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ABSTRACT

We present a state-of-the-art review of screening, selecti
and multiple-comparison procedures that are used
compare system designs via computer simulation. W
describe methods for three broad classes of problem
screening a large number of system designs, select
the best system, and comparing all systems to a stand
(either known or unknown). We concentrate primarily o
recent methods that we would be likely to use in practic
Where possible, we unify the screening, selection, a
multiple-comparison perspectives.

1 INTRODUCTION

Simulation experiments are often performed to compar
in some fashion, two or more system designs. Th
statistical methods ofscreening, selection, and multiple
comparisonsare applicable when we are interested i
making comparisons among a finite and typically sma
number of systems (say 2 to 30). The particular metho
that is appropriate depends on the type of comparis
desired and properties of the simulation output data.
this state-of-the-art review we describe methods for thr
broad classes of problems: screening a large number
system designs, selecting the best system, and compa
all systems to a standard (either known or unknown). W
focus herein on the methods that we would be likely t
use on real problems. And where possible, we unify th
screening, selection, and multiple-comparison perspectiv

Screening and selection procedures (SSPs) are sta
tical methods designed to find the “best” (or “nearly th
best”) system from among a collection of competing alte
natives. For example, such procedures could be efficacio
in any of the following practical situations:

• A manufacturer would like to know which of three
potential plant layouts will maximize expected rev
enues.
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• A polling service wishes to determine the most popula
candidate before a certain election.

• A medical research team conducts a clinical stud
comparing the success rates of five different drug
regimens for a particular disease.

Informally speaking, SSPs are used to

• screenthe competitors in order to find a small subse
of those systems that contains the best system (or
least a “good” one).

• selectoutright the best system.

In practice, we could invoke a screening procedure t
pare down a large number of alternatives into a palatab
number; at that point, we might use a selection procedu
to make the more fine-tuned choice of the best. Provide
that certain assumptions are met, SSPs usually guarante
user-specified probability of advertised performance—i.e
with high probability, a screening procedure will choose
a subset containing the best (or a good) alternative, and
selection procedure will pick the best.

Multiple-comparison procedures (MCPs) treat the com
parison problem as an inference problem on the perfo
mance parameters of interest. MCPs account for the err
that arises when making simultaneous inferences abo
differences in performance among the systems. Usuall
MCPs report to the user simultaneous confidence interva
for the differences. Recent research has shown that MC
can be combined with SSPs for a variety of problems—
including the manufacturing, polling, and medical example
outlined above. In fact, a number of significant advance
have appeared in the literature since our last WSC tutoria
Goldsman and Nelson (1994).

SSPs and MCPs are relevant and statistically vali
in the context of computer simulation because the as
sumptions behind the procedures can frequently be sa
isfied: the assumption of normally distributed data can
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often be secured by batching large numbers of (chea
generated) outputs. Independence can be obtained by c
trolling random-number assignments. And multiple-stag
sampling—which is required by some methods—is fe
sible in computer simulation because a subsequent st
can be initialized simply by retaining the final random
number seeds from the preceding stage. As a bonus, i
possible to enhance (in a theoretically rigorous way) t
performance of some of the procedures through the use
common random numbers, a popular variance reduct
technique sometimes used in simulation.

The remainder of this article is organized as follow
In the next section, we will establish relevant notation an
ground rules. Sections 3–5 discuss screening metho
procedures for selecting the best alternative, and meth
for comparing alternatives with a standard, respective
Some final thoughts end the discussion in Section 6.

2 PRELIMINARIES

To facilitate what follows we define some notation: LetYij

represent thejth simulation output from system designi,
for i = 1, 2, . . . , k alternatives andj = 1, 2, . . . . For fixed
i, we will always assume that the outputs from syste
i, Yi1, Yi2, . . ., are independent and identically distribute
(i.i.d.). These assumptions are plausible ifYi1, Yi2, . . .
are outputs across independent replications, or if they
appropriately defined batch means from a single replicati
after accounting for initialization effects. Letµi = E[Yij ]
denote the expected value of an output from theith system,
and letσ2

i = Var[Yij ] denote its variance. Further, let

pi = Pr
{

Yij > max
` 6=i

Y`j

}

be the probability thatYij is the largest of thejth outputs
across all systemswhen Y1j , Y2j , . . . , Ykj are mutually
independent.

