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ABSTRACT

This paper reviews statistical methods for analyzing out
data from computer simulations of single systems.
particular, it focuses on the problems of choosing init
conditions and estimating steady-state system parame
The estimation techniques include the replication/delet
approach, the regenerative method, the batch means me
and the standardized time series method.

1 INTRODUCTION

A simulation study consists of several steps such as d
collection, coding and verification, model validation, expe
imental design, output data analysis, and implementat
This paper focuses on statistical methods for comput
confidence intervals for system performance measures f
output data.

The primary purpose of most simulation studies
the approximation of prescribed system parameters w
the objective of identifying parameter values that optimi
some system performance measures. If some of the in
processes driving a simulation are random, then the ou
data are also random and runs of the simulation program
only produceestimatesof system performance measure
Unfortunately, a simulation run does not usually produ
independent, identically distributed (i.i.d.) observation
therefore “classical” statistical techniques are not direc
applicable to the analysis of simulation output.

There are two types of simulations with regard
output analysis:

1. Finite-horizon simulations: In this case the simula-
tion starts in a specific state, such as the empty and
state, and is run until some terminating event occu
The output process is not expected to achieve a
steady-state behavior and the value of any param
estimated from the output data will depend upon t
initial conditions. An example is the simulation of
building evacuation.
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2. Steady-state simulations: The purpose of a steady
state simulation is the study of the long-run behav
of the system of interest. A performance meas
of a system is called asteady-state parameterif
it is a characteristic of the equilibrium distributio
of an output stochastic process. The value o
steady-state parameter does not depend upon
initial conditions. An example is the simulatio
of a continuously operating communication syst
where the objective is the computation of the me
delay of a data packet.

Section 2 discusses methods for analyzing output f
finite-horizon simulations. Section 3 reviews approac
for removing bias due to initial conditions in steady-st
simulations. Section 4 presents techniques for point
interval estimation of steady-state parameters.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system untiln output data
X1, X2, . . . , Xn are collected with the objective of estima
ing µ = E(Xn), where Xn = 1

n

∑n
i=1 Xi is the sample

mean of the data. For example,Xi may be the
transit time of uniti through a network of queues o

the total time stationi is busy during theith hour. Clearly,
Xn is an unbiased estimator forµ. Unfortunately, the
Xi’s are generally dependent random variables, mak
the estimation of the variance Var(Xn) a nontrivial
problem. In many queueing systems theXi’s are
positively correlated. This causes the familiar estima
S2(n)/n =

∑n
i=1(Xi − Xn)2/[n(n − 1)] to be a highly

biased estimator of Var(Xn).
To overcome this problem, one can runk independent

replications of the system simulation. Assume that
i produces the output dataXi1, Xi2, . . . , Xin. Then the
sample means

Yi =
1
n

n∑
j=1

Xij
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are i.i.d. random variables,

Y k =
1
k

k∑
i=1

Yi

is also an unbiased estimator ofµ, and

V̂R =
1

k − 1

k∑
i=1

(Yi − Y k)2

is an unbiased estimator of Var(Xn). If in addition n
and k are sufficiently large, an approximate100(1 − α)
percent confidence interval forµ is

Y k ± tk−1,1−α/2

√
V̂R/k , (1)

where td,γ represents theγ-quantile of thet distribution
with d degrees of freedom.

The method of replications can also be used fo
estimating performance measures other than means. F
example, suppose that we want to estimate thep-quantile,
sayξp, of the average queue size in a single-server queuei
system during a fixed time window. We runk independent
replications, denote byYi the average observed queue lengt
during replicationi, and letY(1) < Y(2) < . . . < Y(k) be
the order statistics corresponding to theYi’s. Then a point
estimate foryp is

ξ̂p =
{

Y(kp) if kp is an integer
Y(bkp+1c) otherwise

and a confidence interval forξp can be computed as
described in Welch (1983, pp. 287–288).

Law and Kelton (1991) review sequential procedure
for determining the number of replications required to
estimateµ with a fixed error or precision. Their procedure
for obtaining an estimate with a relative error|Y k −µ|/|µ|
bounded from above byγ with probability at least1 − α
has performed well for initial sample sizek0 ≥ 10
and γ ≤ 0.15. A well-known sequential procedure for
constructing a1−α confidence interval forµ with a small
absolute error|Y k − µ| ≤ β is due to Chow and Robbins
(1965) (see also Nadas 1969). Law (1980) observed th
the procedure is very sensitive to the value ofβ.

