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ABSTRACT

Simulation models are built with the intent of studying t
behavior of the real system represented by the mo
However, a simulation model generates random outp
thus, the data generated by it can only be used to estimate
the true measure of performance.  In this tutorial, 
introduce several concepts and techniques to analyze 
output.  Additional examples will be given during t
presentation of the tutorial.

1 INTRODUCTION

Simulation modeling enables the study of the stocha
behavior of systems, the testing of hypotheses that acc
for the observed behavior, and the use of these theori
predict future behavior.  The simulation modeli
methodology has several stages that begin with defi
the objective of the study, model abstraction, mo
verification, and model validation.  At the end of mod
validation, you finally have a working model.  Howeve
your job as a systems analyst is far from complete.

The actual analysis of the data provided by 
simulation modeling will always depend on the init
objectives of the study, and on the type of system b
modeled (Centeno, 1996; Sadowski, 1993).  There are
main types of systems: terminating and non-terminating.
Terminating systems have a natural starting point
(operations begin) and a natural ending point (operations
end), whereas non-terminating systems have a na
beginning, but they do not have a natural ending (L
1990).  Typical terminating systems are most fast f
restaurants, dental clinics, department stores, pu
oriented government offices, and the stock market.  Th
are other systems for which it is not obvious that they
terminating, but they are.  For instance, a comp
producing the external tank for the space shuttle may
interested in studying several configurations to produce
tanks in 6 months. In this case, the system is termina
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because the natural ending of it is the production of the la
external tank requested.  Typical non-terminating system
are emergency rooms, some operations at hospita
airports at large cities, and petrochemical plants.  
manufacturing company that only works one shift may sti
be considered a non terminating system if the endin
conditions for the shift are the initial conditions for the
next shift (Law, 1990).

Depending on the type of objectives, the analysis ma
call for the comparison of various alternatives, or for th
thorough analysis of the behavior of the systems under
specific configuration, or a quick analysis of a factor tha
may affect the performance of the system.

Every simulation model has various components
including dynamic entities, resources, and the state of the
system.  For the beneficiary of the simulation analysis, th
important component is the state of the system because 
the collection of variables needed to describe the system
performance.  An introduction to the analysis of thes
variables is the focus of this paper.

Section 2 discusses the importance of experimen
design.  A detailed example will be given when the tutoria
is presented.  Section 3 explains how to analyz
terminating systems, whereas section 4 explains how 
analyze non-terminating systems.  Section 5 discusses h
to compare several alternatives.  Section 6 briefly prese
what to do when dealing with a single replication.  Finally
section 7 summarizes the tutorial.

2 EXPERIMENTAL DESIGN

When simulating a system, you have to think ahead abo
the scenarios of the system that you would like to evalua
using the simulation model (Kelton, 1994).  In some case
the scenarios are a natural consequence of the objecti
and expectations set by management.  In other cases, 
need to find the right combination of the input parameter
If the number of inputs is small, exhaustive enumeratio
may be an easy and inexpensive way of finding the rig
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combination.  But if the number of input factors is large
you should use some form of design of experiments 
reduce the size of the search space (combinations 
explore).

In the context of simulation, the factors are the
various inputs to the model, the levels are the various
options for each input parameter, and the responses are the
outputs of the simulation model.  Once these elements a
clearly identified, you can analyze the experimental desig
in terms of measuring effects of the factors and th
interactions among them.  Donohue (1994) summarizes t
various steps of using a statistical approach to the desi
and analysis of experiments, which also address tactic
and strategic issues.  A modified version of these steps
as follows:
1. Choose the factors (controllable input variables) an

the response variables (uncontrollable outpu
variables).

2. Define the region of operability (factor levels) and the
regions of interest.

3. Select proper statistical analysis (ANOVA, regression
etc.), criteria to choose a “best” design, and
appropriate experimental class design (e.g. factoria
Latin square, etc.)

4. Perform experiments, collect data, and analyze an
summarize it.  Incorporate here decisions regarding th
type of system (terminating, non-terminating),
simulation length, initial conditions, number of
replications, and random seeds.

