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ABSTRACT 2. Steady-state simulations: The purpose of a steady-
state simulation is the study of the long-run behavior

This paper reviews statistical methods for analyzing output of the system of interest. A performance measure

data from computer simulations of single systems. In
particular, it focuses on the problems of choosing initial
conditions and estimating steady-state system parameters.
The estimation techniques include the replication/deletion
approach, the regenerative method, the batch means method,

of a system is called asteady-state parameteif

it is a characteristic of the equilibrium distribution
of an output stochastic process. The value of a
steady-state parameter does not depend upon the
initial conditions. An example is the simulation

and the standardized time series method. of a continuously operating communication system

where the objective is the computation of the mean

1 INTRODUCTION delay of a data packet.

A simulation study consists of several steps such as data  Section 2 discusses methods for analyzing output from
collection, coding and verification, model validation, exper- finite-horizon simulations. Section 3 reviews approaches
imental design, output data analysis, and implementation. for removing bias due to initial conditions in steady-state
This paper focuses on statistical methods for computing Simulations. Section 4 presents techniques for point and
confidence intervals for system performance measures from interval estimation of steady-state parameters.
output data.

The primary purpose of most simulation studies is 2 FEINITE-HORIZON SIMULATIONS
the approximation of prescribed system parameters with
the objective of identifying parameter values that optimize Suppose that we simulate a system umtiloutput data
some system performance measures. If some of the input X, X,, ..., X,, are collected with the objective of estimat-
processes driving a simulation are random, then the outputing n = E(X,,), where X,, = 1 3" | X; is the sample
data are also random and runs of the simulation program can mean of the data. For exampl&,; may be the
only produceestimatesof system performance measures. transit time of uniti through a network of queues or
Unfortunately, a simulation run does not usually produce the total time statior is busy during theth hour. Clearly,
independent, identically distributed (i.i.d.) observations; X, is an unbiased estimator fqr. Unfortunately, the
therefore “classical” statistical techniques are not directly X,’s are generally dependent random variables, making
applicable to the analysis of simulation output. the estimation of the variance \@,) a nontrivial

There are two types of simulations with regard to problem. In many queueing systems th€;’s are
output analysis: positively correlated. This causes the familiar estimator
S2(n)/n = >1 (X — X,)?/[n(n — 1)] to be a highly
biased estimator of V&x,,).

To overcome this problem, one can ririndependent
replications of the system simulation. Assume that run
1 produces the output datd;;, X;o,..., X;,. Then the

sample means
1 n
j:

1. Finite-horizon simulations: In this case the simula-
tion starts in a specific state, such as the empty and idle
state, and is run until some terminating event occurs.
The output process is not expected to achieve any
steady-state behavior and the value of any parameter
estimated from the output data will depend upon the
initial conditions. An example is the simulation of a
building evacuation.
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are i.i.d. random variables, z|I) — P(X < z), whereX is the corresponding steady-
state random variable. The steady-state mean of the process
1 e {X;}is p = lim,_,o E(X,|I). The problem with the use
~ Z of the estimatorX,, for a finite n is that EX ,|I) # p.
=t The most commonly used method for eliminating the
is also an unbiased estimator pf and bias of X,, identifies a indext < [ < n — 1 andtruncates
the observationsXy,..., X;. Then the estimator
R 1 & _
Ve=——)Y (Yi—-Yy)? — 1 "
zH; Xnp=—7 > Xi
1=l+1
is an unbiased estimator of \(@,). If in addition n . . _ o
and k are sufficiently large, an approximaté@0(1 — «) is generally _Iess_ biased thaiX, because _the_ initial
percent confidence interval for is conditions primarily affect data at the beginning of a
run. Several procedures have been proposed for the
— [~ detection of a cutoff indeX (see Chance and Schruben
Vit ter1-a/2\/ Vr/ @ 1992; Fishman 1996; Gafarian et al. 1978; Goldsman et

al. 1994; Kelton 1989; Ockerman 1995; Schruben 1982;
Schruben et al. 1983; Welch 1983; Wilson and Pritsker
1978a,b).