The methods we describe make comparisons based
either µi or pi. Although not a restriction on either SSP
or MCPs, we will only consider situations in which ther
is no known functional relationship among theµi or pi

(other than
∑k

i=1 pi = 1). Therefore, there is no potentia
information to be gained about one system from simulati
the others—such as might occur if theµi were a function
of some explanatory variables—and no potential efficien
to be gained from fractional-factorial experiment design
group screening designs, etc.

3 SCREENING PROBLEMS

Example 1 A brain-storming session produces25 poten-
tial designs for the architecture of a new computer syste
160
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Expected response time is the performance measure
interest, but there are so many designs that a caref
simulation study will be deferred until a pilot simulation
study determines which designs are worth further scrutin
Smaller response time is preferred.

The expected response time is the performance meas
of interest, and the goal of the pilot study is to determin
which designs are the better performers, which hav
similar performance, and which can be eliminated a
clearly inferior.

3.1 Multiple Comparison Approach

Let µi denote the expected response time for architectu
i. MCPs attack the screening problem by formin
simultaneous confidence intervals on the parametersµi−µj

for all i 6= j. Thesek(k−1)/2 confidence intervals indicate
the magnitude and direction of the difference betwee
each pair of alternatives. The most widely used metho
for forming the intervals is Tukey’s procedure, which is
implemented in many statistical software packages a
which is known to be more efficient than other method
such as those involving Bonferroni’s inequality. We review
Tukey’s procedure here and cite some recent advanc
General references include Hochberg and Tamhane (19
and Miller (1981); most standard statistics textbooks als
contain some version of the procedure.

Suppose that the systems are simulated independen
and we obtain i.i.d. outputsYi1, Yi2, . . . , Yini

from system
i, i = 1, 2, . . . , k. Let Ȳi =

∑ni

j=1 Yij/ni be the sample
mean from systemi, and let

S2 =
1
k

k∑
i=1

1
ni − 1

ni∑
j=1

(Yij − Ȳi)2

be the pooled sample variance. Tukey’s simultaneo
confidence intervals are

µi − µj ∈ Ȳi − Ȳj ± Q
(α)
k,ν√
2

S

√
1
ni

+
1
nj

for all i 6= j, where Q
(α)
k,ν is the 1 − α quantile of

the Studentized range distribution with parameterk and
ν =

∑k
i=1(ni − 1) degrees of freedom (see for instanc

Hochberg and Tamhane 1987, Appendix 3, Table 8,
Goldsman and Nelson 1998, Table 8.1).

When theYij are normally distributed withcommon
(unknown) variance, andn1 = n2 = · · · = nk, these
intervals achieve simultaneous coverage probability1 − α.
Hayter (1984) made the important finding that the covera
probability is strictly greater than1 − α when the sample
sizes are not equal.
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3.2 Subset Selection Approach

The subset selection approach is a screening device
attempts to select a (random-size)subsetof the k = 25
competing designs of Example 1 that contains the des
with the smallest expected response time. Gupta (19
1965) proposed a single-stage procedure for this probl
that is applicable in cases when the data from the compet
designs are balanced (i.e.,n1 = · · · = nk = n) and are
normal with common (unknown) varianceσ2. Nelson, et
al. (1998) handle more general cases—in particular, th
in which the unknown variancesσ2

i , i = 1, 2, . . . , k, are
not necessarily equal. Their procedure is illustrated belo

(Random) Subset Procedure

1. Specify the common sample sizen, as well as the
desired probability1−α of actually including the best
design in the selected subset. Further, calculate
following quantile from thet-distribution with n − 1
degrees of freedom:

t = t
1−(1−α)

1
k−1 ,n−1

.

2. Take an i.i.d. sampleYi1, Yi2, . . . , Yin from each of
the k systems simulated independently.

3. Calculate thek sample means̄Yi =
∑n

j=1 Yij/n, and
sample variances

S2
i =

∑n
j=1(Yij − Ȳi)2

n − 1
,

for i = 1, 2, . . . , k. In addition, calculate the quantity

Wij = t

(
S2

i + S2
j

n

)1/2

for all i 6= j.

4. Include theith design in the selected subset if

Ȳi ≤ Ȳj + Wij for all j 6= i.

