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ABSTRACT

We briefly overview the design principles, implementation
techniques, and empirical testing of uniform random
number generators for simulation. We first discuss
some philosophical issues and quality criteria. Then
we explain a few concrete families of generators and
give appropriate references to further details and to
recommended implementations.

1 WHAT ARE WE LOOKING FOR?
1.1 Definition

What we call arandom number generato(RNG) is
actually a program that produces, once its initial state is
chosen, a deterministic and periodic sequence of numbers.
An RNG has astatethat evolves in a finite state space
S, according to a recurrence of the forsy = f(s,—1),

n > 1, where the initial statesy € S is called theseed

and f : S — S is the transition function At stepn, the
generator outputs,, = g(s,), whereg : S — [0, 1) is the
output function The output sequence is th{s,,, n > 0}.

i.i.d. U(0,1)" (i.e., independent random variables uniformly
distributed over the intervgD, 1)). This hypothesis means
that for eachn andt, the vectom, , = (uy, ..., Upti—1) IS
uniformly distributed over thé-dimensional unit hypercube
[0,1)'. We knowa priori that H, is false. But can we
still assume itfor practical purpose®

To better illustrate the ideas, suppose that the RNG has
period lengthp = |S|, that the output space i&,,/m =
{0,1/m,2/m,...,(m —1)/m} for some positive integer
m, and that the seesd, is random, uniformly distributed
overS. Such an RNG is called-distributed in basen if
all of the m! possiblet-dimensional output vectors appear
exactly the same number of times in the set

v, o {uo 150 € St ={uns,0<n<p}

In this case, the hypothesid(,(m,¢): “Each u,. is
uniformly distributed over the seZ! /m” holds. Note
that this is possible only ifn? divides p. This hypothesis
is weaker thanH,: We have uniformity only over a
discretization of[0, 1)* and we do not have independence.
The effect of this can be negligiblenly if p is huge;

The output space could be more general, but we assumei.€., @ good RNGmusthave a very long period (but this

here that it is a subset of the real inter{f@l1). SinceS is
finite, the output sequence is periodic (possibly after some
initial transient), say with period lengih A well-designed
RNG normally hasp near|S]|, i.e., p ~ 2¢ if the state is
represented oves bits.

Formally, this deterministic construction contradicts
the idea of a sequence of independent and identically
distributed (i.i.d.) random variables. But from a practical
viewpoint, experience indicates that this works fine. We
give some heuristic explanations of why in what follows.
These heuristics lead to theoretical quality criteria that
need advanced mathematical tools to be assessed.

1.2 Equidistribution

The idealized mathematical abstraction that we want to
imitate corresponds to the null hypothesis: “The u,, are
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condition is not sufficient). In practice, is often slightly
smaller than a multiple oin, but we can settle for an
approximation ofH((m,t).

For a given value of|S|, one can choose the:
above in different ways. For example, suppdse = 2°¢
for some largee. Taking the first{ bits of each output
value (i.e.,/ bits of resolution) givesn = 2¢. A smaller
¢ means the possibility of-distribution for a largert,
up tot = |e/¢]. If the RNG is |e//¢]-distributed with
¢ bits of resolution forl < ¢ < min(e,w), it is called
asymptotically randonor maximally equidistributedME)
for the word sizew (see L'Ecuyer 1996b; Tezuka 1995).
Then, for a partition of[0,1)! into 2 cubic boxes of
equal size, for/ < w and t¢ < e, the point set,
has the best possible equidistribution into the boxes. A
stronger property than ME is that of(& m, s)-net, where
one requires equidistribution for a more general class
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of partitions of [0,1)! into rectangular boxes (not only
cubic boxes). See Niederreiter (1992b) and Owen (1998)
for details and references. Explicit constructions and
implementations of ME RNGs are available (LUEcuyer
1996b; L'Ecuyer 1998e). The construction of large-period
RNGs whose point sets afe, m, s)-nets is still a matter

of current investigation.