The graphical procedure of Welch (1983) is popular
due to its simplicity and generality. This method ugdes
independent replications with thiéh replication producing
observationsX;;, X;o, . .., X;, and computes the averages

k
E i ey M

Then for a giventime windoww, the procedure plots the
o Yy if kp is an integer moving averages
gp o Yv(|_kp+1j) otherwise

wherety , represents the-quantile of thet distribution
with d degrees of freedom.

The method of replications can also be used for
estimating performance measures other than means. For
example, suppose that we want to estimateztupantile,
say¢,, of the average queue size in a single-server queueing
system during a fixed time window. We rdnindependent
replications, denote by, the average observed queue length
during replications, and letY(;) < Yo < ... <Y, be
the order statistics corresponding to tigs. Then a point
estimate fory,, is

w\l—*

and a confidence interval fog, can be computed as
described in Welch (1983, pp. 287-288).

Law and Kelton (1991) review sequential procedures againstj. This plot shows the convergence of the mean
for determining the number of replications required to of the output process to the steady-state mean. If the plot
estimatey with a fixed error or precision. Their procedure is reasonably smooth, thdnis chosen to be the value of

7(71]) 2w1+1 Z:’Lffu)XJme w+1 Sj Sn_w
J
23 1 Zm—fﬂrl j+m =J =

for obtaining an estimate with a relative ertdf, — u|/|u| 4 beyond which the sequence of moving averages appears
bounded from above by with probability at leastl — o to be constant without a trend. Otherwise, a different time
has performed well for initial sample sizé, > 10 window is chosen and a new plot is drawn. The choice
and v < 0.15. A well-known sequential procedure for of w may be a difficult problem for congested systems
constructing a — a confidence interval fop with a small with output time series having autocorrelation functions

absolute errofY’;, — u| < 3 is due to Chow and Robbins  with very long tails (see Alexopoulos and Seila 1998,
(1965) (see also Nadas 1969). Law (1980) observed that Example 7).
the procedure is very sensitive to the valuefof

4 STEADY-STATE ANALYSIS
3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS We focus on estimation methods for the steady-state mean
1 of a discrete-time output process. Analogous methods
One of the hardest problems in steady-state simulations for analyzing continuous-time output data are described
is the removal of theinitialization bias Suppose that in a variety of texts (Bratley, Fox, and Schrage 1987
{X; :i > 1} is a discrete-time output stochastic process Fishman 1978; Law and Kelton 1991). The process
from a single run of a steady-state simulation with initial {X;} is calledstrictly stationaryif the joint distribution
conditions I and assume that, a8 — oo, P(X, < of Xitj, Xitjs,---,Xitj, is independent ofi for all
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indicesji, ja, ..., k. If E(X;) = p, Var(X;) < oo for all
i, and the CoyX;, X;,,) is independent of, then {X;}
is calledweakly stationary

4.1 The Replication/Deletion Approach

This approach runs: independent replications, each of
length n observations, and uses the method of Welch
(1983) to discard the first observations from each run.

One then uses the i.i.d. sample means

1 n
rerPIES

j=i+1

Yi:

is a strongly consistent, although typically biased for
finite n, estimator ofu. Furthermore, confidence intervals
for © can be constructed by using the random variables
Y; —uZ;,i=1,...,n and the central limit theorem (see
Iglehart 1975).

The regenerative method is often difficult to apply in
practice because most simulations have either no identifiable
regeneration points or very long cycle lengths. Inventory
systems and highly reliable communications systems with
repairs are two classes of systems to which this method
has successfully been applied.

4.3 The Batch Means Method

to compute point and interval estimators for the steady-state The method of batch means is frequently used to estimate

meany (see section 2). The method is simple and general.

The following list contains important observations abfut
n and k. (a) As! increases for fixed, the “systematic”
error in eachY; due to the initial conditions decreases.

the steady-state meanor the VafX,,) (for finite n) and
owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that the
data X,,..., X, are from a weakly stationary process

However, the sampling error increases because of the with lim,_ .. nVar(X,) < co. Split the data intok

smaller number of observations. (b) Asincreases for
fixed I, the systematic and sampling errorsYindecrease.
(c) The systematic error in the sample meafscannot
be reduced by increasing the number of replicatibns

Overall, one must be aware that this approach can

require a substantial amount of effort to find a “good”
truncation index as well as a large sample sizeand a

large number of replications to obtain a confidence interval

with the required coverage. It is also potentially wasteful

of data as the truncated portion is removed from each
replication. The regenerative method (section 4.2) and the
batch means method (section 4.3) seek to overcome thes

disadvantages.