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simulatio
is the removal of theinitialization bias. Suppose that
{Xi : i ≥ 1} is a discrete-time output stochastic proces
from a single run of a steady-state simulation with initia
conditions I and assume that, asn → ∞, P (Xn ≤
114
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x|I) → P (X ≤ x), whereX is the corresponding steady-
state random variable. The steady-state mean of the proc
{Xi} is µ = limn→∞ E(Xn|I). The problem with the use
of the estimatorXn for a finite n is that E(Xn|I) 6= µ.

The most commonly used method for eliminating th
bias ofXn identifies a index1 ≤ l ≤ n − 1 and truncates
the observationsX1, . . . , Xl. Then the estimator

Xn,l =
1

n − l

n∑
i=l+1

Xi

is generally less biased thanXn because the initial
conditions primarily affect data at the beginning of
run. Several procedures have been proposed for
detection of a cutoff indexl (see Chance and Schruben
1992; Fishman 1996; Gafarian et al. 1978; Goldsman
al. 1994; Kelton 1989; Ockerman 1995; Schruben 198
Schruben et al. 1983; Welch 1983; Wilson and Pritsk
1978a,b).

The graphical procedure of Welch (1983) is popula
due to its simplicity and generality. This method usesk
independent replications with theith replication producing
observationsXi1, Xi2, . . . , Xin and computes the average

Xj =
1
k

k∑
i=1

Xij , j = 1, . . . , n.

Then for a giventime windoww, the procedure plots the
moving averages

Xj(w) =

{
1

2w+1

∑w
m=−w Xj+m w + 1 ≤ j ≤ n − w

1
2j−1

∑j−1
m=−j+1 Xj+m 1 ≤ j ≤ w

againstj. This plot shows the convergence of the mea
of the output process to the steady-state mean. If the p
is reasonably smooth, thenl is chosen to be the value of
j beyond which the sequence of moving averages appe
to be constant without a trend. Otherwise, a different tim
window is chosen and a new plot is drawn. The choic
of w may be a difficult problem for congested system
with output time series having autocorrelation function
with very long tails (see Alexopoulos and Seila 1998
Example 7).

4 STEADY-STATE ANALYSIS

We focus on estimation methods for the steady-state me
µ of a discrete-time output process. Analogous metho
for analyzing continuous-time output data are describ
in a variety of texts (Bratley, Fox, and Schrage 1987
Fishman 1978; Law and Kelton 1991). The proces
{Xi} is called strictly stationary if the joint distribution
of Xi+j1 , Xi+j2 , . . . , Xi+jk

is independent ofi for all
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indicesj1, j2, . . . , jk. If E(Xi) = µ, Var(Xi) < ∞ for all
i, and the Cov(Xi, Xi+j) is independent ofi, then {Xi}
is calledweakly stationary.

4.1 The Replication/Deletion Approach

This approach runsk independent replications, each o
length n observations, and uses the method of Welc
(1983) to discard the firstl observations from each run.
One then uses the i.i.d. sample means

Yi =
1

n − l

n∑
j=l+1

Xij

to compute point and interval estimators for the steady-st
meanµ (see section 2). The method is simple and gener
The following list contains important observations aboutl,
n and k. (a) As l increases for fixedn, the “systematic”
error in eachYi due to the initial conditions decreases
However, the sampling error increases because of
smaller number of observations. (b) Asn increases for
fixed l, the systematic and sampling errors inYi decrease.
(c) The systematic error in the sample meansYi cannot
be reduced by increasing the number of replicationsk.

Overall, one must be aware that this approach c
require a substantial amount of effort to find a “good
truncation indexl as well as a large sample sizen and a
large number of replications to obtain a confidence interv
with the required coverage. It is also potentially wastef
of data as the truncated portion is removed from ea
replication. The regenerative method (section 4.2) and
batch means method (section 4.3) seek to overcome th
disadvantages.

4.2 The Regenerative Method

This method was proposed by Crane and Iglehart (1974a
1975) and Fishman (1973, 1974). Assume that there
(random) time indices1 ≤ T1 < T2 < · · · such that the
portion {XTi

+ j, j ≥ 0} of the output process has the
same distribution for eachi and is independent of the
portion prior to timeTi. A process with this property
is said to beregenerative, and the portion of the process
between two successive regeneration epochs is calle
cycle. Let Yi =

∑Ti+1−1
j=Ti

Xj and Zi = Ti+1 − Ti for
i = 1, 2, . . . and assume that E(Zi) < ∞. Then the mean
µ is given by

µ =
E(Y1)
E(Z1)

.

