
TAKING THE WORK OUT OF SIMULATION MODELING:
AN APPLICATION OF TECHNOLOGY INTEGRATION

Gregory S. Baker

Fluor Daniel Manufacturing Technologies
100 Fluor Daniel Drive

Greenville, South Carolina 29607-2762, U.S.A.
g

u
e

h
i-
i
n
d
 t
nd
ng

g
n
si
e
ck
o
o
N
n
o-

w
e
r

io
ge
n
s
o

s

r
-
t
-
s

N
d
r,

nt.

al-

n-
b-
In
-to
an
g
d
o

of
xi-
or

e
a-

a
 a

p-
g

ABSTRACT

This paper presents an implementation methodolo
appropriate for providing a broad range of proven,
classical Operations Research methods and techniq
to the simulation modeler without imposing that s/h
become proficient in a programming language. T
user interface is enabled by ARENA’s robust Appl
cations Specific Template (AST) development env
ronment. The simulation example highlights a
inbedded optimization problem, the Knapsack loa
ing problem. The methodology has been used
implement several other optimization algorithms a
heuristics including a generalized linear programmi
algorithm.

1 INTRODUCTION

There is often a need to go beyond the intended al
rithmic capability of a general purpose simulatio
package to perform complex mathematical analy
and/or computations. Some algorithms can becom
monumental task when attempted in a simulation pa
age like SLAM, SIMAN, WITNESS, GPSS, etc. T
their credit, most simulation software packages pr
vide limited access to languages like C or FORTRA
both of which are better suited for mathematical a
algorithmic implementations of complex numerical s
lutions. However, this programming approach using
separate programming language has significant dra
backs in today’s simulation community where th
graphical user interface (GUI) has become a standa
 This paper presents by example an implementat
methodology appropriate for providing a broad ran
of proven, classical Operations Research methods a
techniques to the simulation modeler without impo
ing that s/he become a proficient C or FORTRAN pr
grammer. Furthermore, the modeler does not need
know much at all about implementing solutions to cla
y

es

e

-

-
o

o-

s
 a
-

-
,
d

a
-

d.
n

d
-
-
to
-

sical problems like linear programming, nonlinear o
integer optimization, etc.. The implementation ex
ampled herein is enabled by ARENA’s robus
Applications Specific Template development environ
ment. This template development environment allow
third party developers to extend the underlying SIMA
simulation language by providing classical and tailore
algorithmic problem solutions to the model develope
presented with the same look-and-feel and ease-of-use
as found in the standard Arena modeling environme

2 EXAMPLE

Often there is a need to integrate complex numeric
logical algorithms within a simulation model for what-
next type decision making. Take for example a ge
eral consumer products manufacturer with a distri
uted manufacturing and warehousing network.
addition to manufacturing needs analysis, a ship
schedule and fleet size type questions, there is
embedded optimal truck loading problem. Pushin
down from the macro problem of making it where an
shipping what from where to where, we find a micr
problem of,

“...given these potential items to load onto a
specific truck, which should be loaded to
maximize, say, load profitability.”

 Load profitability may imply maximum truck load
based on volume or weight to minimize the number
trips; or it could be based on order due date to ma
mize the total number of orders shipped on time;
more directly, a calculated truck load profit.
 Whatever the criteria, a typical simulation languag
requires quite a bit of work to accomplish such an an
lytical and numerically complex task. Aside from
simple ordered queue a modeler would have to write
considerable amount of SIMAN code to insure an o
timal loading procedure. The optimal truck loadin

.
d
e
er

i-

b-

h

e

.

-

-
-
f
ed
s

r
t

,

d

1346 Baker
problem is a small piece of the overall system ana
sis, and because the modeler is not likely to be
expert in optimization theory or techniques, s/he us
ally opts for the simple ordered queue solution.