4.2 The Regenerative Method

batches each consisting ofb observations. (Assume
n = kb.) The ith batch consists of the observations
X(i—l)b+17X(i—1)b+2a vy Xiby for i = 1,2,...,k, and
the ith batch meanis given by

b
> X1
j=1

For fixed m, let 02, = Var(X,,). Since the batch
means processgY;(b),i > 1} is also weakly stationary,
some algebra yields

2
2 _ 0
=—(1
o, k<+

Yi(b) =

S| =

e

no2 — bo?
b) . (2)

2
boy,

As a result, o7 /k approximatesc?2 with error that

This method was proposed by Crane and Iglehart (1974a,b, giminishes as firstn — oo and thenb — oo with
1975) and Fishman (1973, 1974). Assume that there are,, _, o, Equivalently, the correlation among the batch

(random) time indicesl < T} < Ty < --- such that the

portion { X1, + j,7 > 0} of the output process has the
same distribution for eachh and is independent of the
portion prior to time7;. A process with this property
is said to beregenerative and the portion of the process

between two successive regeneration epochs is called a

cycle LetY; = S 7' X, and Z; = Ty — T; for
i=1,2,... and assume that(E;) < co. Then the mean
1 is given by

E(Y1)

E(Z1)

Now suppose that one simulates the proc¢3s}

overn cycles and collects the observatioyis . .., Y,, and
Zy,...,Zy,. Then

=

1
N\‘ ~|
3 3
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means diminishes a$ and n approach infinity with
b/n — 0.

To use the last limiting property, one forms the grand
batch mean

X, = (b),

Elie
=

s
I
-

estimatess? by

k
Vi, k) = 3 S (i(0) — Ko,

and computes the following approximate- « confidence
interval for p:
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The main problem with the application of the batch
means method in practice is the choice of the batchisize

The literature contains several batch selection approachesb,,

for fixed sample size; see Conway (1963), Fishman (1978),
Law and Carson (1979), Mechanic and McKay (1966), and
Schriber and Andrews (1979). Schmeiser (1982) reviews

the above procedures and concludes that selecting between

10 and 30 batches should suffice for most simulation
experiments. The major drawback of these methods is
their inability to yield a consistent variance estimator.

4.4 Consistent Estimation Batch Means Methods

Consistent estimatiobatch means methods assume the
existence of a parametet, (the time-average variance of
the procesq X;}) such that a central limit theorem holds

\/ﬁ(yn - M) 2) UOON(Oa 1) (4)

and aim at constructing a consistent estimatorofyr and
an asymptotically valid confidence interval fpr

asn — oo

The Fixed Number of Batches (FNB) Rule Fix the
number of batches dt. For sample size, use batch size

[n/k].

The FNB rule along with AWA imply that, as — oo,

nLuand

Xn - /U'
Ve(n, k)/k

— tg—1

(see Glynn and Iglehart 1990). Hence, (3) is an asymptot-
ically valid confidence interval fop:.. Unfortunately, the
FNB rule has two major limitations: (a) SindeLVk(b) is
not a consistent estimator of_, the confidence interval (3)
tends to be wider than the interval a consistent estimation
method would produce. (b) Statistical fluctuations in the
halfwidth of the confidence interval (3) do not diminish
relative to statistical fluctuation in the sample mean (see
Fishman 1996, pp. 544-545).

The limitations of the FNB rule can be removed by
simultaneously increasing the batch size and the number

Chien et al. (1997) considered stationary processes and, of batches. Indeed, assume that ASA holds and consider

under quite general moment and sample path conditions,

showed that as bothh,k — oo, MSE(bV,(b)) — 0.
Notice that mean squared error consistency differs from
consistency.

The limiting result (4) is implied under the following
two assumptions, wheréW(t),t > 0} is the standard
Brownian motion process (see Resnick 1994, Chapter 6).

Assumption of Weak Approximation (AWA) . There exist
finite constants: and o, > 0 such that
n(X, — )

0o

D

— W(n) asn — oo.