Now suppose that one simulates the process{Xi}
overn cycles and collects the observationsY1, . . . , Yn and
Z1, . . . , Zn. Then

µ̂ =
Y n

Zn
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is a strongly consistent, although typically biased f
finite n, estimator ofµ. Furthermore, confidence interval
for µ can be constructed by using the random variab
Yi − µZi, i = 1, . . . , n and the central limit theorem (se
Iglehart 1975).

The regenerative method is often difficult to apply
practice because most simulations have either no identifia
regeneration points or very long cycle lengths. Invento
systems and highly reliable communications systems w
repairs are two classes of systems to which this meth
has successfully been applied.

4.3 The Batch Means Method

The method of batch means is frequently used to estim
the steady-state meanµ or the Var(Xn) (for finite n) and
owes its popularity to its simplicity and effectiveness.

To motivate the method, suppose temporarily that t
data X1, . . . , Xn are from a weakly stationary proces
with limn→∞ nVar(Xn) < ∞. Split the data intok
batches, each consisting ofb observations. (Assume
n = kb.) The ith batch consists of the observation
X(i−1)b+1, X(i−1)b+2, . . . , Xib, for i = 1, 2, . . . , k, and
the ith batch meanis given by

Yi(b) =
1
b

b∑
j=1

X(i−1)b+j .

For fixed m, let σ2
m = Var(Xm). Since the batch

means process{Yi(b), i ≥ 1} is also weakly stationary,
some algebra yields

σ2
n =

σ2
b

k

(
1 +

nσ2
n − bσ2

b

bσ2
b

)
. (2)

As a result, σ2
b/k approximatesσ2

n with error that
diminishes as firstn → ∞ and then b → ∞ with
b/n → 0. Equivalently, the correlation among the batc
means diminishes asb and n approach infinity with
b/n → 0.

To use the last limiting property, one forms the gran
batch mean

Xn =
1
k

k∑
i=1

Yi(b),

estimatesσ2
b by

V̂B(n, k) =
1

k − 1

k∑
i=1

(Yi(b) − Xn)2,

and computes the following approximate1−α confidence
interval for µ:

Xn ± tk−1,1−α/2

√
V̂B(n, k)/k . (3)
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The main problem with the application of the batc
means method in practice is the choice of the batch sizeb.
The literature contains several batch selection approac
for fixed sample size; see Conway (1963), Fishman (197
Law and Carson (1979), Mechanic and McKay (1966), a
Schriber and Andrews (1979). Schmeiser (1982) revie
the above procedures and concludes that selecting betw
10 and 30 batches should suffice for most simulati
experiments. The major drawback of these methods
their inability to yield a consistent variance estimator.

4.4 Consistent Estimation Batch Means Methods

Consistent estimationbatch means methods assume th
existence of a parameterσ2

∞ (the time-average variance o
the process{Xi}) such that a central limit theorem hold

√
n(Xn − µ) D−→ σ∞N(0, 1) as n → ∞ (4)

and aim at constructing a consistent estimator forσ2
∞ and

an asymptotically valid confidence interval forµ.
Chien et al. (1997) considered stationary processes a

under quite general moment and sample path conditio
showed that as bothb, k → ∞, MSE(bV̂k(b)) → 0.
Notice that mean squared error consistency differs fro
consistency.

The limiting result (4) is implied under the following
two assumptions, where{W (t), t ≥ 0} is the standard
Brownian motion process (see Resnick 1994, Chapter

Assumption of Weak Approximation (AWA) . There exist
finite constantsµ and σ∞ > 0 such that

n(Xn − µ)
σ∞

D−→ W (n) as n → ∞.

Assumption of Strong Approximation (ASA). There
exist finite constantsµ, σ∞ > 0, λ ∈ (0, 1/2], and a finite
random variableC such that, with probability one,

|n(Xn − µ) − σ∞W (n)| ≤ Cn1/2−λ as n → ∞.

The ASA is not restrictive as it holds under relatively wea
assumptions for a variety of stochastic processes includ
Markov chains, regenerative processes and certain queu
systems (see Damerdji 1994). The constantλ is closer to
1/2 for processes having little autocorrelation, while it
closer to zero for processes with high autocorrelation.

4.5 Batching Rules

Fishman and Yarberry (1997) and Fishman (1996, Chap
6) presented a thorough discussion of batching rul
Equation (2) suggests that fixing the number of batch
and letting the batch size grow asn → ∞ ensures that
σ2

b/k → σ2
n. This motivates the following rule.
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The Fixed Number of Batches (FNB) Rule. Fix the
number of batches atk. For sample sizen, use batch size
bn = bn/kc.