5. Draw inferences and conclusions

Your choices for the experiment design include
complete factorials, fractional factorials, artificial factors
frequency domains, and correlated factors among othe
Regardless of the chosen design, once you have collec
the outputs, you must turn your attention to the respon
metamodels.  The type of objectives set forth will dictat
the selection of the appropriate metamodels (Donohu
1994).  At this stage, one may be interested in sensitivi
analysis, in prediction, or in optimizing the response
variables.  Thus, we are interested in devising a model th
characterizes the behavior of the system as a function of 
outputs.  Regression is commonly used to fit the behavi
of the average of the performance measure and t
variance of it.  To add stability to the analysis, logarithmi
transformations may be used (Sanchez, 1994).

Kelton (1994) provides an extensive list of reference
that give more details on designing the experiment
Sanchez (1994) and Donohue (1994) provide detaile
examinations of the subject.
an,
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3 TERMINATING SYSTEMS

Terminating systems are systems that have a clear poin
time when they start operations and a clear point in tim
when they end operations.  For this type of systems, it
necessary to decide two things: the sample size and 
simulation length.  The simulation length is typically
established by the context of the problem.  For a car ren
operation, it may be an entire day of operations, or it m
just be the morning rush.  The sample size is establish
based on the accuracy, reliability, and variation desired f
the study, using the equation (1)

2

22
2/

d

z
n

σα= (1)

where d is the accuracy expressed in the same units 
those of the measure of performance (e.g. within 2 unit)z
is the critical value from the standard normal table at 
given reliability level, 1 - α, (e.g. 95% reliability yields α =
0.05), and σ is the standard deviation desired.

The resulting value of n is the minimum number o
replications (not runs) needed to obtain statistically valid
results.  It is very common for the novice to confuse 
replication with a simulation run.  A run is what happens
from the moment the user clicks on the run option of th
main menu to the moment in which the software finishe
outputting data and comes back to the main menu.  
replication, on the other hand, is what happens from th
simulated start time to the closing simulation time.  I
other words, replication is the repetition of a simulation
with fixed inputs but different outputs due to differen
random numbers replications (Centeno, 1996; Clar
1988).  For a terminating system, a simulation run hasn
replications.

It is important to point out that n refers to the number
of replications and not to the number of observations p
replication.  Why is this? Very simple!  Assume that th
measure of performance of interest is the time in th
system (xi ), and that that you ran the simulation model s

that 75 customers were processed.  At the end of 
replication run, there would be 75 values of xi , one for

each customer.  These values would have been used
establish the replication’s average time in the syste
( xwithin ).  xwithin  is an unbiased estimator of the true

measure of performance’s average (µ), but the variance of

the observations within the replication (swithin
2 ) is biased

because the xi  are not necessarily independent an

identically distributed random variables; thus, it ma
happen that var( ) var( ) /x xwithin i≠ 75.  To avoid this,

we use the method of independent replications (Goldsm
1992).  This method yields one observation per
replication.  So, at the end of the first replication where 7
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customers were processed, you have one statisti
independent observation of the time in the sys
( y xi within= ).  Usually, terminating systems a

analyzed using the method of independent replicati
However, there are instances in which this method ma
inefficient to use (see section 6).

Let us look at an example of the method 
independent replications.  Supposed that there is a d
licensing office that has seven officers to examine y
driving skills.  Customers arrive according to a norm
distribution with mean 5 minutes and a standard devia
of 1 minute.  It takes approximately 25 minutes to take
exam, normally distributed with standard deviation of 
minutes.  Further assume that you have generated a m
of it, verify it and validate it.  These are the things that y
need to do now:

Establish the measures of performance for 
analysis.  From your objectives, you already know whi
measures of performance are important.  Supposed tha
are only interested on the average time in the system.

Decide the type of accuracy and reliability that y
seek.  Supposed that you want a 95% reliability (α = 0.05),
and an accuracy that yields an ideal half width confide
interval (h*) equal to 3.

Run the model for a small number of replicatio.
Depending on the size of the model, and the time it take
execute it, small may mean 5, 10 or 15 replications.  
this example, small means 10 replications.  After runn
your model, you will obtain outputs similar to those giv
in Table 1.

