
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

INPUT MODELING

Lawrence Leemis

Department of Mathematics
College of William & Mary

Williamsburg, VA 23187–8795, U.S.A.

stic
the
lin
th
ith
ho
es
o

at
. I
d
o

de
lso

th
er
Th
a
ha

ms
r i

the
ps
ler
eue
es
on
ate
eue
of
3

ent
rn

the
ate

el

is

es
e

t,
eli-
es

-
lar
ec-
.

ate
to
in
es

n

on
of
ut
le
l.
ABSTRACT

Discrete-event simulation models typically have stocha
components that mimic the probabilistic nature of
system under consideration. Successful input mode
requires a close match between the input model and
true underlying probabilistic mechanism associated w
the system. The general question considered here is
to model an element (e.g., arrival process, service tim
in a discrete-event simulation given a data set collected
the element of interest. For brevity, it is assumed that d
is available on the aspect of the simulation of interest
is also assumed that raw data is available, as oppose
censored data, grouped data, or summary statistics. M
simulation texts (e.g., Law and Kelton 1991) have a broa
treatment of input modeling than presented here. Ne
et al. (1995) survey advanced techniques.

1 COLLECTING DATA

There are two approaches that arise with respect to
collection of data. The first is the classical approach, wh
a designed experiment is conducted to collect the data.
second is the exploratory approach, where questions
addressed by means of existing data that the modeler
no hand in collecting. The first approach is better in ter
of control and the second approach is generally bette
terms of cost.

Collecting data on the appropriate elements of
system of interest is one of the initial and pivotal ste
in successful input modeling. An inexperienced mode
for example, collects wait times on a single-server qu
when waiting time is the performance measure of inter
Although these wait times are valuable for model validati
they do not contribute to the input model. The appropri
data to collect for an input model for a single-server qu
are typically arrival and service times. An analysis
sample data collected on a queue are given in sections
and 3.2.
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Even if the decision to sample the appropriate elem
is made correctly, Bratley, Fox, and Schrage (1987) wa
that there are several things that can be “wrong” about
data set. Vending machine sales will be used to illustr
the difficulties.

• Wrong amount of aggregation. We desire to mod
daily sales, but have only monthly sales.

• Wrong distribution in time. We have sales for th
month and want to model next month’s sales.

• Wrong distribution in space. We want to model sal
at a vending machine in location A, but only hav
sales figures on a vending machine at location B.

• Censored data. We want to modeldemand, but we only
havesalesdata. If the vending machine ever sold ou
this constitutes a right-censored observation. The r
ability and biostatistical literature contains techniqu
for accommodating censored data sets.

• Insufficient distribution resolution. We want the dis
tribution of number of soda cans sold at a particu
vending machine, but our data is given in cases, eff
tively rounding the data up to the next multiple of 24

2 INPUT MODELING TAXONOMY

Figure 1 contains a taxonomy whose purpose is to illustr
the scope of potential input models that are available
simulation analysts. There is certainly no uniqueness
the branching structure of the taxonomy. The branch
understochastic processes, for example, could have bee
statefollowed by time, rather thantime followed by state,
as presented.

Examples of specific models that could be placed
the branches of the taxonomy appear at the far right
the diagram. Mixed, univariate, time-independent inp
models have “empirical/trace-driven” given as a possib
model. All of the branches include this particular mode
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Univariate

Multivariate

Stochastic Processes

Discrete-time

Continuous-time

Time-independent
models

Discrete

Continuous

Mixed

Continuous-state

Discrete-state

Stationary

Nonstationary

Discrete-state

Continuous-state

Stationary

Stationary

Stationary

Nonstationary

Nonstationary

Nonstationary

Input Models

Binomial(n, p)

Normal(µ, σ2)

Continuous

Mixed

Discrete

Empirical / Trace-driven

Normal(µ, Σ)

Degenerate(c)

Exponential(Λ)

ARMA(p, q)

ARIMA( p, d, q)

Nonhomogeneous Poisson
process

Bezier curve

Markov chain

Poisson process(λ)
Renewal process
Semi-Markov chain

Markov process

Independent binomial(n, p)

Bivariate exponential(λ1, λ2, λ12)

Figure 1: A Taxonomy for Input Models
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A trace-driveninput model simply generates a process t
is identical to the collected data values so as not to r
on a parametric model. A simple example is a seque
of arrival times collected over a 24-hour time period. T
trace-driven input model for the arrival process is genera
by having arrivals occur at the same times as the obse
values.