1.3 Figures of Merit in Large Dimensions

For finite point sets¢-distribution is an interesting concept
only in relatively small dimensions. Fot such that
mt > p, ¥; can cover only a tiny fraction ofZ’ /m.
When the seed, is random,¥, can be viewed in a way
as thesample spacéom which the output vectora,, ; are

so even an algorithm working in tim@(n) for n points
is not good enough.

1.5 Spectral Analysis

A general approach for comparing a given densfty

to the uniform densityf, over [0,1)! goes as follows.
Choose an orthonormal basis for a spaeof functions
f:10,1) - R (or perhapsf : [0,1)! — C, the complex
numbers), such that botfy and f, are inF. Then expand

fo and f; in terms of this orthonormal basis and compare
the coefficients. This is the general idea of Fourier analysis
(e.g., Folland 1992).

As an illustration, consider the Fourier badis=

{¢m, h € Z'}, whereyy(u) = e(h-u), e: R — C is the

taken, without replacement. It thus makes sense to require complex trigonometric functiore(z) = exp(2muz), and

that ¥, be “evenly” or “uniformly” distributed over the
unit hypercube[0, 1)!, in some sense. There are several
ways of measuring this uniformity byigures of merit
Perhaps the single most important factor in the choice of
a figure of merit is the ability to compute it efficiently.
As a result, different families of RNGs are analyzed in
practice using different figures of merit. Some may argue
that the points of; should look like random points over
Z!,/m instead of being too evenly distributed. Buti;

is viewed as a (huge) sample space from which points
are taken at random without replacement, a superuniform
(i.e., very even) distribution ofr; seems justified.

1.4 Discrepancy

The discrepancyof a point set¥, c [0,1)! refers to a
measure of departure between the empirical distribution
of ¥, and the uniform distribution. There is an infinite
number of ways of defining such a measure. For example,
for each rectangular bo® C [0,1]" with one corner at
the origin, compute the absolute difference between the
fraction of ¥, falling in B and the volume ofB, and
take the supremum over the set of all such boxes
This is the “standard’star discrepancy More generally,

if one replaces the supremum by tifg-average over all
boxes, where the upper corner of the box is uniformly
distributed in [0, 1]*, this gives thel, star discrepancy
(the standard case correspondspte- o). By removing

the condition that the lower corner is at the origin and
taking the average over all boxds C [0, 1]¢, one obtains
the unanchored’, discrepancy More general regionss

can be considered, such as all convex sets, and so on.

We refer to Hickernell (1999) and Niederreiter (1992a)
for more details. A major problem with most of these
definitions is that no efficient algorithm is available to
compute the value of the discrepancy for the large point
sets ¥, that are required (we believe) for good RNGs.
Here, we are thinking of period lengths 2f° or more,
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t =+/—1. This B is a basis for the space of square-
integrable functions ovef0,1)!. The Fourier expansion
of fin terms of B is

f) =YY" f(h)yu(u),

hezt

(1)

with Fourier coefficientsf(h) = [ ) f(w)¢n(—u)du.
A probability density ovefo0, 1)! always ha§(0) =1, and
the uniform densityf, has Fourier coefficientgy(h) = 0
for all h # 0. Therefore, one way to test whethgr is
close to uniform is to test its Fourier coefficienfs(h)
for h # 0. Of course, this can also be done with other
bases; see, e.g., Hellekalek (1998b).

For a given point set¥;, = {ugy,...,Up—1.} IN
[0,1)!, one can estimate the coefficienf§—h) by the
exponential (Weyl) sums

|
—

_ln

n

J

Sp(h) e(h-u;,). (2)

I
<

If we want ¥; to be uniform, theS,, (h) must be close
to zero for h # 0. Since the high-amplitude low-
frequency variations are usually more damaging than the
high-frequency variations, it is customary to give more
weight to the former, i.e., to the small vectohs This
motivatesmeasures of discrepandlkat are weighted sums
(or supremums) of increasing functions of tg, (h)|, as
explained, e.g., by Hellekalek (1998b, 1999), Hellekalek
and Niederreiter (1998), Hickernell (1999), and Leeb and
Hellekalek (1998).