3 APPROACH

A better solution than coding complex numerical a
gorithms in a base simulation language like SIMAN
the integration of applicable optimization algorithm
within ARENA, and providing a module access tha
has the same look-and-feel and ease-of-use found in
the standard ARENA package. This approach remov
the modeler’s need to know and/or understand t
algorithmic implementation of Operations Researc
techniques and perhaps, just as importantly, it remov
the need for detailed, error-prone SIMAN program
ming, or for that matter, any programming at all.
 Figure 1 below conceptually illustrates the exampl
integration path. The modeler’s same look-and-feel
and ease-of-use as found in standard ARENA, is pro-
vided by ARENA’s robust template developmen
environment. The appropriate optimization techniqu
is simply picked off the menu and the associate
module(s) placed within the current model window.

SIMAN

Templates

ARENA

Opt imization Methodo logies
 - Integer Programming
 - Shortest Path
 - Maximum Flow
 - Knapsack

User
Interface
Code

Library DLL's

Operations Research Tools

Building the Mo del

 Figure 1: Conceptual Integration

 Problem configuration and data communication wi
the embedded optimization algorithm is a matter
fill-in-the-blank from the end-user’s point of view. The
key is integrating appropriate, and proven, solution a
gorithms into ARENA via the user-code, C develop
ment environment.

In addition to examples and application or algo
rithmic level user documentation, on-line help files ca
be added as part of the standard interface.
ly-
an
u-

l-
is
s
t

es
he
h
es
-

ed

t
e
d

4 PROBLEM STATEMENT

The following example is a prototype implementation
The application is a classical Knapsack problem, use
here to describe an optimal truck loading procedur
for the above general consumer products manufactur
and distributor.
 In our consumer products manufacturing and distr
bution example above, the issue identified as, “...maxi-
mum profit per truck load,” is a form of the classical
Knapsack problem. Simply stated, the knapsack pro
lem is:

max p[0]*x[0] +...+ p[i]*x[i] +... for i = 0, 1,..., n-1;

where p[i] is the profit contribution of the ith load un-
der consideration and x[i] is a binary value set suc
that 1 means that the ith load should be loaded onto
the awaiting truck and 0 means that it should not b
loaded. Therefore:

x[i] = 0 or 1 for i = 0, 1,..., n-1.

 The maximum profit is subject to the truck capacity
Using w[i] as the item weight and v as the maximum
truck weight value, then the maximum profit is con
strained by:

w[0]*x[0] + ...+ w[i]*x[i] +... <= v for i = 0, 1,..., n-1.

 Implementing an applicable solution method is para
mount to model accuracy. Most mathematical algo
rithms have a range of validity for a specific class o
problems. In this example case, we have implement
an integer knapsack solution algorithm that require
integral item weights and profit attributes. That is,

p[i] and w[i] positive integers for i = 0, 1,...,n-1.

 Another implementation condition on this particula
algorithm is that each potential load item is in fac
loadable. That is,

w[i] <= v for i = 0, 1,..., n-1.

 Finally, we must start with a real problem. That is
all the available loads will not fit onto the awaiting
truck, or

w[0] +...+ w[i] +... > v for i = 0, 1,..., n-1.

 The numerical calculations are quite extensive an
implement a branch-and-bound solution technique.
The original algorithm is given in Horowitz and Sahni,

th
of

l-
-

-
n

o
o

o
e
a

o

t

e
c

f
,

a

e

a
s

g

a
le

w

e

n

ce
 of
uck
oad

ed
ms

ave
ny
the

e-

Taking the Work Out of Simulation Modeling 1347
(1974). This specific implementation is an adaptati
of the C-code provided to the author by Bob Craig
Lucent Technologies.

5 INTERFACE

5.1 The Interface

But the implementation of an algorithmic solution t
the Knapsack problem is only part of the total impl
mentation effort. A significant concern is providing
simple interface to the optimization algorithm for th
modeler. Such an interface may be constructed us
the ARENA template development environment, pr
vided with ARENA PE.
 Before we develop the template, we must define
system interfaces requirements: template to algorith
and modeler to template. The template to algorith
is straight forward, and fixed by our selected impl
mentation. First we need to know the maximum tru
capacity be it weight or volume, etc.. Secondly, w
need to provide a list of items to be considered
loading. If we consider each load item as an entity
queue provides a logical list structure for our pote
tial loads. This queue even allows the loads to be u
preference ordered. (This implementation does not
fect the original load queue ordering which means th
when we go to perform the actual truck loading activ
t ies, we have preserved our preferred lo
ordering over the solution space.)
 It is important to remember that the optimal truc
load solution is determined in zero [simulation] tim
i.e. D

