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ABSTRACT Even if the decision to sample the appropriate element
is made correctly, Bratley, Fox, and Schrage (1987) warn

Discrete-event simulation models typically have stochastic that there are several things that can be “wrong” about the

components that mimic the probabilistic nature of the data set. Vending machine sales will be used to illustrate

system under consideration. Successful input modeling the difficulties.

requires a close match between the input model and the

true underlying probabilistic mechanism associated with ® Wrong amount of aggregation. We desire to model

the system. The general question considered here is how  daily sales, but have only monthly sales.

to model an element (e.g., arrival process, service times)

in a discrete-event simulation given a data set collected on

the element of interest. For brevity, it is assumed that data

is available on the aspect of the simulation of interest. It o \Wrong distribution in space. We want to model sales

is also assumed that raw data is available, as opposed to at a vending machine in location A, but only have

censored data, grouped data, or summary statistics. Most sales figures on a vending machine at location B.

simulation texts (e.g., Law and Kelton 1991) have a broader

treatment of input modeling than presented here. Nelson e Censored data. We want to modieimandbut we only

et al. (1995) survey advanced techniques. havesalesdata. If the vending machine ever sold out,

this constitutes a right-censored observation. The reli-

ability and biostatistical literature contains techniques

for accommodating censored data sets.

Wrong distribution in time. We have sales for this
month and want to model next month’s sales.

1 COLLECTING DATA

There are two approaches that arise with respect to the ¢ Insufficient distribution resolution. We want the dis-
collection of data. The first is the classical approach, where tribution of number of soda cans sold at a particular
a designed experiment is conducted to collect the data. The vending machine, but our data is given in cases, effec-
second is the exploratory approach, where questions are tively rounding the data up to the next multiple of 24.
addressed by means of existing data that the modeler had
no hand in collecting. The first approach is better in terms 2 |NPUT MODELING TAXONOMY
of control and the second approach is generally better in
terms of cost. Figure 1 contains a taxonomy whose purpose is to illustrate
Collecting data on the appropriate elements of the the scope of potential input models that are available to
system of interest is one of the initial and pivotal steps simulation analysts. There is certainly no uniqueness in
in successful input modeling. An inexperienced modeler, the branching structure of the taxonomy. The branches
for example, collects wait times on a single-server queue understochastic processgfor example, could have been
when waiting time is the performance measure of interest. statefollowed by time, rather thartime followed by state
Although these wait times are valuable for model validation, as presented.
they do not contribute to the input model. The appropriate Examples of specific models that could be placed on
data to collect for an input model for a single-server queue the branches of the taxonomy appear at the far right of
are typically arrival and service times. An analysis of the diagram. Mixed, univariate, time-independent input
sample data collected on a queue are given in sections 3.1models have “empirical/trace-driven” given as a possible
and 3.2. model. All of the branches include this particular model.
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Figure 1: A Taxonomy for Input Models
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A trace-driveninput model simply generates a process that 3 EXAMPLES
is identical to the collected data values so as not to rely
on a parametric model. A simple example is a sequence Two simple examples illustrate the types of decisions that
of arrival times collected over a 24-hour time period. The often arise in input modeling. The first example determines
trace-driven input model for the arrival process is generated an input model for service times and the second example
by having arrivals occur at the same times as the observed determines an input model for an arrival process.
values.

The upper half of the taxonomy contains models that 3.1 Service Time Model
are independent of time. These models could have been _ L
called Monte Carlo models. Models are classified by Consider a data set of = 23 service times collected to
whether there is one or several variables of interest, and d€términe an input model in a discrete-event simulation of
whether the distribution of these random variables is dis- @ dueuing system. The service times in seconds are
crete, continuous, or contai_ns _both gontinuous and Qiscrete 105.84 2892 9864 5556 128.04 45.60
eIemgnts.' Exa.\mples' of univariate discrete modelg mchde 67.80 10512 48.48 51.84 17340 51.96
the binomial distribution and a degenerate distribution with 5412 68.64 93.12 68.88 84.12 68.64

all of its mass at one value. Examples of continuous distri- 4152 127.92 4212 17.88 33.00.

butions include the normal distribution and an exponential

distribution with a random parametet (see, for exam- [Although these service times come from the life testing
ple, Martz and Waller 1982). &ier curves (Flanigan— literature (Lawless 1982, p. 228), the same principles apply
Wagner and Wilson 1993) offer a unique combination of to both input modeling and survival analysis.]

the parametric and nonparametric approaches. An initial The first step is to assess whether the observations

distribution is fitted to the data set, then the modeler de- are independent and identically distributed (iid). The data
cides whether differences between the empirical and fitted must be given in the order collected for independence to
models represent sampling variability or an aspect of the be assessed. Situations where the iid assumption would

distribution that should be included in the input model. not be valid include:

Examples of k-variable multivariate input models )
(Johnson 1987, Wilson 1997) include a sequendeiofie- e A new teller has been hired at a bank and the 23
pendent binomial random variables, a multivariate normal service times represent a task that has a steep learning
distribution with meanu and variance-covariance matrix curve. The expected service time is likely to decrease
¥ and a bivariate exponential distribution (Barlow and as the new teller learns how to perform the task more
Proschan 1981). efficiently.

