usually provides some INPUT and
TEXTAREA containers. For example,

<INPUT NAME=“time” VALUE=“0” SIZE=“8”>

Web-Browser WWW-Server

Simulator Perl-Script

Form

HTML

CGIHTML

Figure 6: CGI-based Web Connection
for a Simulator

describes an data input field with a default value of zero
and a size of 8 characters. If the user writes the number
333 in this field and presses the START button the CGI
interface transfers the data to the server in the form

name=value&name=value ...
or in our example

time=333

Then the script is started on the server. The ACTION at-
tribute in the FORM tag tells the server which script is to
be used:

<FORM METHOD=POST
ACTION="http://simsrv.cs.uni-
magdeburg.de/cgi-bin/test">

The first part of the script splits the name/value pairs and
puts the simulation model or parameters into a file.

For each $pair (@pairs)
{
($name,$value) = split(/=/,$pair);

$FORM{$name} = $value;
}
$arriveTime = $FORM{'time'};
chdir "/tmp";
open(PFILE,">params");
select(PFILE);
printf("%f",$arriveTime);
close(PFILE);

After this is done, the script starts the simulator:

system ("/usr/local/bin/gpssh model.gps");

Now it is possible to generate the resulting HTML page.
It will be sent to standard output, from which it is deliv-
ered by the CGI interface to the WWW client.
It is possible to show graphical representation of the
results using Gnuplot or external programs. The follow-
ing section describes a way to include professional busi-
ness graphics into a Web-page.

5 PRESENTATION OF
GRAPHICAL RESULTS

This section discusses a proposed prototype for an S&A
environment component that uses a special approach for
presentation of information graphically. This prototype is
part of the GraphIt tool that has been developed by
Marco Schumann, a PhD student at the ISG. (See the
Web site reference further below in this section).

The intention of the GraphIt project is to investigate
opportunities for using existing business graphics tools
on the Internet. Using existing tools significantly reduces
development time because complex business graphics
capabilities do not need to be reinvented or repro-
grammed. The currently implemented prototype takes
advantage of the LightLib business graphics library for
Borland Delphi developed by DFL Software Inc.

1342 Lorenz, Dorwarth, Ritter, and Schriber
Figure 7: Business Graphics for Simulation Results

The solution corresponds to the remote S&A concept
discussed in section 4 and can be explained in terms of
the following steps, using numbers that correspond to
those in Figure 7:
1. The user enters the data to be graphed in a text area of

an HTML form.
2. The data is submitted to the web server using the CGI

technique.
3. The Perl script extracts the data from the form and

creates an ASCII input file.
4. The GraphIt! utility processes the input file.
5. The results are saved as a TGA (TARGA) image.
6. A converter generates a GIF image.
7. The Perl script generates a resulting HTML page with

the embedded image.
8. The HTML page is sent to the client's web browser.

The currently implemented version of the visualization
component runs independent of any simulator. A detailed
description of GraphIt! is available at
http://www.cs.uni-magdeburg.de/~maschuma/GraphIt
/GraphIt.html
The data to be graphed have to be written in a TEXTAREA

of an HTML form. The following text gives an impres-
sion of the Graphit!-interface which is used in this
TEXTAREA:

Title: Distributions’ Frequencies
Dimension:3D
Grid:10,2
Legend:OnBest,Uniform,Normal
Type:Bar
X-Axis:Class
Y-Axis:Frequencies
Data:1,9,0
.........

This description can be generated by a simulation pro-
gram:

http://isgnw.cs.unimagdeburg.de/~pelo/sim1d/sa3/sa39/sa39.htm
6 JAVA-BASED 2D ANIMATION

Skopeo is a Java-based, platform-independent 2D-
Animation system. It is currently under development by
K.-C. Ritter (ISG). Some examples of Java-based 2D
animation can be found at:

http://simos2.cs.uni-magdeburg.de/Skopeo/Ani.html.

Various aspects of Skopeo are discussed in the following
subsections.