The upper half of the taxonomy contains models t
are independent of time. These models could have b
called Monte Carlo models. Models are classified b
whether there is one or several variables of interest,
whether the distribution of these random variables is d
crete, continuous, or contains both continuous and disc
elements. Examples of univariate discrete models incl
the binomial distribution and a degenerate distribution w
all of its mass at one value. Examples of continuous dis
butions include the normal distribution and an exponen
distribution with a random parameterΛ (see, for exam-
ple, Martz and Waller 1982). B́ezier curves (Flanigan–
Wagner and Wilson 1993) offer a unique combination
the parametric and nonparametric approaches. An in
distribution is fitted to the data set, then the modeler
cides whether differences between the empirical and fi
models represent sampling variability or an aspect of
distribution that should be included in the input model

Examples of k-variable multivariate input model
(Johnson 1987, Wilson 1997) include a sequence ofk inde-
pendent binomial random variables, a multivariate norm
distribution with meanµ and variance-covariance matr
Σ and a bivariate exponential distribution (Barlow a
Proschan 1981).

The lower half of the taxonomy contains stochastic p
cess models. These models are often used to solve prob
at the system level, in addition to serving as input mod
for simulations with stochastic elements. Models are cl
sified by how time is measured (discrete/continuous),
state space (discrete/continuous) and whether the mod
stationary in time. For Markov models, the discrete-sta
continuous-state branch typically determines whether
model will be called a “chain” or a “process”, and the st
tionary/nonstationary branch typically determines whet
the model will be preceded with the term “homogeneou
or “nonhomogeneous”. Examples of discrete-time stoch
tic processes include homogeneous, discrete-time Ma
chains (Ross 1997) and ARIMA time series models (B
and Jenkins 1976). Since point processes are coun
processes, they have been placed on the continuous-
discrete-space branch.

In conclusion, modelers are too often limited to un
variate, stationary models since software is typically writt
for fitting distributions to these models. Successful inp
modeling requires knowledge of the full range of possi
probabilistic input models.
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3 EXAMPLES

Two simple examples illustrate the types of decisions th
often arise in input modeling. The first example determin
an input model for service times and the second examp
determines an input model for an arrival process.

3.1 Service Time Model

Consider a data set ofn = 23 service times collected to
determine an input model in a discrete-event simulation
a queuing system. The service times in seconds are

105.84 28.92 98.64 55.56 128.04 45.60
67.80 105.12 48.48 51.84 173.40 51.96
54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service times come from the life testin
literature (Lawless 1982, p. 228), the same principles app
to both input modeling and survival analysis.]

The first step is to assess whether the observatio
are independent and identically distributed (iid). The da
must be given in the order collected for independence
be assessed. Situations where the iid assumption wo
not be valid include:

• A new teller has been hired at a bank and the 2
service times represent a task that has a steep learn
curve. The expected service time is likely to decrea
as the new teller learns how to perform the task mo
efficiently.

• The service times represent 23 completion times
a physically demanding task during an 8-hour shif
If fatigue is a significant factor, the expected time t
complete the task is likely to increase with time.

If a simple linear regression of the observation numbe
regressed against the service times shows a signific
nonzero slope, then the iid assumption is probably n
appropriate.

Assume that there is a suspicion that a learning cur
is present. An appropriate hypothesis test is

H0 : β1 = 0

H1 : β1 < 0

associated with the linear model (Neter, Wasserman, a
Kutner 1989)

Y = β0 + β1X + ε,

whereX is the observation number,Y is the service time,
β0 is the intercept,β1 is the slope, andε is an error
term. Figure 2 shows a plot of the(xi, yi) pairs for
i = 1, 2, . . . , 23, along with the estimated regression line
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Figure 2: Service Time Vs. Observation Number

The p-value associated with the hypothesis test is 0.1
which is not enough evidence to conclude that there is
statistically significant learning curve present. Thep-value
may, however, be small enough to warrant further da
collection.

There are a number of other graphical and statistic
methods for assessing independence. These include an
sis of the sample autocorrelation function associated w
the observations and a scatterplot of adjacent observatio
For this particular example, assume that we are satisfi
that the observations are truly iid in order to perform
classical statistical analysis.