Table 1: Output from a Terminating System
Replica-

tion
Average

Tsys
Replica-

tion
Average

Tsys
1 257.43 6 269.16
2 264.96 7 250.09
3 254.22 8 248.54
4 265.84 9 254.31
5 252.75 10 257.10

Compute a (1-α)% confidence interval.  This is done
for the average of the measure of performance of inte
using equation (2).

n

s
tx

n

s
tx nn 2/1,12/1,1 αα µ −−−− +≤≤− (2)

where tn-1,1-α/2 is the (1-α/2) percentile of the t-studen
distribution with n-1 degrees of freedom.  The exam
data yields

26.221.344.253 2/05.01,110 === −−tsx

44.26244.252 ≤≤ µ
kits.
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which means that the half width (h) is equal to 5.  Rec
that you are trying to answer the question of how many
replications to make, so that you obtain the appropria
resolution.  In other words, you are trying to find out if h <
h*.  If after doing the preliminary run, the answer is yes,
you are done.  On the other hand, if the answer is no, you
need to compute n* using equation (3).  This equation
the same as (1), but expressed in terms of the half width
the confidence interval.

28
2

*
* =

















×=

h

h
nRoundn (3)

Modify simulation model to reflect the ideal n*.
Change the number of replications, so that you can exe
a full production run, and run the model.

Change the initial seed of the random number strea.
There are a couple of things that you need to decide be
executing the production run.

You already ran 10 replications, but you need 
replications.  The questions that need to be answered
Do you run the model again for 28 replications?, or Do
you run the model for only 18 more replications?  If you
run the model for 28 replications, the first 10 replicatio
will be exactly the same 10 replications plus 18 new on
This implies that you wasted some time.  The first 
replications are exactly the same because the ran
number streams begin exactly at the same point every 
you run the model.  So, to avoid this situation, what y
need to do is to change the initial seed of the vario
random number streams that your model uses.

Compute the final  (1-α)% confidence interval as
before.  This yields the final confidence interval of th
various measures of performance.

The method of independent replications can be use
build confidence intervals for statistics other than the me
value of the measure of performance.  Other statistics
interests are the various percentiles.  More details 
examples can be found in Banks, Carson, and Nel
(1996).

4 NON TERMINATING SYTEMS

For non-terminating systems the fundamental question
answer is for how long should the simulation be run? To
answer this question, you need two address two crit
issues: 1) achieving steady state conditions, and 
obtaining statistically independent observations.  On
these questions are answered, it would be possible
obtain the confidence intervals as in the case of termina
systems.

As an example, consider the processing of the sp
shuttle which requires a large number of assembly 
repair operations.  Technicians working on the shu
receive the necessary assembly pieces and tools in 
These kits are customized for the various operations, 
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fall into 10 different categories.  Suppose that request 
assembly kits come to the kitting shop according to
triangular distribution with mode 20 minutes, and rang
(12, 25).  The shop has 4 technicians who assemble 
elements of the kit on cardboard.  Once the cardboard
ready, it is placed on a conveyor that transports it to
wrapping machine.  It takes a technician approximately 
minutes to assemble a request (according to an expone
distribution), and it takes the wrapping machine 30 secon
to press the wrap onto the kit.  Traversing the convey
belt takes approximately between 2 and 3 minute
Assume that you have written, verified, and validated yo
model.  These are the things that you need to do now.

Establish the measures of performance for th
analysis.  Again, this comes from the objectives of th
study.  Supposed that you are only interested in the aver
time it takes to fulfill an order (time in the system).

Decide the type of accuracy and reliability that yo
seek.  Supposed that you want a 95% reliability (α = 0.05),
and an accuracy that yields an ideal half width confiden
interval (h*) equal to 3.

Run the model for a short simulation length.
Depending on the size of the model, and the time it takes
execute it, a short run may mean 500 time units or 5,000
10,000.  For this example, short means 10,000 time un
Make sure that you save to a file the individua
observations of the time in the system.  These values w
be used later on.

Establish the warm up period.  The warm-up period is
that period in the life of non-terminating systems in whic
the system was merely filling up.  Typically, dat
generated during this period instills bias in the analys
This phenomenon is known as the bias of the init
conditions.  Some of the proposed ways of getting rid 
the bias include the truncation of the output data a
making a very long simulation run.  In the first case, a
data generated during the warm-up time is eliminated fro
the final analysis.  In the second case, nothing g
eliminated because the theory goes that if the simulat
length is sufficiently large, then the initial conditions hav
minimal, if any, effect on the steady state behavior of t
system.

Deciding on the length of the warm up period has be
the subject of intense study.  Several researchers h
proposed a diversity of methods.  See Goldsman (1992)
a list of these efforts.  To illustrate one of the methods, 
will use the moving average approach in conjunction wi
visualization of the data.