The lower half of the taxonomy contains stochastic pro-
cess models. These models are often used to solve problems
at the system level, in addition to serving as input models
for simulations with stochastic elements. Models are clas-
sified by how time is measured (discrete/continuous), the
state space (discrete/continuous) and whether the model isIf a simple linear regression of the observation numbers
stationary in time. For Markov models, the discrete-state/ regressed against the service times shows a significant
continuous-state branch typically determines whether the nonzero slope, then the iid assumption is probably not
model will be called a “chain” or a “process”, and the sta- appropriate.
tionary/nonstationary branch typically determines whether Assume that there is a suspicion that a learning curve
the model will be preceded with the term “homogeneous” is present. An appropriate hypothesis test is
or “nonhomogeneous”. Examples of discrete-time stochas-

e The service times represent 23 completion times of
a physically demanding task during an 8-hour shift.
If fatigue is a significant factor, the expected time to
complete the task is likely to increase with time.

tic processes include homogeneous, discrete-time Markov Hy:51=0
chains (Ross 1997) and ARIMA time series models (Box
and Jenkins 1976). Since point processes are counting Hi: 01 <0
processes, they have been placed on the continuous-time,associated with the linear model (Neter, Wasserman, and
discrete-space branch. Kutner 1989)
In conclusion, modelers are too often limited to uni- Y =630+ 5 X +e,

variate, stationary models since software is typically written ] ] ] ] )

for fitting distributions to these models. Successful input WhereX is the observation numbey; is the service time,

modeling requires knowledge of the full range of possible o 1S the intercept,5, is the slope, and is an error

probabilistic input models. term. Figure 2 shows. a plot of thér;, y;) pairs for
1=1,2,...,23, along with the estimated regression line.
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Figure 2: Service Time Vs. Observation Number Figure 3. Histogram of Service Times

The p-value associated with the hypothesis test is 0.14, time-independent, univariate, continuous input model is
which is not enough evidence to conclude that there is a chosen. The shape of the histogram indicates that the

statistically significant learning curve present. Thealue gamma, inverse Gaussian, log normal, and Weibull distri-
may, however, be small enough to warrant further data butions (Lawless 1982) are good candidates. The Weibull
collection. distribution is analyzed in detail here. Similar approaches

There are a number of other graphical and statistical apply to the other distributions.
methods for assessing independence. These include analy-  Parameter estimates for the Weibull distribution can
sis of the sample autocorrelation function associated with be found by least squares, the method of moments, and
the observations and a scatterplot of adjacent observations.maximum likelihood. Due to desirable statistical properties,
For this particular example, assume that we are satisfied maximum likelihood is emphasized here. The Weibull
that the observations are truly iid in order to perform a distribution has probability density function
classical statistical analysis. el —(Az)"

The next step in the analysis of this data set includes fl@) = A"ka e o z20,
plotting a histogram and calculating the values of some where )\ is a positive scale parameter ardis a positive
sample statistics. A histogram of the observations is shown shape parameter. Let, xo,.. ., z, denote the data values.
in Figure 3. Although the data set is small, a skewed bell- The likelihood function is
shaped pattern is apparent. The largest observation lies in n n k—1
the far right-hand tail of the distribution, so care must be 7y ) = [ f(z:) = A™s" [H xz] e iy Am)"
taken to assure that it is representative of the population. iy iy

The next decision that needs to be made is whether a

parametric or nonparametric input model should be used. The log likelihood function is

One simple nonparametric model would repeatedly select i
one of the service times with probability/23. The small log L(A, ) = nlog & + knlog A + (k — 1) Zlog Li
size of the data set, the tied value, 68.64 seconds, and the n =1
observation in the far right-hand tail of the distribution, _)\szg,
173.40 seconds, tend to indicate that a parametric analysis is i—1
more appropriate. For this particular data set, a parametric The 2 x 1 score vector has elements
approach is chosen. n
There are dozens of choices for a univariate parametric Olog L(A, %) _ el Z 5
model for the service times. These include general fam- oA A —~

ilies of scalar distributions, modified scalar distributions
and commonly-used parametric distributions (see Schmeiser ., .
1990). Since the data is drawn from a continuous pop- 9logL(A\,k) _n - X

. S . o ————" = —+nlog\+ logx; — Az;)" log Az;
ulation and the support of the distribution is positive, a 0K K & Z & Z( @)" log A

and

i=1 i=1
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When these equations are equated to zero, the simultaneous

equations have no closed-form solution for the MLES

and &: .
KN k—1 Ko
U KA ;11 =0

n

> (Axi)*log Az = 0.