The next step in the analysis of this data set includ
plotting a histogram and calculating the values of som
sample statistics. A histogram of the observations is sho
in Figure 3. Although the data set is small, a skewed be
shaped pattern is apparent. The largest observation lie
the far right-hand tail of the distribution, so care must b
taken to assure that it is representative of the populatio

The next decision that needs to be made is whethe
parametric or nonparametric input model should be us
One simple nonparametric model would repeatedly sel
one of the service times with probability1/23. The small
size of the data set, the tied value, 68.64 seconds, and
observation in the far right-hand tail of the distribution
173.40 seconds, tend to indicate that a parametric analys
more appropriate. For this particular data set, a parame
approach is chosen.

There are dozens of choices for a univariate parame
model for the service times. These include general fa
ilies of scalar distributions, modified scalar distribution
and commonly-used parametric distributions (see Schme
1990). Since the data is drawn from a continuous po
ulation and the support of the distribution is positive,
18
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Figure 3: Histogram of Service Times

time-independent, univariate, continuous input model i
chosen. The shape of the histogram indicates that t
gamma, inverse Gaussian, log normal, and Weibull distr
butions (Lawless 1982) are good candidates. The Weibu
distribution is analyzed in detail here. Similar approache
apply to the other distributions.

Parameter estimates for the Weibull distribution ca
be found by least squares, the method of moments, a
maximum likelihood. Due to desirable statistical properties
maximum likelihood is emphasized here. The Weibul
distribution has probability density function

f(x) = λκκxκ−1e−(λx)κ

x ≥ 0,

whereλ is a positive scale parameter andκ is a positive
shape parameter. Letx1, x2, . . . , xn denote the data values.
The likelihood function is

L(λ, κ) =
n∏

i=1

f(xi) = λnκκn

[
n∏

i=1

xi

]κ−1

e−
∑n

i=1
(λxi)κ

.

The log likelihood function is

log L(λ, κ) = n log κ + κn log λ + (κ − 1)
n∑

i=1

log xi

−λκ
n∑

i=1

xκ
i .

The 2 × 1 score vector has elements

∂ log L(λ, κ)
∂λ

=
κn

λ
− κλκ−1

n∑
i=1

xκ
i

and

∂ log L(λ, κ)
∂κ

=
n

κ
+ n log λ +

n∑
i=1

log xi −
n∑

i=1

(λxi)κ log λxi.
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When these equations are equated to zero, the simultane
equations have no closed-form solution for the MLEsλ̂
and κ̂:

κn

λ
− κλκ−1

n∑
i=1

xκ
i = 0

n

κ
+ n log λ +

n∑
i=1

log xi −
n∑

i=1

(λxi)κ log λxi = 0.

To reduce the problem to a single unknown, the fir
equation can be solved forλ in terms ofκ yielding

λ =
(

n∑n
i=1 xκ

i

)1/κ

.

Law and Kelton (1991, p. 334) give an initial estimate forκ
and Qiao and Tsokos (1994) present a fixed-point algorith
for calculating the maximum likelihood estimatorsλ̂ andκ̂.
Their algorithm is guaranteed to converge for any positiv
initial estimate forκ for a complete data set.

The score vector has a mean of0 and a variance-
covariance matrixI(λ, κ) given by the2 × 2 Fisher infor-
mation matrix

I(λ, κ) =


E

[
−∂2 log L(λ,κ)

∂λ2

]
E

[
−∂2 log L(λ,κ)

∂κ∂λ

] E
[

−∂2 log L(λ,κ)
∂λ∂κ

]
E

[
−∂2 log L(λ,κ)

∂κ2

]

 .

The observed information matrix

O(λ̂, κ̂) =

[ −∂2 log L(λ̂,κ̂)
∂λ2

−∂2 log L(λ̂,κ̂)
∂κ∂λ

−∂2 log L(λ̂,κ̂)
∂λ∂κ

−∂2 log L(λ̂,κ̂)
∂κ2

]
,

can be used to estimateI(λ, κ).
For the 23 service times, the fitted Weibull distribution

has maximum likelihood estimatorŝλ = 0.0122 and κ̂ =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators islog L(λ̂, κ̂) = −113.691. Figure
4 shows the empirical cumulative distribution function (
step function with a step of height1/n at each data point)
along with the Weibull fit to the data.