From the example, we can generate a graph similar
that in Figure 1.  By looking at the graph, the fill tim
seems erratic from entity to entity (individual times)
however, they seem to gather mostly between 12 and
time units.  Thus, what we need to do is to see if 
collecting them in small groups, we can identify the tren
that is follows, if any.  Moving averages do precisely that
26
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Figure 1: Individual Observations and Moving Average

To establish the warm up time, we look at the movi
averages.  From Figure 2, it seems that the init
conditions do not have much impact on the behavior of 
fill time after 3,000 units of time.  Thereafter, it is a
random as it will ever be!  So, the warm up (WT) perio
time will be 3,000 time units.

Figure 2: Moving Average

Create batches. Since the individual
observations within a replication are not independent, 
cannot compute a CI for the average of the measure
performance using the individual data points.  T
overcome this, we use the method of batch means.  T
approach divides the individual observations of a sin
long simulation run into a number of contiguous batch
Once these batches are formed, we can invoke the ben
of the central limit theorem because each batch w
hopefully yield one iid observation.

To establish these batches, we need to know the b
size and how many batches are needed.  To determine
batch size, we need to find the point in the set 
observations where any two observations (k observati
apart from each other) have a minimum correlation (ρ →
0).  The value of k is known as the lag between two
observations.  In the case of our example (Figure 3), ρ ≅ 0
when the lag = 90; thus, a reasonable batch size is 10 ti
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the value of that lag (900 observations per batch).  Th
number 10 is an empirical value.

Figure 3: Correlogram

To establish the number of batches, simply guid
yourself by the requirements of building confidence
intervals: the more the merrier.  You should never g
below 10 batches.  Values of above 30 or more batches a
preferred.  Let us say that for our example we settled for 2
batches.  So having the need of generating data for 
batches means the following:

900 20 18 000
observations

batch
batches observations* ,=

Based on the average inter-arrival time, we get 1
observations / hour.  Thus, to compute the generation tim
(GT), we use

GT
obsevations

observations hour hour
= =

18 000

12

60

1
90 000

,

/
*

min
, min

Finally, the simulation length (SL) is as given by:

SL WT GT safety time= + + (4)

The safety time is an added protection in search o
eliminating the effect of the initial conditions.  A rule of
thumb is to use 1% of GT.

Construct confidence intervals.  Once the batches are
generated, each batch takes the place of a replicatio
Therefore, we can use the methods utilized for terminatin
systems from this point forward.

When using the method of batch means, it is importan
that you pay attention to the covariance between batche
Having small correlation is a necessary but not sufficien
condition for independence; the covariance can furthe
strengthen or weaken the independence assertion: t
smaller the covariance, the better.  To get it smalle
eliminate as much as you can of the “initial” observations
27
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As long as you maintain at least 10 batches, you a
relatively OK.

5 COMPARING ALTERNATE SYSTEMS

The greatest benefit of using simulation modeling is th
ability to compare different system configurations befo
deciding which systems to implement.  A critical issue 
this case is how the various alternatives are run.  Beca
simulation uses random number streams, different strea
will lead to different results.  One must be able to asses
the observed difference is due to the proposed syst
configuration or due to the effect of the random numb
streams.  Several approaches have been proposed to 
with this issue.  The use of common random numbers
strongly suggested when comparing several altern
systems.  The main idea is to use the same set of rand
numbers for each one of the alternatives, so that there 
large positive correlation among the values of the
performance measures; thus reducing the variance of 
pair-wise difference between the alternatives (Clark, 198

Any two systems can be statistically compare
through a variety of procedures such as single paire
confidence intervals, and two sample t-confidenc
intervals.  The most appealing method is the single paire
because:
9 It does not require that the variance of the measure

performance under consideration (for both systems) 
equal (or assumed equal).

9 It does not require that the observations from system
be independent of the observations from system 2 
vice versa), as long as the observations from ea
system are independent within the system.

9 It reduces the problem of comparing two systems 
the estimation of a single parameter (the difference
thus, reducing the statistical bias.

9 It is the same as the hypothesis testing case where
mean (of a measure of performance) of two system
to be tested for any differences, using the individu
observations of each sample instead of a summ
(single value) from each sample.
These are the steps that you need for using the sin

paired-t method.
Collect data from the two alternate models of the

system making sure that a big enough sample is gathe
and that the same number of observations are taken fr
both systems (if not, you may need to conduct a fu
ANOVA test with incomplete data points).