Assumption of Strong Approximation (ASA). There
exist finite constantg, oo, > 0, A € (0,1/2], and a finite
random variableC' such that, with probability one,

(X —p) — oW (n)| < Cn'/?>=* asn — .
In( 14)

The ASA is not restrictive as it holds under relatively weak

batch sizes of the form,, = [n?|, § € (1 — 2\, 1). Then
asn — 0o, Xn =% pu, b, Ve(n, k) 25 0%, and

Y'rL — M
VB (n7 kn,)/kn

2, N(0,1)

Zy, = 5)

n

(see Damerdji 1994). The last display implies that

X, + tk,—1,1-a/2 VB(n, kn)/kn

is an asymptotically validl — « confidence interval for
w. In particular, the assignmemt= 1/2 and the SQRT
rule below are valid if1/4 < A < 1/2. Notice that
the last inequality is violated by processes having high
autocorrelation(\ ~ 0).

The Square Root (SQRT) Rule For sample size:, use
batch sizeh,, = |/n| and number of batches, = |/n].

Under some additional moment conditions, Chien
(1989) showed that the convergenceZ, to the N(0,1)

assumptions for a variety of stochastic processes including distribution is fastest if both,, andk,, grow proportionally
Markov chains, regenerative processes and certain queueingto /n. Unfortunately, in practice the SQRT rule tends to

systems (see Damerdji 1994). The constari$ closer to
1/2 for processes having little autocorrelation, while it is
closer to zero for processes with high autocorrelation.

4.5 Batching Rules

seriously underestimate the Vaf,,) for fixed n.

With the contrasts between the FNB and SQRT rules in
mind, Fishman and Yarberry proposed two procedures that
dynamically shift between the two rules. Both procedures
perform “interim reviews” and compute confidence intervals
at timesn; ~ n1271,1 = 1,2,... using the results of a

Fishman and Yarberry (1997) and Fishman (1996, Chapter .o re|ation test for the batch means based on von Neumann’s

6) presented a thorough discussion of batching rules.
Equation (2) suggests that fixing the number of batches
and letting the batch size grow as— oo ensures that
o?/k — o2. This motivates the following rule.
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The LBATCH Procedure. At time ny, if the hypothesis (as n,b — oo and b/n — 0), the OBM variance esti-
test detects autocorrelation between the batch means, themator V, and the non-overlapping batch means variance
batching for the next review is determined by the FNB estimatorVp = VB(n,k:) have the same expectation, but
rule. If the test fails to detect correlation, all future reviews Var(Vp)/Var(Vs) — 2/3 (Meketon and Schmeiser 1984).
omit the test and employ the SQRT rule. (c) The behavior of Ve(ﬂ70) appears to be less sensitive to

The ABATCH Procedure. If at time n; the hypothesis the choice of the k_)atch size than the behavior of(_Vg_lj
test detects correlation between the batch means, the next(S0Nd and Schmeiser 1995, Table 1). (d) X} sat|s£|es
review employs the FNB rule. If the test fails to detect ASA and{b.} is a sequence of batches with = [n”],
correlation, the next review employs the SQRT rule. igegz(élp_?/)\? 12'S?nd2bn/" — 0 asn — oo, then (Damerdji
. nVO — O4-
. Both procedu.res yle_ld random _Sequences of batch Welch (1987) Or?oted that both traditional batch means
sizes. Under relatively mild assumptions, these sequences ;g overlapping batch means are special cases of spectral
|mply_ convergence resul_ts analogous to (5). The respective yctimation at frequency 0 and, more importantly, suggested
algorithms require)(n) time andO(log, n) space, where . overapping batch means yield near-optimal variance
n is the desired sample size (see Yarberry 1993 and o ction when one forms sub-batches within each batch

Alexopoulos et al. 1997). Although like complexities are 54 ahplies the method to the sub-batches. For example,
known for static fixed batch size algorithms, the dynamic a batch of size 64 is split into 4 sub-batches and the first

setting of the LBATCH and ABATCH rules offers an (overlapping) batch consists of observatioks, . . ., Xe4,

important additional advantage not present in the static the second consists of observatioks, Xao, etc
approach. As the analysis evolves with increasing sample e

path length, it allows a user to assess how well the estimated . _ _

variance of the sample mean stabilizes. This assessment4.6 The Standardized Time Series Method

s asente o 9auge he el of e, sondence IEnl This method was proposed by Schruben (1969) The
i L : e tandardized ti ies is defined b