t
= 0, but physically loading the truck will take

some yet unspecified amount of time, either per lo
item or in aggregate. The Case II Pseudo Code (
page 6) makes use of the item loading time, D

t
 > 0, to

iteratively optimize the remaining loadout by takin
into account any newly available load items.
 Since we are using entities as load items, entity
tributes may be used to distinguish the individual lo
characteristics - weight and value. From the mode
we need only know which two attributes reflect th
load’s weight and value respectively.
 We also require the modeler to provide one mo
load item entity attribute which is used to designa
our actual problem’s solution space. Figure 2 sho
a simple interface module screen to setup and so
our example truck loading optimization problem.
 This is a zero-time module, so upon exiting th
block, no time has elapsed and the entities in the sp
fied load queue have simply been flagged as to-be
not-to-be loaded. The actual truck loading process w
take some time either on a per load basis or in agg
gate. Although our job of providing a solutio
n
f

-

e
ing
-

he
m,
m
-
k
e
or
 a
n-
ser
ef-
at
i-
d

k
,

d
ee

at-
d
r,

e

re
te
s

lve

e
ci-

 or
ill
re-

Figure 2: Sample Problem Definition/Input Screen

is complete, it would be nice to add a simple interfa
module that allows the modeler to pull one or more
the queued load items and send it/them on to a tr
loading process. Figure 3 below shows a sample l
selection module interface.

Figure 3: User Input Interface

 As in the problem setup interface module, we ne
to provide the name of the queue where the load ite
reside and again, the attribute name of the load/le
flag. Finally, the modeler needs to specify how ma
loads to remove from the queue and send on to
loading process: the ‘Loads to Pull’ field. The r

ue
em
o- .

o
g

st

ne
g

s

-

g
k

e

d
t

h

is

via
ve
g
he
ad
ve
 th

es
n

le-

ng
e

1348 Baker
sponse ‘All’ is just that, remove all entities in the que
with their load/leave attribute set to one, and send th
on to the next model block. No time delay is pr
vided between load removals.

Figure 4: ‘Some’ Option Selection

 Another way to approach the loading process is
the ‘Some’ selection. Here the modeler may remo
one load at a time (with supplied looping) allowin
time for additional loads to be queued-up during t
item’s loading delay cycle. Then, before the next lo
is selected, the problem can be reconfigured and sol
again based on the new set of potential loads, and
truck’s remaining capacity, v

new
. When the modeler

selects the option ‘Some’, a quantity field becom
visible and is init ial ized to one as shown i
Figure 4 above.

5.2 Case I Pseudo-Code

Examine the “remove all” selection above. One imp
mentation follows.

...Event: shipping prep completed for load item
entity k. TNOW = t

j

QUEUE, theDockQueue: Detach;

...Event: truck arrival and prep completion at the
shipping dock. TNOW = t

n

SETUP/SOLVE KnapSack Problem;
REMOVE: All entities flagged to Truck queue;

...Event: start truck loading. TNOW = t
n

DELAY: Truck Loading Time;

...Event: closeout truck for exiting process: TNOW = t
m

Truck exits to destination. TNOW = t
exit

 Here, only loads readied before the start of loadi
t
j
 <= t

n
, are considered. The total truck loading tim

is t
m
 - t

n
. The truck load “value” is assured optimal.
5.3 Case II Pseudo-Code

Case II from above, is the “remove some” selection
The following pseudo-code implements a load loop t
load one-at-a-time from theDockQueue, reevaluatin
the what to load next each load cycle.