If we had been interested in selecting responses with
largest expected values, then the final step above wou
instead be

4′. Include theith design in the selected subset if

Ȳi ≥ Ȳj − Wij for all j 6= i.

Notice that as the common sample sizen increases, the
Wij tend to decrease, and so the random subset size
tends to decrease.

Sullivan and Wilson (1989) proposedrestrictedsubset
procedures, in which the experimenter can specify an up
bound on the subset size.
16
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4 SELECTING THE BEST

Example 2 (Goldsman, Nelson, and Schmeiser 1991
For the purpose of evaluation prior to purchase, simu
lation models of four different airline-reservation system
have been developed. The single measure of system
formance is the time to failure (TTF), so that larger TTF
is better. A reservation system works if either of tw
computers works. The four systems arise from variatio
in parameters affecting the TTF and time-to-repair dis
tributions. Differences of less than about two days ar
considered practically equivalent.

4.1 Indifference-Zone Selection Approach

If expected TTF is taken as the performance measure
interest, then the goal in this example is to select the syste
with the largest expected TTF. In a stochastic simulatio
such a “correct selection” can never be guaranteed w
certainty. A compromise solution offered byindifference-
zone selectionis to guarantee to select the best system wi
high probability whenever it is at least a user-specifie
amount better than the others; this “practically-significan
difference is called the indifference zone. In the examp
the indifference zone isδ = 2 days. Law and Kelton (1991)
describe a number of indifference-zone procedures that ha
proven useful in simulation, while Bechhofer, Santner, an
Goldsman (BSG) (1995) provide a comprehensive revie
of SSPs.

MCPs approach the problem of determining the be
system by forming simultaneous confidence intervals o
the parametersµi − maxj 6=i µj for i = 1, 2, . . . , k, where
µi denotes the expected TTF for theith reservation
system. These confidence intervals are known asmultiple
comparisons with the best (MCB), and they bound the
difference between the expected performance of ea
system and the best of the others. The first MC
procedures were developed by Hsu (1984); a thorou
review is found in Hochberg and Tamhane (1987).

Matejcik and Nelson (1995) and Nelson and Matejci
(1995) established a fundamental connection betwe
indifference-zone selection and MCB by showing thatmost
indifference-zone procedures can simultaneously provi
MCB confidence intervals with the width of the interval
corresponding to the indifference zone. The procedures we
display below are combined indifference-zone selection a
MCB procedures. The advantage of a combined procedu
is that we not only select a system as best, we also ga
information about how close each of the inferior systems
to being the best. This information is useful if secondar
criteria that are not reflected in the performance measu
(such as ease of installation, cost to maintain, etc.) m
tempt us to choose an inferior system if it is not deficien
by much.
1
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4.1.1 Independent Sampling

The next two combined procedures use sampling stra
gies in which the normal observations between scenar
are independent, i.e.,Yij is independent ofYi′,j for all
i 6= i′ and all j. The first combines Rinott’s (1978)
two-stage indifference-zone procedure with accompanyi
MCB intervals, simultaneously guaranteeing a probab
ity of correct selection and confidence-interval covera
probability of at least1 − α under the stated assumptions

Rinott + MCB

1. Specify the indifference-zone parameterδ, the desired
probability of correct selection1−α, and the common
first-stage sample sizen0 ≥ 2. Let hα solve Rinott’s
integral for n0, k, and α (see the tables in Wilcox
1984 or BSG 1995).

2. Take an i.i.d. sampleYi1, Yi2, . . . , Yin0 from each of
the k systems simulated independently.

3. Calculate the first-stage sample means̄Y
(1)
i =∑n0

j=1 Yij/n0, and marginal sample variances

S2
i =

∑n0
j=1(Yij − Ȳ

(1)
i )2

n0 − 1
,

for i = 1, 2, . . . , k.

4. Compute the final sample sizes

Ni = max
{
n0,
⌈
(hαSi/δ)2

⌉}
for i = 1, 2, . . . , k, whered·e is the integer “round-up”
function.

5. TakeNi−n0 additional i.i.d. observations from system
i, independently of the first-stage sample and the oth
systems, fori = 1, 2, . . . , k.

6. Compute the overall sample means¯̄Y i =
∑Ni

j=1 Yij/Ni

for i = 1, 2, . . . , k.