A special case of this is
= [Sn()|/[]2, ©)

sup
0+£heZt

where || - |2 is the Euclidean norm, and it corresponds
to the spectral test originally proposed by Gveyou
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and MacPherson (1967) and commonly applied to linear memory may also be important when virtual generators
congruential and multiple recursive generators. For these (or substreams) are maintained in parallel. This is
generators, this spectral test can be applied even for required, for example, for the implementation of certain

astronomical sizes o, (e.g., over2'°9%) by exploiting variance reduction technique®ortability means that the
the lattice structure (see Section 4). generator can be implemented easily in a standard high-

level language, and produce the same sequence with a
1.6 Statistical Tests wide range of compilers and computerfkepeatability

i.e., being able to reproduce the same sequence all over
After an RNG has been designed and implemented, again, is important for program verification and for variance
empirically-minded people want to “test it on the road” reduction. This is a major advantage of RNGs over random
by applying statistical tests numbers generated by physical devicekimping ahead
Optimists may be looking for theltimateRNG, which means the ability to quickly compute, given the current
runs fast and passed statistical tests But such an object states,,, the states,,, for any largev. This is useful for
does not exist. To understand why, suppose that the outputpreaking up the sequence into long disjoint substreams.
space is finite, with cardinality/|, and consider the tests  The packages of L'Ecuyer ando@ (1991) and L'Ecuyer

that look atn successive output values, for some fixed and Andres (1997) offer software tools to manipulate such
n. For a fixeda, 0 < a < 1, atest of level « is any substreams.

function T;, : U™ — {0,1} such that|T,;1(0)| = o|U|"
(assumed to be an integer, to simplify). The test rejéfis
when T,, maps the observed sequence to 0. The number
of such tests is the number of ways of choosm@’ |™
objects amondU|™. A key observation here is thatery
sequence ofr elements fromU is mapped to O by the
same number of testg,,. In other words, all sequences Tn = (a1Zn_1+ -+ aptn_y) mod m;  (4)
(or generators) fail exactly the same number of tests. See uy = /. 5)
Leeb 1995 and Wegenkittl (1995) for more about this.
Statistical teSting of RNGs is thus meaningleSS unless The modulusm and theorder k are positive integers]
the tests are not all considered on equal footing. For large the coefficientss; belong toZ,, = {0,1,...,m— 1}, and
n, the number of tests is in fact incredibly huge and most the state at stepn is s, = (2p—_t1,-..,2,). FOr prime

of them are so cor_npl?cated that they cannot be run on ,;, and properly chosen;’s, the sequence has maximal
a computer in our lifetime. Then we can say thabad period lengthp = m* — 1. This can be achieved with only

RNG is one that failssimple tests, and ajood RNG is two non-zeroa;’s (Knuth 1997; L'Ecuyer 1998b), i.e.,
one that fails only complicated tests that are hard to find.

In practice, batteries of more or less natural tests are Ty = (@rTp—r + apTp_k) mod m. (6)
applied to RNGs, and systematic failures revdefects
in the structure of the RNG. No amount of testing can This economical version makes the implementation faster.
provethat a given RNG is flawless. It only improves our The classical linear congruential generator (LCG) corre-
confidence to a certain extent. sponds tok = 1.

Ideally, the statistical tests should be selected in close A key issue for the computer implementation of
relation with the target application, i.e., be based on a the MRG is how to compute efficiently the products
test statisticZ’ that closely mimics the random variable @z mod m when m is large. We mention three of
of interest. But this is usually impractical, especially the most useful approaches for this. In general, when
when designing and testing generators for general purposesearching for MRGs with good theoretical behavior, one
software packages. For a sensitive application, it is highly Would search only in areas where the MRG coefficients
recommended that the user tests the RNG specifically for a; satisfy the conditions for one of these implementation

his (or her) problem, or tries RNGs from totally different techniques. A first approach uses integer arithmetic and
classes and compares the results. we call it approximate factoring see Bratley, Fox, and

Schrage (1987), LEcuyer ando@ (1991) for details. It
works if a> < m or if a = [m/i] wherei? < m, and if all
integers between-m and m are well represented on the

A long period, good structure df,, and passing reasonable computer. A second approach computes the product and the
statistical tests, are not the only requirements. For division (for the mod operation) directly ifioating-point
simulations involving billions of random numbers, the arithmetic. On computers that follow the IEEE 64-bit
generator's speed can be critical. The size of required floating-point standard (most computers nowadays), all