=1

n n

- +nlog/\—|—210gxi —
To reduce the problem to a single unknown, the first
equation can be solved for in terms ofx yielding

\ n 1/k
C\XLep)

Law and Kelton (1991, p. 334) give an initial estimate for
and Qiao and Tsokos (1994) present a fixed-point algorithm
for calculating the maximum likelihood estimatorand.
Their algorithm is guaranteed to converge for any positive
initial estimate forx for a complete data set.

The score vector has a mean @fand a variance-
covariance matrix (), k) given by the2 x 2 Fisher infor-
mation matrix

E [ —8?%log L(m)] E [ —8?%log L(A,n):|

N2 OOk
I(A, K/) = a2 _ a2
E[ b5} ?EBL)\(A,&)} E[ b5} I%ié(A,n)}

The observed information matrix

—8%log L(A\R)  —8%log L(AR)
N B — N2 INIK
O\ k) = —8%log L(\R)  —8%logL(A\R) |
OrOA Ok2

can be used to estimaté ), x).

For the 23 service times, the fitted Weibull distribution
has maximum likelihood estimators = 0.0122 and # =
2.10. The log likelihood function evaluated at the maximum
likelihood estimators idog L(}, z) = —113.691. Figure
4 shows the empirical cumulative distribution function (a
step function with a step of height/n at each data point)
along with the Weibull fit to the data.

We now consider interval estimators foandx. Using
the fact that the likelihood ratio statistie[log L(\, &) —
log L(\, k)], is asymptoticallyy? distributed inn with
2 degrees of freedom and that ;s = 5.99, a 95%
confidence region for the parameters isadindx satisfying

2[—113.691 — log L(), k)] < 5.99.

The 95% confidence region is shown in Figure 5. The
line x = 1 is not interior to the region, indicating that the
exponential distribution is not an appropriate model for
this particular data set.

As further proof thatx is significantly different from
1, the standard errors of the distribution of the parameter
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Figure 4. Empirical and Fitted Cumulative Distribution
Functions for the Service Times

estimators can be computed by using the inverse of the
observed information matrix

~10.00000165

s ~0.000139
O (A R) =1 "0 000139

0.108

This is the asymptotic variance-covariance matrix for the
parameter estimators and #. The standard errors of the
parameter estimators are the square roots of the diagonal
elements

a5 = 0.00128 o = 0.329.

Thus an asymptotic 95% confidence interval fois

or 2:10 — (1.96)(0.329) < k < 2.10 + (1.96)(0.329)
146 < K < 2.74,

since zg.025 = 1.96. Since this confidence interval does
not contain 1, the inclusion of the Weibull shape parameter
k is justified.

At this point, model adequacy should be assessed.
Since the chi-square goodness-of-fit test suffers from arbi-
trary interval limits, it should not be applied to small data
sets. The Kolmogorov—Smirnov, Cramer-von Mises, or
Anderson—Darling goodness-of-fit tests (Lawless 1982) are
appropriate here. The Kolmogorov—Smirnov test statistic,
for example, for this data set with a Weibull fit is 0.152,
which measures the maximum difference between the em-
pirical and fitted cumulative distribution functions. This
test statistic corresponds to avalue of approximately
0.15 (Law and Kelton 1991, page 391), so the Weibull
distribution provides a reasonable model for these service
times. The Kolmogorov—Smirnov test statistic values for
several models are shown below.
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Figure 5: 95% Confidence Region Based on the Likelihood Figure 6: A P—P Plot for the Service Times
Ratio Statistic
Model Test statistic 0.2152 0.3494 0.3943 ... 4.175 4.248,
Exponential 0.301 0.3927 06211 07504 ... 4.044 4.374,
Weibull 0.152
Gamma 0.123 and
Inverse Gaussian  0.099