7. Select the system with the largest¯̄Y i as best.

8. Simultaneously form the MCB confidence intervals

µi − max
j 6=i

µj ∈[
−
(

¯̄Y i − max
j 6=i

¯̄Y j − δ

)−
,

(
¯̄Y i − max

j 6=i

¯̄Y j + δ

)+
]

for i = 1, 2, . . . , k, where (a)+ = max{0, a} and
−(b)− = min{0, b}.

If we had been interested in selecting the system with t
smallestexpected value, then the final steps above wou
instead be
162
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7′. Select the system with the smallest¯̄Y i as best.

8′. Simultaneously form the MCB confidence intervals

µi − min
j 6=i

µj ∈[
−
(

¯̄Y i − min
j 6=i

¯̄Y j − δ

)−
,

(
¯̄Y i − min

j 6=i

¯̄Y j + δ

)+
]

for i = 1, 2, . . . , k.

Nelson, et al. (1998) show how to combine Section
3.2’s subset procedure with the Rinott+MCB procedure.
This combined procedure is of great utility when the
experimenter is initially faced with a large number of
alternatives—the idea is for the subset procedure to par
out non-contending systems, after which Rinott selects the
best from the survivors.

Subset + Rinott + MCB

1. Specify the overall desired probability of correct
selection1 − α, the indifference zoneδ, the common
initial sample sizen0 ≥ 2, and the initial number of
competing systemsk. Further, set

t = t
1−(1−α/2)

1
k−1 ,n0−1

and let hα/2 solve Rinott’s integral forn0, k, and
α/2 (see Wilcox 1984 or BSG 1995).

2. Take an i.i.d. sampleYi1, Yi2, . . . , Yin0 from each of
the k systems simulated independently.

3. As in Step 3. of Rinott+MCB.

4. Calculate the quantity

Wij = t

(
S2

i + S2
j

n0

)1/2

for all i 6= j. Form the screening subsetI, containing
every alternativei such that1 ≤ i ≤ k and

Ȳ
(1)
i ≥ Ȳ

(1)
j − (Wij − δ)+ for all j 6= i.

5. If I contains a single index, then stop and return that
system as the best. Otherwise, for alli ∈ I, compute
the second-stage sample sizes

Ni = max
{
n0,
⌈
(hα/2Si/δ)2

⌉}
.

6. Take Ni − n0 additional i.i.d. observations from all
systemsi ∈ I, independently of the first-stage sample
and the other systems.

7. Compute the overall sample means¯̄Y i =
∑Ni

j=1 Yij/Ni

for i ∈ I.
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8. Select the system with the largest¯̄Y i as best.

9. With probability at least1 − α, we can claim that

* For all i ∈ Ic, we haveµi < maxj 6=i µj (i.e., the
systems excluded by the screening are not the be
and

* If we define Ji = {j : j ∈ I and j 6= i}, then for all
i ∈ I,

µi − max
j∈Ji

µj ∈[
−
(

¯̄Y i − max
j∈Ji

¯̄Y j − δ

)−
,

(
¯̄Y i − max

j∈Ji

¯̄Y j + δ

)+
]

.

(Thus, these confidence intervals bound the differen
between each alternative and the best of the others
I.)

4.1.2 Correlated Sampling

A fundamental assumption of the Rinott+MCB and th
Subset+Rinott+MCB procedures is that thek systems
are simulated independently (see Step 2 in both of t
above procedures). In practice this means that differe
streams of (pseudo)random numbers are assigned to
simulation of each system. However, under fairly gener
conditions, assigning common random numbers (CRN
to the simulation of each system decreases the varian
of estimates of the pairwise differences in performanc
Unfortunately, CRN also complicates the statistical analys
whenk > 2 systems are involved. The following procedur
from Nelson and Matejcik (1995) provides the sam
guarantees as Rinott+MCB under a more complex s
of conditions, but has been shown to be quite robust
departures from those conditions. And unlike Rinott+MCB
it is designed to exploit the use of CRN to reduce th
total number of observations required to make a corre
selection.

NM + MCB

1. Specify the constantsδ, α, and n0. Let g =
T

(α)
k−1,(k−1)(n0−1),0.5, an equicoordinate critical point

of the equicorrelated multivariate centralt-distribution;
this constant can be found in Hochberg and Tamha
(1987), Appendix 3, Table 4; BSG (1995); or by usin
the FORTRAN program AS251 of Dunnett (1989).