2 LINEAR RECURRENCES

A multiple recursive generator (MRG) is defined by the
recurrence

1.7 Additional Requirements

99



L'Ecuyer

integers up t@°? are representeexactlyin floating point, appropriately. When (6) and (8) are used with= 2,
and the floating-point implementation worksdfn < 2°3. we obtain thegeneralized feedback shift regist6BFSR)
See L'Ecuyer (1998a) for details and examples. A third generator (Fushimi and Tezuka 1983; Fushimi 1989),
approach, recently proposed by Wu (1997), assumes thatusually expressed as

a is a sum or a difference of a few (say, 2 or 3) powers of

2. The productzz can then be decomposed into a sum of Xn = Xn—r & Xp—r, )
products by powers of 2, which are implemented as left

shifts on the computer. A little additional gymnastic takes Wheré X, = (z1n,...,21») and where® denotes the

care of the modulo operation. Wu assumes= 23 — 1, bitwise exclusive-or. _ _ _
but his method can be generalized to other valuesnof A generalization of (9) is théagged-Fibonaccgener-

as well. Construction of “good” generators of this type is !0, where the bitwise> can be replaced by an arbitrary
under way. The second and third approach appear to be &rithmetic or logical operation, such as, —, etc., not
the most efficient on today’s computers. necessarily bitwise. A popular one is tadditivegenerator
Takingm equal to a power of 2 in the MRG simplifies ~ (Knuth 1997):

the implementation, but leads to a much shorter period than
a primem (for £ > 1) and to major deficiencies (LEcuyer
1990, 1998p). This is a bad idea. But_a modification of where m = 25, It is a special case of the MRG with
the MRG, with acarry or aborroyv, permits one to use a 5 power-of-two modulus. Slight variations of it are the
power-of-2 modulus while keeping a long pe riod and the add-with-carry (AWC) and subtract-with-borrow (SWB)
poterTnaI for gqod properties (Coutyre a'nd LEpuyer 1995, of Marsaglia and Zaman (1991), which are also special
1997; Marsaglia 1994). The resuIt|mgult|ply-W|th-Car_ry cases of the MWC. However, the additive, AWC, and
(MWC) generator turns out to be approximately equivalent SWB generators share an important deficiency: All triples
Fo an LCG with a large modulus and can be analyzed much Of the form (tn, tn+k—r, unsx) for the additive generator,

in the same way as LCGs from the structural viewpoint. and (i, tn ., unsy) fOr the AWC/ISWB, forn > 0, lie

In (3). egch qutp_ut value is a multiple @f/m. To in only two planes in the three-dimensional unit cube (see
reduce the discretization error, one may construct each L'Ecuyer 1997)

from severalz;’s, i.e.,

X, = (Xp_r+ X,_) mod m, (10)

In a series of papers, M. Matsumoto and his co-authors
I have proposed a nice class of modifications of the GFSR,
U, = ansﬂqm_j, ) yvhich they call Fhetwisted GFSR Their modifications
= increase the period length of the GFSR frah— 1 to
2*L 1, when usingtL bits for the state, and improves the
wheres and L < k are positive integers. If (4) has period  structural properties in a significant way. See Matsumoto
p andged(p, s) = 1, (7) has periog as well. The digital ~ and Kurita (1994) and Matsumoto and Nishimura (1998)
expansion (7) allows smallen, evenm = 2. Form = 2, for details. Themultiple recursive matrix methoaf
up is constructed fromL successive bits of the binary  Niederreiter (1995a) provides a general framework that

sequence (4), with spacings ef— L bits between the  encompasses many of these modifications and variants as
blocks, and the resulting RNG is callediaear feedback special cases.

shift register(LFSR) orTausworthegenerator (Knuth 1997;
Niederreiter 1992b; Tausworthe 1965). Its implementation
is discussed by Bratley, Fox, and Schrage (1987), Fishman