The FNB rule along with AWA imply that, asn → ∞,

Xn
P−→ µ and

Xn − µ√
V̂B(n, k)/k

D−→ tk−1

(see Glynn and Iglehart 1990). Hence, (3) is an asympto
ically valid confidence interval forµ. Unfortunately, the
FNB rule has two major limitations: (a) SincebnV̂k(b) is
not a consistent estimator ofσ2

∞, the confidence interval (3)
tends to be wider than the interval a consistent estimatio
method would produce. (b) Statistical fluctuations in the
halfwidth of the confidence interval (3) do not diminish
relative to statistical fluctuation in the sample mean (se
Fishman 1996, pp. 544–545).

The limitations of the FNB rule can be removed by
simultaneously increasing the batch size and the numb
of batches. Indeed, assume that ASA holds and consid
batch sizes of the formbn = bnθc, θ ∈ (1 − 2λ, 1). Then
as n → ∞, Xn

a.s.−→ µ, bnV̂B(n, kn) a.s.−→ σ2
∞, and

Zkn
=

Xn − µ√
V̂B(n, kn)/kn

D−→ N(0, 1) (5)

(see Damerdji 1994). The last display implies that

Xn ± tkn−1,1−α/2

√
V̂B(n, kn)/kn

is an asymptotically valid1 − α confidence interval for
µ. In particular, the assignmentθ = 1/2 and the SQRT
rule below are valid if 1/4 < λ < 1/2. Notice that
the last inequality is violated by processes having hig
autocorrelation(λ ≈ 0).

The Square Root (SQRT) Rule. For sample sizen, use
batch sizebn = b√nc and number of batcheskn = b√nc.

Under some additional moment conditions, Chien
(1989) showed that the convergence ofZkn

to theN(0, 1)
distribution is fastest if bothbn andkn grow proportionally
to

√
n. Unfortunately, in practice the SQRT rule tends to

seriously underestimate the Var(Xn) for fixed n.
With the contrasts between the FNB and SQRT rules i

mind, Fishman and Yarberry proposed two procedures th
dynamically shift between the two rules. Both procedure
perform “interim reviews” and compute confidence intervals
at timesnl ≈ n12l−1, l = 1, 2, . . . using the results of a
correlation test for the batch means based on von Neumann
statistic:

C(n, kn) = 1 −
∑k

i=2(Yi(bn) − Yi−1(bn))2

2
∑k

i=1(Yi(bn) − Xn)2
.
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The LBATCH Procedure. At time nl, if the hypothesis
test detects autocorrelation between the batch means
batching for the next review is determined by the FN
rule. If the test fails to detect correlation, all future review
omit the test and employ the SQRT rule.

The ABATCH Procedure. If at time nl the hypothesis
test detects correlation between the batch means, the
review employs the FNB rule. If the test fails to dete
correlation, the next review employs the SQRT rule.

Both procedures yield random sequences of ba
sizes. Under relatively mild assumptions, these seque
imply convergence results analogous to (5). The respec
algorithms requireO(n) time andO(log2 n) space, where
n is the desired sample size (see Yarberry 1993
Alexopoulos et al. 1997). Although like complexities a
known for static fixed batch size algorithms, the dynam
setting of the LBATCH and ABATCH rules offers a
important additional advantage not present in the st
approach. As the analysis evolves with increasing sam
path length, it allows a user to assess how well the estim
variance of the sample mean stabilizes. This assessm
is essential to gauge the quality of the confidence inte
for the sample mean. The LABATCH.2 implementatio
(described in Fishman 1998a,b) is the only compu
package that automatically generates the data for
assessment.

Overlapping Batch Means

An interesting variation of the traditional batch mea
method is the method ofoverlappingbatch means (OBM)
proposed by Meketon and Schmeiser (1984). For gi
batch sizeb, this method uses alln − b + 1 overlapping
batches to estimateµ and Var(Xn). The first batch consists
of observationsX1, . . . , Xb, the second batch consists
X2, . . . , Xb+1, etc. The OBM estimator ofµ is

Y O =
1

n − b + 1

n−b+1∑
i=1

Yi(b),

where

Yi(b) =
1
b

i+b−1∑
j=i

Xj , i = 1, . . . , n − b + 1

are the respective batch means, and has sample varia

V̂O =
1

n − b

n−b+1∑
i=1

(Yi(b) − Y O)2.