2. Take an i.i.d. sampleYi1, Yi2, . . . , Yin0 from each of
the k systemsusing CRN across systems.

3. Compute the approximate sample variance of th
difference of the sample means

S2 =
2
∑k

i=1
∑n0

j=1

(
Yij − Ȳi· − Ȳ·j + Ȳ··

)2
(k − 1)(n0 − 1)

,
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where Ȳi· =
∑n0

j=1 Yij/n0, Ȳ·j =
∑k

i=1 Yij/k, and

Ȳ·· =
∑k

i=1
∑n0

j=1 Yij/kn0.

4. Compute the final sample size

N = max
{
n0,
⌈
(gS/δ)2

⌉}
.

5. TakeN − n0 additional i.i.d. observations from each
system, using CRN across systems.

6. Compute the overall sample means¯̄Y i =
∑N

j=1 Yij/N
for i = 1, 2, . . . , k.

7. Select the system with the largest¯̄Y i as best.

8. Simultaneously form the MCB confidence intervals as
in Rinott+MCB.

4.2 Multinomial Selection Approach

Another approach to the airline-reservation problem is to
select the system that is most likely to have the largest
actual TTF (instead of the largestexpectedTTF). To this
end, one can definepi as the probability that designi will
produce the largest TTF from a given vector-observation
Y j = (Y1j , Y2j , . . . , Ykj). The goal now is to select the
design associated with the largestpi-value. This goal
is equivalent to that of finding the multinomial category
having the largest probability of occurrence; and there is
a rich body of literature concerning such problems.

More specifically, suppose that we want to select
the correct category with probability1 − α whenever the
ratio of the largest to second largestpi is greater than
some user-specified constant, sayθ > 1. The indifference
constantθ can be regarded as the smallest ratio “worth
detecting.”

The following single-stageprocedure was proposed
by Bechhofer, Elmaghraby, and Morse (BEM) (1959) to
guarantee the above probability requirement.

BEM

1. For the givenk, and(α, θ) specified prior to the start
of sampling, findn from the Tables in BEM (1959),
Gibbons, Olkin, and Sobel (1977) or BSG (1995).

2. Take a random sample ofn observations
Yi1, Yi2, . . . , Yin from each alternative i, i =
1, 2, . . . , k. Turn these inton independent multi-
nomial observations,Xj = (X1j , X2j , . . . , Xkj), j =
1, 2, . . . , n, by setting

Xij =
{

1, if Yij > max` 6=i{Y`j}
0, otherwise,

where we assume (for notational convenience) that
there are never ties for the maximum observation
within a particular vectorY j .
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3. Let Wi =
∑n

j=1 Xij for i = 1, 2, . . . , k. Select the
design that yielded the largestWi as the one associated
with the largestpi (randomize in the case of ties).

A more efficient procedure, due to Bechhofer and Goldsma
(1986), usesclosed, sequentialsampling; that is, the
procedure stops when one design is “sufficiently ahead
of the others.

BG

1. For the givenk, and(α, θ) specified prior to the start
of sampling, find thetruncation number(i.e., an upper
bound on the number of vector-observations)n0 from
the tables in Bechhofer and Goldsman (1986) or BSG
(1995).

2. At the mth stage of experimentation (m ≥ 1),
take the random multinomial observationXm =
(X1m, X2m, . . . , Xkm) (defined above) and calculate
the ordered category totalsW[1]m ≤ W[2]m ≤ · · · ≤
W[k]m; also calculate

Zm =
k−1∑
i=1

(1/θ)(W[k]m−W[i]m).

3. Stop sampling at the first stage wheneither

Zm ≤ α/(1 − α) or m = n0

or W[k]m − W[k−1]m ≥ n0 − m,

whichever occurs first.

4. Let N (a random variable) denote the stage at which
the procedure terminates. Select the design that yielde
the largestWiN as the one associated with the largest
pi (randomize in the case of ties).

Miller, Nelson, and Reilly (1998) present a remarkably
efficient procedure that directly uses the originalYij

observations (instead of the 0-1Xij , which lose informa-
tion). Their procedure AVC, based on all possible vector
comparisons of the observations, always results in an in
creased probability of correct selection when compared t
the analogous implementation of the BEM procedure.