(1996), L'Ecuyer (1996b), and Tezuka (1995). , Combining different recurrences can increase the period
) One can also usd. copies of (4) in parallgl,_wnh length and improve the structural properties of generators
different seeds, and use one copy for each digit of the (Knuth 1997; LU'Ecuyer 1994; Marsaglia 1985; Tezuka
fractional expansion Of,.. If {z;.} is thejth copy and  1995. \Wang and Compagner 1993). But it can also
If 2jn = Tn+q, fOr all j andn, then (conceivably) make things worse. So it is important
. I to understand what we are doing from the theoretical
Uy = Z 2am ) = Z Tsa,m . 8) viewpoint yvhen we combine generators. Combined_MRGs
= = ! and combined LFSR generators are two classes which have
been well analyzed in recent years.

3 COMBINED GENERATORS

If d; = (j —1)d for some integerd and if ged(d, p) = 1, To combine LFSR generators, one can take several
thenn+d; =n+(j—1)d = (ns+j—1)d and (8) becomes full-period LFSR components whose period lengths are
equivalent to (7) if we replacdz,} by {y, = xna}, relatively prime to each other, and add their outputs bitwise

which is accomplished by changing the coefficients of (4) modulo 2 (i.e., by exclusive or). The result is another
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LFSR generator whose period length is the product of and more efficiently for special classes of generators. Their
the periods of its components, and whose structure can results imply, for instance, the bad structure (which we
be analyzed theoretically just like that of a single LFSR already mentioned) of certain triples from the AWC/SWB,

generator.
combined in a similar way. Several combined LFSR
generators which have the ME property (defined in section
1) are listed in L'Ecuyer (1996b, 1998e), together with
fast computer codes.

MRGs can be combined in a similar way by adding
their outputs modulo 1, or using a slightly different com-
bination variant (L'Ecuyer 1996a). Again, the combined
generator is another MRG with very large period (up to
the product of the periods of the components, divided by
271 if there areJ components) and large modulus (the
product of the individual moduli).

GFSR and twisted GFSR generators can beand additive or subtractive lagged-Fibonacci generators.

Entacher (1998) exhibits bad values @&f(I) for some
popular LCGs.

Computing d; is called the spectral test Why?
Getting back to the spectral analysis of Section 1.5, it
turns out that if¥; = L, N[0, 1), the Weyl sums become
Sp(h) =1 if h € Lf and S, (h) = 0 otherwise, where
L ={heR':h-ueZfor al uec L} is the dual
lattice to L;. It is also known (Dieter 1975; Knuth
1997) thatd; = max{1/[|hfl> : 0 # h € Lj}, which is
(3). Computingd; amounts to solving a quadratic integer
optimization problem. An implementation is described in

In those two cases, combination can be seen as al’Ecuyer and Couture (1997).

way of implementing efficiently some RNGs with huge
period lengths. Another important advantage is that the

RNG can be designed so that the individual components 5 NONLINEAR GENERATORS

are implemented very efficiently (e.g., have several zero

coefficients), whereas the combination has a complicated Arguing that the point structure produced by linear

recurrence and excellent structural properties.

4 LATTICE STRUCTURE

For the MRG (4-5), the se¥, turns out to be equal to
the intersection of a latticd, with [0,1)". This means
that L, is the set of all integer linear combinations of
independent vectors ilR". This also implies thaf, lies
on a limited number of equidistant parallel hyperplanes,
at a distancel; apart (Knuth 1997). Fow, to be evenly
distributed over{0,1)?, d; should be small.

One can choose a constant > k& and define the
figure of merit

My, = tgitfll dy /ds,

where d; is an absolute lower bound od., given k
and t (see L'Ecuyer 1998d). We seek ah,, close
to 1. LEcuyer (1998d) has computed tables of “good”
LCGs based onVg, Mg, and Mss, for a wide range of
values ofm. L'Ecuyer (1998a) provides combined MRGs
selected via these figures of merit, together with computer
implementations.

