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ABSTRACT e A polling service wishes to determine the most popular

candidate before a certain election.
We present a state-of-the-art review of screening, selection,
and multiple-comparison procedures that are used to ® A medical research team conducts a clinical study
compare system designs via computer simulation. We comparing the success rates of five different drug
describe methods for three broad classes of problems: regimens for a particular disease.
screening a large number of system designs, selecting
the best system, and comparing all systems to a standard

(either known or unknown). We concentrate primarily on o  screenthe competitors in order to find a small subset

recent methods that we would be likely to use in practice. of those systems that contains the best system (or at
Where possible, we unify the screening, selection, and least a “good” one).

multiple-comparison perspectives.

Informally speaking, SSPs are used to

e selectoutright the best system.

1 INTRODUCTION In practice, we could invoke a screening procedure to

pare down a large number of alternatives into a palatable
number; at that point, we might use a selection procedure
to make the more fine-tuned choice of the best. Provided
that certain assumptions are met, SSPs usually guarantee a
user-specified probability of advertised performance—i.e.,
with high probability, a screening procedure will choose

a subset containing the best (or a good) alternative, and a

Simulation experiments are often performed to compare,
in some fashion, two or more system designs. The
statistical methods ofcreening, selectignand multiple

comparisonsare applicable when we are interested in
making comparisons among a finite and typically small
number of systems (say 2 to 30). The particular method
that is appropriate depends on the type of comparison

. . ; : selection procedure will pick the best.
desired and properties of the simulation output data. In Multiple-comparison procedures (MCPs) treat the com-
this state-of-the-art review we describe methods for three P P P

broad classes of problems: screening a large number of parison problem as an inference problem on the perfor-

. : . mance parameters of interest. MCPs account for the error
system designs, selecting the best system, and comparing

; that arises when making simultaneous inferences about
all systems to a standard (either known or unknown). We . .
. . differences in performance among the systems. Usually,
focus herein on the methods that we would be likely to ) . .
. . MCPs report to the user simultaneous confidence intervals
use on real problems. And where possible, we unify the

. : . . . for the differences. Recent research has shown that MCPs
screening, selection, and multiple-comparison perspectives.

Screening and selection procedures (SSPs) are statis-~2" be combined with SSPs for a variety of problems—

tical methods designed to find the “best” (or “nearly the |ncll_,|d|ng the manufacturing, polling, anq m_e_dlcal examples
" . . outlined above. In fact, a number of significant advances
best”) system from among a collection of competing alter- : . . :
. - have appeared in the literature since our last WSC tutorial,
natives. For example, such procedures could be efficacious

in any of the following practical situations: Goldsman and Nelson (1994).
Y gp ' SSPs and MCPs are relevant and statistically valid

e A manufacturer would like to know which of three in the context of computer simulation because the as-
potential plant layouts will maximize expected rev- sumptions behind the procedures can frequently be sat-
enues. isfied: the assumption of normally distributed data can
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often be secured by batching large numbers of (cheaply Expected response time is the performance measure of
generated) outputs. Independence can be obtained by con-interest, but there are so many designs that a careful
trolling random-number assignments. And multiple-stage simulation study will be deferred until a pilot simulation
sampling—which is required by some methods—is fea- study determines which designs are worth further scrutiny.
sible in computer simulation because a subsequent stageSmaller response time is preferred.

can be initialized simply by retaining the final random-

number seeds from the preceding stage. As a bonus, it is The expected response time is the performance measure
possible to enhance (in a theoretically rigorous way) the of interest, and the goal of the pilot study is to determine
performance of some of the procedures through the use of which designs are the better performers, which have
common random numbers, a popular variance reduction similar performance, and which can be eliminated as

technique sometimes used in simulation.

The remainder of this article is organized as follows.
In the next section, we will establish relevant notation and
ground rules.

Sections 3-5 discuss screening methods,

clearly inferior.

3.1 Multiple Comparison Approach

procedures for selecting the best alternative, and methodsLet n; denote the expected response time for architecture

for comparing alternatives with a standard, respectively.
Some final thoughts end the discussion in Section 6.

2 PRELIMINARIES

To facilitate what follows we define some notation: B€f
represent theith simulation output from system design
fori=1,2,...,k alternatives ang = 1,2, .... For fixed

7, we will always assume that the outputs from system
1, Y;1,Y0, ..., are independent and identically distributed
(i.i.d.). These assumptions are plausibleYif,Y,s,...

are outputs across independent replications, or if they are
appropriately defined batch means from a single replication
after accounting for initialization effects. Let; = E[Y;]
denote the expected value of an output from:thesystem,
and lete? = Var[Y;;] denote its variance. Further, let

i = PrqYs; Yyi
p r{ j > max ea}

be the probability that;; is the largest of thgth outputs
across all systemsvhen Yi;,Ys;,...,Y,; are mutually
independent

The methods we describe make comparisons based on

either u; or p;. Although not a restriction on either SSPs
or MCPs, we will only consider situations in which there
is no known functional relationship among the or p;
(other thany_¥_, p; = 1). Therefore, there is no potential
information to be gained about one system from simulating
the others—such as might occur if the were a function

of some explanatory variables—and no potential efficiency
to be gained from fractional-factorial experiment designs,
group screening designs, etc.