AVC

1. For the givenk, and(α, θ) specified prior to the start
of sampling, use the samen as in BEM.

2. Take a random sample ofn observations
Yi1, Yi2, . . . , Yin from each alternative i, i =
1, 2, . . . , k. Consider all nk vectors of the form
Y

′
j = (Y

′
1j , Y

′
2j , . . . , Y

′
kj), j = 1, 2, . . . , nk, whereY

′
ij
164
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is one of then observations from alternativei. Turn
these intonk (non-independent) multinomial obser-
vations,X

′
j = (X

′
1j , X

′
2j , . . . , X

′
kj), j = 1, 2, . . . , nk,

by setting

X
′
ij =

{
1, if Y

′
ij > max` 6=i{Y

′
`j}

0, otherwise,

where we again assume that there are never ties f
the maximum observation within a particular vector
Y

′
j .

3. Let W
′
i =

∑nk

j=1 X
′
ij for i = 1, 2, . . . , k. Select the

design that yielded the largestW
′
i as the one associated

with the largestpi (randomize in the case of ties).

5 COMPARISONS WITH A STANDARD

Example 3 Several different investment strategies wil
be simulated to evaluate their expected rates of return
The strategy ultimately chosen may not be the one wi
the largest expected return—since factors such as ris
could be considered—but none of the strategies will b
chosen unless its expected return is larger than that of
conservative U.S. Government bond fund.

Here the goal is to select the best investment strateg
only if it is better than the standard(bond fund); if no
strategy is better than the standard, we continue with th
standard. More precisely, we have the following probability
requirement: Denote the (known or unknown) expecte
value of the standard byµ0 and the ordered means of the
other investment strategies byµ[1] ≤ µ[2] ≤ · · · ≤ µ[k].
For specified constantsα and δ with δ > 0, we require

P{Select the standard} ≥ 1 − α whenever µ[k] ≤ µ0

and

P{Select best strategy} ≥ 1 − α whenever

µ[k] ≥ max{µ0, µ[k−1]} + δ.

We now present a generic procedure for the problem o
comparison with a standard due to Nelson and Goldsma
(1997); this generic procedure can be used for a variety
situations (e.g.,µ0 known or unknown, unequal variances
across systems, etc.), thus generalizing earlier results d
to Bechhofer and Turnbull (1978).

Comparison with a Standard

1. Given k alternative systems and a standard (call i
system 0), specify an initial first-stage sample siz
n0, an indifference zoneδ, and a confidence level
1 − α. Determine appropriate constantsg and h, and
let c = δh/g.
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2. Generate a random sampleYi1, Yi2, . . . , Yin0 from
systemi, for i = 0, 1, 2, . . . , k.

3. Compute an appropriate variance estimatorS2
i to be

associated with systemi.

4. Determine the required total sample size from syste
i as

Ni = max{n0, d(gSi/δ)2e}.

5. TakeNi−n0 additional i.i.d. observations from system
i if needed, and compute the overall sample mea
¯̄Y i =

∑Ni

j=1 Yij/Ni for i = 0, 1, 2, . . . , k.

6. With confidence level of at least1 − α, apply the
following rule:

* If max1≤i≤k
¯̄Y i ≤ ¯̄Y 0 + c, then choose the standard

and form the one-sided confidence intervals

µ0 − µi ≤ ¯̄Y 0 − ¯̄Y i + c

for i = 1, 2, . . . , k.

* Otherwise, choose the alternative associated with th
largest sample meanmax1≤i≤k

¯̄Y i, and form the MCB
intervals of the form given in Step 8 of Rinott+MCB
for i = 0, 1, 2, . . . , k.

6 FINAL THOUGHTS

Space limitations preclude detailed discussion, but we al
mention the interesting technical results to be found i
Damerdji, et al. (1997ab), Damerdji and Nakayama (1996
and Nakayama (1997), in which the authors rigorousl
show that certain selection-of-the-best procedures satis
probability requirements similar to those in Section 4
Chen, et al. (1997) propose a completely different approa
in their discussion on optimal budget strategies. Chic
(1997) takes a decision-theoretic view on the selection
of-the best problem. And Boesel and Nelson (1998) us
the techniques discussed in the current paper to presen
methodology for optimization of stochastic systems.
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