One preliminary statistical issue concerning this data is
P—P and Q-Q plots can also be used to assess modewhether the three days represent processes drawn from the
adequacy. A P—P plot, for example, is a plot of the Same population. E_xternal factors such as the weathe_r, day
fitted cumulative distribution function at théth order of the week, advertisement, and workload should be fixed.
statistic z;), i.e., F(x(i)), versus the adjusted empirical For this part.|cular example, we assume that these factor;;
have been fixed and the three processes are representative
of the population of arrival processes to the lunch wagon.
The input model for the process comes from the lower
branch (stochastic processes) of the taxonomy in Figure 1.
Furthermore, the arrival times constitute realizations of a
continuous-time, discrete-state stochastic process, so the
remaining question concerns whether or not the process is
stationary.
3.2 Arrival Time Model If the process proves to be stationary, the techniques
from the previous example, such as drawing a histogram,
Accurate input modeling requires a careful evaluation of and choosing a parametric or nonparametric model for the
whether a stationary (no time dependence) or nonstationary interarrival times, are appropriate. This results in a Poisson
model is appropriate. Arrivals to a lunch wagon are used or renewal process. On the other hand, if the process is
to illustrate the types of modeling decisions that need to nonstationary, a nonhomogeneous Poisson process might be
be made. an appropriate input model. A nonhomogeneous Poisson
Arrival times to a lunch wagon between 10:00 AM  process is governed by an intensity functiaft) which
and 2:30 PM are collected on three days. The realizations gives an arrival rate [e.g)\(2) = 10 means that the arrival
were generated from a hypothetical arrival process given rate is 10 customers per hour at time 2] that can vary with
by Klein and Roberts (1984). A total of = 150 arrival time.
times were observed, including; = 56, no = 42 and Figure 7 contains a plot of the empirical cumulative
n3 = 52 on thek = 3 days. Defining(0,4.5] be the time  intensity function estimator suggested by Leemis (1991)
interval of interest (in hours) the three realizations are  for the three realizations. The solid line denotes the point

cumulative distribution function, i.ef(z(;) = =22, for

1 =1,2,...,n. A plot where the points fall close to a
line indicates a good fit. For the 23 service times, a P—P
plot for the Weibull fit is shown in Figure 6, along with
a line connecting (0, 0) and (1, 1). P-P plots should be

constructed for all competing models.
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estimator for the cumulative intensity functiof(t) =

fg A(r)dr and the dashed lines denote 95% confidence
intervals. The cumulative intensity function estimator at
time 4.5 is150/3 = 50, the point estimator for the expected
number of arriving customers per day. fkf(t) is linear,

a stationary model is appropriate. Since people are more
likely to arrive to the lunch wagon between 12:G0< 2)

and 1:00 { = 3) than at other times and the cumulative
intensity function estimator has ahshape, a nonstationary
model is indicated. More specifically, a honhomogeneous
Poisson process will be used to model the arrival process.

The next question to be determined is whether a
parametric or nonparametric model should be chosen for
the process. Figure 7 indicates that the intensity function
increases initially, remains fairly constant during the noon
hour, then decreases. This may be difficult to model
parametrically, so a nonparametric approach, possibly using
A(t) in Figure 7 might be appropriate.

There are many potential parametric models for non-
stationary arrival processes. Since the intensity function
is analogous to the hazard function for time-independent
models, an appropriate 2-parameter distribution to consider
would be one with a hazard function that increases initially,
then decreases. A log-logistic process, for example, with
intensity function (Lawless 1982)

Ak (At)R—1
At) = —————
®) 14+ (A<

for A > 0 and x > 0, would certainly be appropriate. A
more general EPTF (exponential-polynomial-trigonometric

function) model is given by Lee, Wilson and Crawford
(1991) with intensity function

t>0,

t>0.

A(t) = exp [Z a;t’ + ysin(wt + @)
=0
The trigonometric function is capable of modeling the
intensity function that increases, then decreases.
In all of the parametric models, the likelihood function
for the vector of unknown parametefs= (0;,6,,...,0,)
from a single realization off0, ¢| is

L(0) = [ﬁl )\(ti)l exp {— /0 (:A(t)dt} .

Maximum likelihood estimators can be determined by
maximizing L(6) or its logarithm with respect to all
unknown parameters. Confidence intervals for the unknown

A

60 .-
o
4
30 A
20 -
10 A
01, : : : : t
0 1 2 3 4
Figure 7: Point and 95% Confidence Interval Estimators

for the Cumulative Intensity Function

of fit. A symbolic probability package named APPL,
developed by Glen and Leemis (1998), is briefly illustrated
here to show the modeling flexibility gained by using a
computer algebra system. The package allows a user to
define and manimpulateandom variablesas opposed to
numerical procedures applied to data. The package allows
a user to calculate expected values, distributions of order
statistics, sums of independent random variables, etc.

Consider the service times given in section 3.1. Instead
of fitting the Weibull distribution, assume that there is
interest in fitting a distribution represented by the reciprocal
of an exponential random variable. The APPL statements
required to find the distribution of the reciprocal of an
exponential random variable and find the MLE for the
unknown parameter are:

> data := [105.84, 28.92, ..., 33.00];
> X := ExponentialRV(lambda);

> g :=[[x->1/x], [0, infinity]];

> Y := Transform(X, g);

> lamhat := MLE(Y, data, [lambda]);

which derives the PDF oY to be

A
fY(y) = E

e My y>0

and calculates the MLE\ = 55.06. The functiong is

parameters can be found in a similar manner to the service used to find the distribution of = ¢(X) =1/X.

time example.

4 SOFTWARE

The typical input modeling software is capable of fitting
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