... Event: shipping prep completed for load item
entity k. TNOW = t

j

QUEUE, theDockQueue: Detach;

... Event: truck arrival and prep completion at the
shipping dock. TNOW = t

n

While Truck Not Full
SETUP/SOLVE KnapSack Problem;
REMOVE: First entity flagged;
DELAY: Truck Loading Time per Cycle;

EndWhile;

... Event: closeout truck for exiting process.
TNOW = t

m

... Event: Truck exits to destination. TNOW = t
exit

 In this second case, all loads readied before the la
item to top off the truck is selected for loading, t

m
 - t

i

where t
i
 is the unit load cycle time of the last entity

loaded onto the truck are considered.

6 RESULTS

Three basic examples were modeled. Examples o
and two use simple ranked queues for load orderin
and selection: FIFO (first in first out) and HVF[Value]
(high value first based on the Value attribute.) Load
are picked from queue rank one position until the
remaining truck capacity is less than the capacity con
tribution (attribute Weight) of the first entity remain-
ing in theDockQueue.
 The third example also uses a FIFO queue rankin
but only loads the entities flagged by the Knapsac
solution. That is, if n load item entities are loaded
onto an awaiting truck, in case one and two it is th
first n items that get loaded. But in the third example
this is not guarantied to be true.
 Deviations, 1a and 2a, extend the basic ordere
queue logic of examples 1 and 2 respectively by no
closing out the truck when the next potential load item
(first in theDockQueue) is too “big” to fit onto the
truck. Rather these two examples continue to searc
the remaining queued loads for the first that will fit,
regardless of its load queue rank, and loads it. Th
search is continued until no more loads will fit onto

d
e

,

s
h

d

l

0

2
a

p

d

n

el-
on-
on-
ry

al
f
p
o-
re

To
re
d.
.)

ex-
n

se
e.

ch
ri-
ct
e
ad

n-
 So

Taking the Work Out of Simulation Modeling 1349
the truck (i.e. topping off the truck, so to speak.) The
deviations are guaranteed to be as good or better t
the base examples at little additional cost in mode
ing.
 In all examples, the truck capacity is fixed at 40,00
pounds. The experimental design included creating
potential load items with their Weight attribute an
Value attribute randomly assigned from the triangula
distribution,

TRIA(100,800,1000) (lbs.)

 The profit per truck is given by,

SUM(Value
i
) for i = 1....n

where n is the number of entities loaded onto the truc
n < N. In all three examples, N =120. Each examp
was exercised for 1000 replications of a single truc
loading. The average profit is calculated over the 10
samples for each example, and summarized in Table 1.
 Not surprisingly, the contest is between examples
and 3. Example 2a uses a value ordered queue
tops off the truck with anything that wil l f i t .
Example 3 makes use of our truck loading optimiza
tion algorithm. Several things are evident:

1) On the average, the value of trucks loaded o
timally is higher than those loaded via the or
dered queue and then topped off.

2) The optimal truck loaded value is always
equal-to or better-than the modified ordere
queue approach.
e
an
l-

0
N

r

k,
e
k
0

a
nd

-

-
-

3) As shown in Figures 5 and 6, the ARENA
model is easier to specify for example 3 tha
it is for example 2a.

 The results are better and the task of model dev
opment is made easier; what else do we need to c
sider? The answer is resources. Here we need to c
sider two resources in particular: computer memo
(RAM) and run time.
 Memory is cheap! That is to say, that the potenti
value of the modeling activity makes the cost o
memory insignificant, although memory is truly chea
today. Simple benchmarking of the Knapsack alg
rithm indicates that the additional memory needs a
very small compared to a typical ARENA model’s
memory requirements anyway.
 So run speed is the remaining issue to consider.
quantify this several replications of 5000 samples we
run and the SIMAN Report run duration was compare
(Not real scientific, but a benchmark none the less
Results: example 2a ran about 3.23 minutes and
ample 3 ran about 3.52 minutes. This implies a ru
length cost of about 9%. Remember that the
example were only testing the truck loading procedur
That is, as stated earlier, the overall model from whi
our examples were extracted is quite large in compa
son. If we use a factor of 10x than we might expe
that model to show about a 1% runtim
increase due to the use of an optimal solution inste
of a close answer. Truly a small price to pay.
 Easy to use, quicker to model and debug, guara
teed optimal vs. close-enough, and cheap to use.
where’s the choice?
Average 0.95 C.I.
Loaded Value Half-Width Minimum Maximum