6.1 The Reference System vs. Skopeo

The reference system for web-based Skopeo is Proof
AnimationTM. Like other trace driven animation systems,
Skopeo uses a Layout File to describe the animation
background and a Trace File to define object movement.

In the current version of Skopeo, an enlarged set of
Proof Layout commands is used to describe the layout.
The Trace command-set format of Skopeo is more com-
pact than in Proof.

Skopeo extends Proof in some ways, however, in-
cluding the following:
• In addition to Proof's Layout elements (Lines, Arcs,

Messages, Text), Skopeo supports true color back-
ground bitmaps and ellipses.

• Skopeo uses Hershey fonts to provide platform-
independent textual output. These fonts have the ad-
vantage of an identical look on each platform and a
great variety of available fonts.

• Skopeo supports accelerated object movement. The
local coordinate system concept of Proof has been
enhanced. This enables the system to support relative
object movement and Paths as Class components.

• Existing Proof Animation Layout and Trace files can
be translated into Skopeo files by using special REXX

based scripts.
• Because of its modularity, Skopeo is open for differ-

ent Trace command sets and Trace sources. By using
this Skopeo feature it is possible to adapt animations
from alternative animation sys-tems.

• A real-time data collection capability is under devel-
opment for Skopeo.

• VRML-based 3D Animation for simulation models
and simulated processes is a natural extension of
Skopeo as described above. A prototype is under
construction.

 6.2 Architecture of Skopeo

 Skopeo is built in a strictly modular form, as shown in
Figure 8. The modularity is encouraged by the object
oriented attributes of Java. During the implementation of
Skopeo, Java's multithread capabilities have been used.

Towards a Web Based Simulation Environment 1343
Java provides support for multiple threads of execution
that can handle different tasks.
 Today's architecture of Skopeo is a compromise with
respect to the runtime problems of recent Java environ-
ments. To compensate for the runtime problems on the
client side, Skopeo initiates an animation-specific code
optimization before loading to the server. This shifting
permanently saves resources on the client side by using
resources on the server side. To enable this optimization,
Skopeo's structure contains three components or layers:
• The static layer (including a user defined or standard

Control Module, a Module for Visualization and
Object Management, and a Trace Module for differ-
ent Trace languages);

• The dynamic layer (including Animation Class in-
formation, which is loaded by Skopeo at runtime be-
cause a previous code optimization on the server side
improves performance.); and

• The animation files (including Layout files, Trace
files and background bitmaps).

Trace File Layout File

Skopeo-Animation

Control Module

Trace Module

Module for Visualization
and Object Management

Dynamic Layer
Path / Object / Message

Information

Figure 8: Architecture of Skopeo with Control- and
Data Flows

The components are defined by their characteristics. The
static layer is not subject to variation and has to be
loaded with each animation. The dynamic layer depends
on the specific animation model. It contains model-
specific information about Classes, Paths and Messages.

6.3 Inserting an Animation into HTML Pages

Skopeo can be started as a local application or in the
Web, but its primary use is in the setting of integration
into Web pages.

The typical method for running Skopeo is to do so from
an HTML page. In this case the HTML page must con-
tain the following lines:

<applet code=SkopeoControl.class
width=550 height=170>
<param name=bundleid value=Canal&Lock>
</applet>

These lines link a standard or a user defined control
module to the page in the form of an individual applet.
The module contains all control elements that the user
needs to control the animation. The parameter Bun-
dleid guarantees that if more animations are on the
same HTML page, every control module finds the corre-
sponding visualization module.

The following lines link a visualization module to the
page.
<applet code=Skopeo.class width=300
height=200>
<param name=bundleid value=Canal&Lock>
<param name=model value=canal>
<param name=modelURL
value=http://simos2.cs.uni-
magdeburg.de/Skopeo/canal/>
</applet>

The model parameter determines the name of the
model that is loaded at Skopeo runtime. The home URL
of the model is named by the modelURL parameter.