We now consider interval estimators forλ andκ. Using
the fact that the likelihood ratio statistic,2[log L(λ̂, κ̂) −
log L(λ, κ)], is asymptoticallyχ2 distributed in n with
2 degrees of freedom and thatχ2

2,0.05 = 5.99, a 95%
confidence region for the parameters is allλ andκ satisfying

2[−113.691 − log L(λ, κ)] < 5.99.

The 95% confidence region is shown in Figure 5. Th
line κ = 1 is not interior to the region, indicating that the
exponential distribution is not an appropriate model fo
this particular data set.

As further proof thatκ is significantly different from
1, the standard errors of the distribution of the paramet
19
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Figure 4: Empirical and Fitted Cumulative Distribution
Functions for the Service Times

estimators can be computed by using the inverse of
observed information matrix

O−1(λ̂, κ̂) =
[

0.00000165
−0.000139

−0.000139
0.108

]
.

This is the asymptotic variance-covariance matrix for th
parameter estimatorŝλ and κ̂. The standard errors of the
parameter estimators are the square roots of the diago
elements

σ̂λ̂ = 0.00128 σ̂κ̂ = 0.329.

Thus an asymptotic 95% confidence interval forκ is

2.10 − (1.96)(0.329) < κ < 2.10 + (1.96)(0.329)or
1.46 < κ < 2.74,

since z0.025 = 1.96. Since this confidence interval doe
not contain 1, the inclusion of the Weibull shape parame
κ is justified.

At this point, model adequacy should be assess
Since the chi-square goodness-of-fit test suffers from ar
trary interval limits, it should not be applied to small dat
sets. The Kolmogorov–Smirnov, Cramer–von Mises,
Anderson–Darling goodness-of-fit tests (Lawless 1982) a
appropriate here. The Kolmogorov–Smirnov test statist
for example, for this data set with a Weibull fit is 0.152
which measures the maximum difference between the e
pirical and fitted cumulative distribution functions. Thi
test statistic corresponds to ap-value of approximately
0.15 (Law and Kelton 1991, page 391), so the Weibu
distribution provides a reasonable model for these serv
times. The Kolmogorov–Smirnov test statistic values f
several models are shown below.
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Figure 5: 95% Confidence Region Based on the Likeliho
Ratio Statistic

Model Test statistic
Exponential 0.301

Weibull 0.152
Gamma 0.123

Inverse Gaussian 0.099
Log normal 0.090

P–P and Q–Q plots can also be used to assess m
adequacy. A P–P plot, for example, is a plot of t
fitted cumulative distribution function at theith order
statistic x(i), i.e., F̂ (x(i)), versus the adjusted empirica
cumulative distribution function, i.e.̃F (x(i)) = i−0.5

n , for
i = 1, 2, . . . , n. A plot where the points fall close to
line indicates a good fit. For the 23 service times, a P
plot for the Weibull fit is shown in Figure 6, along wit
a line connecting (0, 0) and (1, 1). P–P plots should
constructed for all competing models.

3.2 Arrival Time Model

Accurate input modeling requires a careful evaluation
whether a stationary (no time dependence) or nonstatio
model is appropriate. Arrivals to a lunch wagon are us
to illustrate the types of modeling decisions that need
be made.

Arrival times to a lunch wagon between 10:00 A
and 2:30 PM are collected on three days. The realizati
were generated from a hypothetical arrival process gi
by Klein and Roberts (1984). A total ofn = 150 arrival
times were observed, includingn1 = 56, n2 = 42 and
n3 = 52 on thek = 3 days. Defining(0, 4.5] be the time
interval of interest (in hours) the three realizations are
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Figure 6: A P–P Plot for the Service Times

0.2152 0.3494 0.3943 . . . 4.175 4.248,

0.3927 0.6211 0.7504 . . . 4.044 4.374,

and

0.4499 0.5495 0.6921 . . . 3.643 4.357.

One preliminary statistical issue concerning this data i
whether the three days represent processes drawn from
same population. External factors such as the weather, d
of the week, advertisement, and workload should be fixed
For this particular example, we assume that these facto
have been fixed and the three processes are representa
of the population of arrival processes to the lunch wagon

The input model for the process comes from the lowe
branch (stochastic processes) of the taxonomy in Figure
Furthermore, the arrival times constitute realizations of
continuous-time, discrete-state stochastic process, so t
remaining question concerns whether or not the process
stationary.