1 39499 428 35495 45693

1a 40076 420 35495 46514

2 49055 356 45046 53472

2a 49654 370 45645 54112

3 52712 381 48318 57205

Table 1: Confidence Interval Summary

1350 Baker
IF WHILE ASSIGN REMOVE ENDWHILE
DISPOSE

IF FINDJ BRANCH

DISPOSE

WRITE

ENDIF

BRANCH
ASSIGN REMOVE

DISPOSE

DISPOSE

PROJECT

REPLICATE

QUEUES

ARRIVALS

QUEUE

OUTPUTS

VARIABLES

ATTRIBUTES

ASSIGN

PRINTKnapSack PullLoad

DISPOSE

PROJECT

REPLICATE

QUEUES

ARRIVALS

QUEUE

OUTPUTS
 Load To

Figure 5: ARENA Model Window for Example 2a

Figure 6: ARENA Model Window for Example 3
-

),

e

en
7 CONCLUSION

The recognition that many problems encountere
within the systems we would like to simulate fall int
families, or problem domains, for which solution meth
odologies already exist prompted this work. Th
paper has illustrated an approach for providing t
simulation modeler with existing, proven solutio
methods to classical problems domains. This impl
mentation is summarized in following three steps:

1) Identification of a recurring problem domain
and applicable solution algorithm in a pro
gramming language like C or FORTRAN
and/or pre-compiled in a program library (.lib
or dynamic link library (.dll).

2) Develop a user interface in the ARENA tem
plate development environment. This interfac
must delineate the user interaction for prob
lem specification and solution extraction a
d
o
-
e

he
n
e-

-

)

-
e
-

s

well as the ARENA interface to the imbedded
solution algorithm.

3) Integrate the compiled or pre-compiled solu-
tion code into the ARENA user code devel-
opment environment to generate an ARENA
accessible dynamic link library.

 Then simply provide the template and accompany
ing dynamic link library files to the modeler. These
files are placed in the ARENA home directory or the
project root directory and are can be pulled in as
needed or automatically. The modeler need only
select from the template panel the desired module(s
place them in the model window, and fill in the blanks:
no modeler required programming.
 Systems Modeling has positioned the ARENA dis-
crete simulation software package in a leadership rol
by providing both the Template development environ-
ment and the user code development package and th
inviting third party developers to take advantage of

h

Taking the Work Out of Simulation Modeling 1351
these tools to extend and tailor the ARENA simula-
tion and analysis system. This paper examples one suc
extension to provide the ARENA user community with
a generalized solution method to the classical Knap-
sack problem.

REFERENCES

Horowitz, E. and S. Sahni. 1974. Computing partitions
with applications to the knapsack problem. Jour-
nal of ACM 21: 277-292.

AUTHOR BIOGRAPHY

GREGORY S. BAKER has been involved with simu-
lation for twenty-five years and has been modeling with
Systems Modeling products for ten years. He is a Prin-
cipal Manufacturing Simulation Specialist for Fluor
Daniel Corporation and applies simulation methods to
a variety of discrete and batch semi-continuous indus-
tries in the general areas of plant improvement and
new facilities design. He has developed several PE
Templates for his own use and for use by other mod-
elers internally. Templates have included, an advanced
Containers (tanks) toolbox for batch/semi-continuous
hybrid systems; high-speed and high-volume conveyor
toolbox; bulk material handling conveyor toolbox for
the mining and foods industries well as templates to
seamlessly integrate complex numerical algorithms il-
lustrated in this paper. Most of his solutions are imple-
mented as an ARENA Template and .dll (dynamic
linked library) file pair.

	TAKING THE WORK OUT OF SIMULATION MODELING: AN APPLICATION OF TECHNOLOGY INTEGRATION
	ABSTRACT
	1 INTRODUCTION
	2 EXAMPLE
	3 APPROACH
	4 PROBLEM STATEMENT
	5 INTERFACE
	5.1 The Interface
	5.2 Case I Pseudo-Code
	5.3 Case II Pseudo-Code

	6 RESULTS
	7 CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 1345
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