The following are properties of the estimatorsY O and
V̂O: (a) The OBM estimator is a weighted average of no
overlapping batch means estimators. (b) Asymptotica
117
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(as n, b → ∞ and b/n → 0), the OBM variance esti-
mator V̂O and the non-overlapping batch means varianc
estimatorV̂B ≡ V̂B(n, k) have the same expectation, bu
Var(V̂O)/Var(V̂B) → 2/3 (Meketon and Schmeiser 1984).
(c) The behavior of Var(V̂O) appears to be less sensitive to
the choice of the batch size than the behavior of Var(V̂B)
(Song and Schmeiser 1995, Table 1). (d) If{Xi} satisfies
ASA and {bn} is a sequence of batches withbn = bnθc,
θ ∈ (1 − 2λ, 1) and b2

n/n → 0 asn → ∞, then (Damerdji
1994) bnV̂O

a.s.−→ σ2
∞.

Welch (1987) noted that both traditional batch mean
and overlapping batch means are special cases of spec
estimation at frequency 0 and, more importantly, suggest
that overlapping batch means yield near-optimal varian
reduction when one forms sub-batches within each bat
and applies the method to the sub-batches. For examp
a batch of size 64 is split into 4 sub-batches and the fir
(overlapping) batch consists of observationsX1, . . . , X64,
the second consists of observationsX17, . . . , X80, etc.

4.6 The Standardized Time Series Method

This method was proposed by Schruben (1983). Th
standardized time series is defined by

Tn(t) =
bntc(Xn − Xbntc)

σ∞
√

n
, 0 ≤ t ≤ 1

and, under some mild assumptions (e.g., strict stationar
and φ-mixing),

(
√

n(Xn − µ), σ∞Tn) D−→ (σ∞W (1), σ∞B),

where {B(t) : t ≥ 0} is the standard Brownian bridge
process (see Billingsley 1968). Informally,{Xi} is φ-
mixing if Xi andXi+j are approximately independent for
large j.

If A =
∫ 1
0 σ∞B(t) dt is the area underB, then the

identity
E(A2) = σ2

∞/12

implies that σ2
∞ can be estimated by multiplying an

estimator of E(A2) by 12. Suppose that the data
X1, . . . , Xn are divided intok (contiguous) batches, each
of sizeb. Then for sufficiently largen the random variables

Ai =
b∑

j=1

[(n + 1)/2 − j]X(i−1)b+j , i = 1, . . . , k

become approximately i.i.d. normal and an estimator
E(A2) is

Ê(A2) =
1

(b3 − b)k

k∑
i=1

A2
i .
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Hence an (approximate)100(1 − α) percent confidence
interval for µ is

Y k ± tk,1−α/2

√
V̂T /n,

where
V̂T = 12Ê(A2).

The standardized time series method is easy to imp
ment and has asymptotic advantages over the batch me
method (see Goldsman and Schruben 1984). However
practice it can require prohibitively long runs as noted b
Sargent, et al. (1992). Some useful theoretical foundatio
of the method are given in Glynn and Iglehart (1990
Additional developments, as well as other standardiz
time series estimators, are contained in Goldsman et
(1990) and Goldsman and Schruben (1984, 1990). Fina
Damerdji (1994) shows that under ASA in section 4.
batching sequences withbn = bnθc, θ ∈ (1 − 2λ, 1),
yield asymptotically consistent estimators for the proce
varianceσ2

∞.

4.7 Quantile Estimation

A variety of methods have been proposed for estimati
quantiles of steady-state output processes (see Igle
1976; Moore 1980; Seila 1982a,b; Heidelberger and Lew
1984). All methods estimate the quantile using the samp
quantile but differ in the way the variance of the samp
quantile is estimated. It should be noted that quant
estimation is a harder problem than the estimation
steady-state means.

4.8 Multivariate Estimation

Frequently, the output from a single simulation run is use
to estimate several system parameters simultaneously.
estimators of these parameters are typically correlat
As an example, consider the average customer del
at two stations on a path of a queueing network.
general, Bonferroni’s inequality can be used to compu
a conservative simultaneous confidence coefficient
any set of confidence intervals. Suppose thatDi is a
100(1 − αi) percent confidence interval for the paramet
µi, i = 1, . . . , k. Bonferroni’s inequality states that

P
(∩k

i=1{µi ∈ Di}
) ≥ 1 −

k∑
i=1

αi.

If the overall simultaneous confidence level must b
at least100(1 − α) percent, then theαi’s can be chosen
so that

∑k
i=1 αi = α. Other methods for multivariate

estimation of the mean can be found in Charnes (198
1990, 1991) and Chen and Seila (1987).
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