Centeno and Reyes

n

ar

e
 

or
 
 

p
re
rv

l
t 
h

he

nd
’s
ion
ort
al.
n

or
as
to
be

at
 of
the
rs,
of
the

ers
ing
on
 a

t
ce

nly
he
e
ian
als.
ters
s,

ess,
and
ion

ny
gly
ct,
nd
tails
93),
ben
ts
ach
).
Compute the differences.
d x xi i i= −1 2

where di  = individual differences.

x i1  = ith observation from system 1.

x i2  = ith observation from system 2.

di is a m. v. u. e. of δ.

δ is the parameter that represents the true differe
between the two systems.

Compute the average difference and its stand
deviation.

d
d

n
i= ∑

s
s

nd

di=

�δ = d

Compute the confidence interval around d .
Interpret results. If the interval contains the valu

0, nothing can be said about the systems; they may be
same or they may be different; therefore, run m
replications.  If the interval does not contain the value
then it can be stated that both systems are different with
α) confidence.  The meaning of δ-hat > 0 or δ-hat < 0 must
be interpreted based on the specific measure 
performance and problem statement.  As an exam
consider the output in Table 2.  Assume that the measu
performance is time in the system.  System 1 has 1 se
whereas system 2 has 2 servers.

Table 2: Sample Output
replication time in the

system -
system 1

time in the
system –
system 2

difference

1 3.4139 1.0787 2.3352
2 3.8983 1.0988 2.7995
3 2.2599 1.0943 1.1656
4 1.9491 1.0578 0.8913
5 3.4604 1.0963 2.3641
6 2.7795 1.1004 1.6791
7 3.2541 1.1040 2.1501
8 3.5396 1.0966 2.4430
9 4.0727 1.1460 2.9267
10 2.4621 1.0771 1.3850

d s d ti= = =− −2 0140 0 6608 2 2610 11 0 05 2. ( ) . ., . /

1.541 ≤ δ ≤ 2.487

What can you say about it?  In this particular examp
since we are comparing time in the system, and i
assume that a shorter time in the system is “better”, t
28
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from the confidence interval, we can say that t
configuration for system 2 yields a better performance.

6 SINGLE REPLICATION SIMULATION

In many cases, simulation may be used for a “quick a
dirty” examination of the effect of changing the system
environment.  In these instances, a detailed simulat
analysis may not be feasible; in fact, a single sh
replication may be sufficient to achieve the desired go
Single replication simulations are very useful whe
simulation is used for real time decision-making.  F
example, given that an event (rare but significant) h
occurred, one may wish to simulate the system 
determine how should the operations of the system 
changed to maintain the level of performance.

In single-replication simulation, random variation
must be carefully controlled.  One way to do this is to tre
infrequent, yet important, events as the initial conditions
a simulation; i.e. the rare events are pulled out of 
simulation model run (Goldsman, Swain and Withe
1990).  In addition, one may control the sources 
randomness by altering the way sampling occurs when 
simulation is executed.  Goldsman, Swain, and With
(1994) have proposed the truncation of the sampl
distributions, conditional sampling, and selective alterati
of the distribution parameters.  In the end, you will have
single observation of the statistic desired.

Point estimation provides minimal information.  Mos
of the time, we are interested in obtaining a confiden
interval for the measure of interest.  However, having o
a single replication eliminates the possibility of using t
classical z- or t- methods for obtaining confidenc
intervals.  It has been proposed that some Bayes
methods may be used to obtain the confidence interv
But, these methods require that we establish parame
about the population, which is indeed unknown.  Thu
these methods should be used with caution.  Nonethel
these methods will enable the analyst to better underst
the performance of the systems even if only one replicat
is done.

7 SUMMARY

You have been introduced to several of the ma
aspects of analyzing simulation outputs. You are stron
encouraged to further review the literature on this subje
in particular where it pertains to design of experiments a
steady state analysis.  For other methods and more de
of steady state analysis, see the works by Charnes (19
Heidelberger and Welch (1983), and Chance and Schru
(1992).  A valuable approach for simulation outpu
analysis is graphical analysis.  For details on this appro
see the works by Grier (1992) and Law and Kelton (1991
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An important concept that you should keep in mind
that the raw output from simulation models is n
independent and identically distributed.  Whether 
system is terminating or non-terminating, you should u
technique that will transform the raw output into 
observations.

Also, you should keep in mind that simulatio
software is continuously evolving to provide support w
output analysis.  Several commercially available packa
already incorporate some form of support for the anal
of simulation outputs.
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