If the process proves to be stationary, the technique
from the previous example, such as drawing a histogram
and choosing a parametric or nonparametric model for th
interarrival times, are appropriate. This results in a Poisso
or renewal process. On the other hand, if the process
nonstationary, a nonhomogeneous Poisson process might
an appropriate input model. A nonhomogeneous Poisso
process is governed by an intensity functionλ(t) which
gives an arrival rate [e.g.,λ(2) = 10 means that the arrival
rate is 10 customers per hour at time 2] that can vary wit
time.

Figure 7 contains a plot of the empirical cumulative
intensity function estimator suggested by Leemis (1991
for the three realizations. The solid line denotes the poin
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estimator for the cumulative intensity functionΛ(t) =∫ t

0 λ(τ)dτ and the dashed lines denote 95% confiden
intervals. The cumulative intensity function estimator
time 4.5 is150/3 = 50, the point estimator for the expecte
number of arriving customers per day. If̂Λ(t) is linear,
a stationary model is appropriate. Since people are m
likely to arrive to the lunch wagon between 12:00 (t = 2)
and 1:00 (t = 3) than at other times and the cumulativ
intensity function estimator has anS-shape, a nonstationar
model is indicated. More specifically, a nonhomogeneo
Poisson process will be used to model the arrival proce

The next question to be determined is whether
parametric or nonparametric model should be chosen
the process. Figure 7 indicates that the intensity funct
increases initially, remains fairly constant during the no
hour, then decreases. This may be difficult to mod
parametrically, so a nonparametric approach, possibly us
Λ̂(t) in Figure 7 might be appropriate.

There are many potential parametric models for no
stationary arrival processes. Since the intensity funct
is analogous to the hazard function for time-independ
models, an appropriate 2-parameter distribution to cons
would be one with a hazard function that increases initia
then decreases. A log-logistic process, for example, w
intensity function (Lawless 1982)

λ(t) =
λκ(λt)κ−1

1 + (λt)κ
t > 0,

for λ > 0 and κ > 0, would certainly be appropriate. A
more general EPTF (exponential-polynomial-trigonomet
function) model is given by Lee, Wilson and Crawfor
(1991) with intensity function

λ(t) = exp

[
m∑

i=0

αit
i + γ sin(ωt + φ)

]
t > 0.

The trigonometric function is capable of modeling th
intensity function that increases, then decreases.

In all of the parametric models, the likelihood functio
for the vector of unknown parametersθ = (θ1, θ2, . . . , θp)
from a single realization on(0, c] is

L(θ) =

[
n∏

i=1

λ(ti)

]
exp

[
−

∫ c

0
λ(t)dt

]
.

Maximum likelihood estimators can be determined
maximizing L(θ) or its logarithm with respect to al
unknown parameters. Confidence intervals for the unkno
parameters can be found in a similar manner to the ser
time example.

4 SOFTWARE

The typical input modeling software is capable of fittin
several distributions to a data set and evaluating goodn
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Figure 7: Point and 95% Confidence Interval Estimator
for the Cumulative Intensity Function

of fit. A symbolic probability package named APPL,
developed by Glen and Leemis (1998), is briefly illustrated
here to show the modeling flexibility gained by using a
computer algebra system. The package allows a user
define and manimpulaterandom variables, as opposed to
numerical procedures applied to data. The package allow
a user to calculate expected values, distributions of ord
statistics, sums of independent random variables, etc.

Consider the service times given in section 3.1. Instea
of fitting the Weibull distribution, assume that there is
interest in fitting a distribution represented by the reciproca
of an exponential random variable. The APPL statemen
required to find the distribution of the reciprocal of an
exponential random variable and find the MLE for the
unknown parameter are:

> data := [105.84, 28.92, ..., 33.00];
> X := ExponentialRV(lambda);
> g := [[x -> 1 / x], [0, infinity]];
> Y := Transform(X, g);
> lamhat := MLE(Y, data, [lambda]);

which derives the PDF ofY to be

fY (y) =
λ

y2 e−λ/y y > 0

and calculates the MLÊλ = 55.06. The functiong is
used to find the distribution ofY = g(X) = 1/X.
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