(described in Fishman 1998a,b) is the only computer standardized fime seres 1S detined by

package that automatically generates the data for this Int] (X, _YL n
assessment. To(t) = L, 0<t<1
Too/1
Overlapping Batch Means and, under some mild assumptions (e.g., strict stationarity

An interesting variation of the traditional batch means and ¢-mixing),

method is the method adverlappingbatch means (OBM) — D
proposed by Meketon and Schmeiser (1984). For given (Vi(Xn = 1), 00Tn) = (0 W (1), 000 B),
batch sizeb, this method uses alk — b + 1 overlapping
batches to estimafeand VaKX,,). The first batch consists
of observationsXy, ..., X}, the second batch consists of
Xo,...,Xp41, €tc. The OBM estimator of: is

where {B(t) : t > 0} is the standard Brownian bridge
process (see Billingsley 1968). Informally,X;} is ¢-
mixing if X; and X;; are approximately independent for

large ;.
1 n—b+1 If A= fol 000 B(t) dt is the area undeB, then the
i=1 E(A?) = 02 /12
where implies that 02, can be estimated by multiplying an
itb—1 estimator of EA?) by 12. Suppose that the data
Y;(b) = 1 Z X;, i=1,...,n—b+1 X4,...,X, are divided intok (contiguous) batches, each
b =i of sizeb. Then for sufficiently large: the random variables

are the respective batch means, and has sample variance b
A = Z[(n +1)/2 =1 X1ty i=1,...,k

Jj=1

1

R n—b+1 .
Vo=—— > (Yi(h) - Yo)
i=1

become approximately i.i.d. normal and an estimator of

o
The following are properties of the estimatory, and B(4%) is

~ k
Vo: (a) The OBM estimator is a weighted average of non- E(A2) = 1 ZAZ'
overlapping batch means estimators. (b) Asymptotically H —b)k — ¢
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Hence an (approximate)00(1 — «) percent confidence

interval for p is
Yi £ty 1—aso\/ Vr/n,

Vp = 12E(A?).

where

The standardized time series method is easy to imple-

ment and has asymptotic advantages over the batch means
method (see Goldsman and Schruben 1984). However, in

practice it can require prohibitively long runs as noted by

Sargent, et al. (1992). Some useful theoretical foundations

of the method are given in Glynn and Iglehart (1990).
Additional developments, as well as other standardized

time series estimators, are contained in Goldsman et al.

(1990) and Goldsman and Schruben (1984, 1990). Finally,
Damerdji (1994) shows that under ASA in section 4.3,
batching sequences with, = [n?], 6 € (1 — 2),1),
yield asymptotically consistent estimators for the process
varianceo?,.

4.7 Quantile Estimation

A variety of methods have been proposed for estimating

quantiles of steady-state output processes (see Iglehart

1976; Moore 1980; Seila 1982a,b; Heidelberger and Lewis
1984). All methods estimate the quantile using the sample
quantile but differ in the way the variance of the sample
quantile is estimated. It should be noted that quantile
estimation is a harder problem than the estimation of
steady-state means.

4.8 Multivariate Estimation

Frequently, the output from a single simulation run is used

to estimate several system parameters simultaneously. The
estimators of these parameters are typically correlated.
As an example, consider the average customer delays

at two stations on a path of a queueing network. In
general, Bonferroni's inequality can be used to compute
a conservative simultaneous confidence coefficient for
any set of confidence intervals. Suppose thatis a
100(1 — «;) percent confidence interval for the parameter
wi, i =1,..., k. Bonferroni's inequality states that

k
P (N {p; € D;}) >1-— Zai-

=1

If the overall simultaneous confidence level must be
at least100(1 — «) percent, then they;’s can be chosen
so that Zle a; = o Other methods for multivariate
estimation of the mean can be found in Charnes (1989,
1990, 1991) and Chen and Seila (1987).
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