7 CONCLUSION

The Web-Based Simulation Environment is an idea
rather than a project. A WBSE should promote and
spread simulation and animation techniques, tools and
models thanks to platform independence and global ac-
cess. It should support all the traditional steps making up
a simulation study. It should promote and support dis-
tributed, simulation-supported cooperative problem
solving.

Some prototypes of WBSE components presented here
illustrate both opportunities and difficulties that lie along
the road leading to a Web-Based Simulation Environ-
ment.

REFERENCES

Berger, M., and U. Leiner. 1997. Remote Visualisieren
und Manipulieren von Simulationen im Internet. In
Proceedings of Simulation and Animation ’97 Mag-
deburg, 1-11. Society for Computer Simulation
Europe, Ghent, Belgium.

Fishwick, P.A. 1996. Web-Based Simulation: Some
Personal Observations. In Proceedings. of the 1996
Winter Simulation Conference, 772-779. Society for
Computer Simulation, La Jolla, California.

Henriksen, J.O. and R.C. Crain. 1998. GPSS/H Refer-
ence Manual, 4th Edition. Wolverine Software Corpo-
ration, Annandale, Virginia.

Lorenz, P., and K. C. Ritter. 1997 Skopeo: A platfor-
Independent System Animation for the W3. In Pro-
ceedings of Simulation and Animation ’97 Magde-
burg, 12-23. Ghent, Belgium: Society for Computer
Simulation Europe

Lorenz, P., and T. J. Schriber. 1996. Teaching Introduc-
tory Simulation in 1996. In Proceedings. of the 1996
Winter Simulation Conference, 1379-1386. La Jolla,
CA Society for Computer Simulation

1344 Lorenz, Dorwarth, Ritter, and Schriber
Schriber, T. J. 1996. Comparison 8: Canal-and-Lock-
System. In EUROSIM - Simulation News Europe, 16,
29-32. ASIM, Vienna, Austria.

Wolverine Software Corporation. 1996. Getting Started
with Proof Animation. Wolverine Software Corpora-
tion, Annandale, Virginia.

AUTHOR BIOGRAPHIES

HEIKO DORWARTH works as a graduate research
assistant in the Institute for Simulation and Graphics at
the Otto von Guericke University of Magdeburg. His
areas of research include the modeling of manufacturing
systems and applications on the World Wide Web.

PETER LORENZ is a Professor in the Institute for
Simulation and Graphics. He teaches discrete simulation,
computer animation, and graphics. His research interests
include layout-based simulation model generation, ad-
vanced Web supported teaching concepts and applica-
tions of simulation and animation in manufacturing,
logistics and traffic.

KLAUS-CHRISTOPH RITTER is a Ph.D. student in
the Institute for Simulation and Graphics. His current
research area is platform independent animation and
simulation supported by the use of World Wide Web
technologies.

THOMAS J. SCHRIBER is a Professor of Computer
and Information Systems at The University of Michigan.
He is a Fellow of the Institute of Decision Sciences and is
the 1996 recipient of the INFORMS College of Simula-
tion distinguished Service Award. He teaches decision
analysis and discrete-event simulation in Michigan’s
MBA program.

	TOWARDS A WEB BASED SIMULATION ENVIRONMENT
	ABSTRACT
	1 INTRODUCTION
	2 S&A WEB APPLICATION CONTEXTS
	2.1 Web Support for an S&A Course
	2.2 Canal and Lock System in the Web
	2.3 Providing Simulation Service
	2.4 Cooperative Problem Solving

	3 BASIC APPROACHES
	3.1 Remote S&A
	3.2 Local S&A Based on Loading Applets
	3.3 Animation and Manipulation using a Java Data Server

	4 SIMULATORS IN THE WEB
	5 PRESENTATION OF GRAPHICAL RESULTS
	6 JAVA-BASED 2D ANIMATION
	6.1 The Reference System vs. Skopeo
	6.2 Architecture of Skopeo
	6.3 Inserting an Animation into HTML Pages

	7 CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 1338
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