One may also consider vectors ofon-successive
output values of an RNG. For a fixed set of non-negative
integersl = {4,142, --,i}, put

(1)

. aui,,-&-n) | n Z 07
. ,.%‘;9_1) S an},

{(irns -
s0 = (a0, .

and letd;(I) be the distance between successive hyper-
planes in the lattice generated by,(I) and Z* /m.
Couture and L'Ecuyer (1994, 1996) and L'Ecuyer and
Couture (1997) discuss how to computgl) in general,
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sequences is too regular, some prafenlinear generators
(Eichenauer-Herrmann 1995; Eichenauer-Herrmann and
Herrmann 1997; Hellekalek 1995; Niederreiter 1992b;
Niederreiter 1995b).  Nonlinearity can be introduced
by either using a linear transition functiofi with a
nonlinear output functiop, or using a nonlinear recurrence.
Nonlinear generators are used (and essentiatyired

in the area of cryptology. See, e.g., Blum, Blum, and
Schub (1986), Knuth (1997), Lagarias (1993), L'Ecuyer
and Proulx (1989). Under reasonable assumptions, they
are provably better than the linear ones, but only in an
asymptotic sense (as the size of the state space grows to
infinity).

For equal period lengths, the nonlinear generators
actually do much better than the linear ones with respect
to the usual statistical tests (Hellekalek 1995; L'Ecuyer
1998c; L'Ecuyer and Hellekalek 1999; Leeb and Wegenkittl
1997). But they are also much slower. At a running speed
comparable to that of an acceptable nonlinear RNG, one
can find linear generators with period lengths well over
2200 and which pass all the standard empirical tests.

6 STATISTICAL TESTS

Traditionally, applying statistical tests to an RNG has
been much like a fishing expedition: Try a number of
tests with arbitrary parameter values, and “take a picture”
when the RNG fails a test badly. Recently, the author
undertook a project where we try to better understand the
interaction between specific RNG families and certain
empirical tests. Preliminary results are presented in
L'Ecuyer and Hellekalek (1999).
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As a simple illustration, consider the classicallision
test (Knuth 1997): Cut the interval0,1) into d equal
segments. This partition®, 1)* into k¥ = d* cubic boxes.
Generaten points, independently, if0,1)* and letC be
the number of times a point falls in a box that already had a
pointin it. For largek, underH,, C follows approximately
the Poisson distribution with mean?/(2k). Now, take
an RNG with periodp, and choosek ~ p. If ¥, is
very regular, one may exped to be much too small.
In the worst case(” = 0, and then the lefp-value of
the test would bep~ = P[C < 0] ~ ¢ /(2% So we
needat leastn = O(vk) = O(/p) points for rejection
and thenp~ will decrease exponentially fast in2. A
similar argument shows ift; is concentrated on a small
fraction of the boxes (e.g., half of them(, should be too
large, we would also need = O(,/p) for rejection, and
the right p-value would then decrease exponentially fast
with n2. Empirical experiments with LCGs and LFSR
generators confirm that this is actually what happens for
these generators. With= 2, the best LCGs according to
the spectral test all start to fail significantly with~ 8, /p.

7 IMPLEMENTATIONS

No RNG can be fully guaranteed against all possible
defects. Such a guarantee is impossible. Nevertheless,
RNGs designed based on sound theoretical arguments,
reasonably well-tested, and fast enough, are available.
Among those, we recommend the combined MRGs of
L'Ecuyer (1998a), the combined LCGs of L'Ecuyer and
Andres (1997), the combined LFSR generators of LEcuyer
(1996b, 1998e), and the twisted GFSR of Matsumoto and
Nishimura (1998). This short list is admitedly biased
towards the RNGs that we know best. Additional references
and implementations can be found at the URL pages:

www.iro.umontreal.ca/ ~lecuyer
and

random.mat.sbg.ac.at

on the internet.

7.1 TO PROBE FURTHER

Our coverage in this paper is only partial. Several important
papers are not cited. For more detailed coverages and
additional references, we refer the reader to Eichenauer-
Herrmann (1995), Eichenauer-Herrmann, Herrmann, and
Wegenkittl (1997), Fishman (1996), Hellekalek (1995,
1998a, 1998b), Knuth (1997), L'Ecuyer (1990, 1994,
1998b), L'Ecuyer and Hellekalek (1999) Niederreiter
(1992b, 1995b), and Tezuka (1995).
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