3 SCREENING PROBLEMS

Example 1 A brain-storming session produc@s poten-
tial designs for the architecture of a new computer system.
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i. MCPs attack the screening problem by forming
simultaneous confidence intervals on the parameigrg.;
forall i £ j. Thesek(k—1)/2 confidence intervals indicate
the magnitude and direction of the difference between
each pair of alternatives. The most widely used method
for forming the intervals is Tukey’s procedure, which is
implemented in many statistical software packages and
which is known to be more efficient than other methods
such as those involving Bonferroni's inequality. We review
Tukey’s procedure here and cite some recent advances.
General references include Hochberg and Tamhane (1987)
and Miller (1981); most standard statistics textbooks also
contain some version of the procedure.

Suppose that the systems are simulated independently,
and we obtain i.i.d. output®;;, Yo, ..., Y, from system
i, i=1,2,....k LetY; =3 " Y;;/n; be the sample
mean from system, and let

1k
zgzg

be the pooled sample variance.
confidence intervals are

1 & _
1 Z(Yij - Y)?
j=1

S2

L%

Tukey’s simultaneous

(a)
kv

V2

1 1
—_ 4 —
n; U

pi =y € Y=Y+ S

for all ¢« # j, where Q,(flz is the 1 — o quantile of
the Studentized range distribution with parameteand

v = Zle(ni — 1) degrees of freedom (see for instance
Hochberg and Tamhane 1987, Appendix 3, Table 8, or
Goldsman and Nelson 1998, Table 8.1).

When theY;; are normally distributed wittcommon
(unknown) variance, anch; = nq - = nyg, these
intervals achieve simultaneous coverage probabilityc.
Hayter (1984) made the important finding that the coverage
probability is strictly greater thath — o when the sample
sizes are not equal.
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3.2 Subset Selection Approach

4 SELECTING THE BEST

The subset selection approach is a screening device thatExampIe 2 (Goldsman, Nelson, and Schmeiser 1991)

attempts to select a (random-siz@)bsetof the &k = 25
competing designs of Example 1 that contains the design
with the smallest expected response time. Gupta (1956,
1965) proposed a single-stage procedure for this problem
that is applicable in cases when the data from the competing
designs are balanced (i.ei; = --- = ny = n) and are
normal with common (unknown) varianee’. Nelson, et
al. (1998) handle more general cases—in particular, that
in which the unknown variances?, i = 1,2,...,k, are
not necessarily equal. Their procedure is illustrated below.

(Random) Subset Procedure

Specify the common sample size as well as the
desired probabilityl — . of actually including the best
design in the selected subset. Further, calculate the
following quantile from thet-distribution withn — 1
degrees of freedom:

1 .
1-(1—a)*=1 n—-1

Take an i.i.d. sampl&7y,Ys,...,Y;, from each of
the k£ systems simulated independently.

Calculate thek sample meany; = Z;‘zl Yi;/n, and
sample variances

i (Y = Y5)?

S92 —
n—1

2 Y

for i =1,2,...,k. In addition, calculate the quantity

()

Include theith design in the selected subset if

S? + 53

n
for all ¢ # j.

4.

Y, < Y+ W, forall j #i.

If we had been interested in selecting responses with the

largest expected values, then the final step above would

instead be

4’. Include the:ith design in the selected subset if
Y, > Y; — W, for all j #i.

Notice that as the common sample sizeincreases, the

For the purpose of evaluation prior to purchase, simu-
lation models of four different airline-reservation systems
have been developed. The single measure of system per-
formance is the time to failure (TTF), so that larger TTF

is better. A reservation system works if either of two
computers works. The four systems arise from variations
in parameters affecting the TTF and time-to-repair dis-
tributions. Differences of less than about two days are
considered practically equivalent.

4.1 Indifference-Zone Selection Approach

If expected TTF is taken as the performance measure of
interest, then the goal in this example is to select the system
with the largest expected TTF. In a stochastic simulation
such a “correct selection” can never be guaranteed with
certainty. A compromise solution offered liydifference-
zone selectiois to guarantee to select the best system with
high probability whenever it is at least a user-specified
amount better than the others; this “practically-significant”
difference is called the indifference zone. In the example
the indifference zone i& = 2 days. Law and Kelton (1991)
describe a number of indifference-zone procedures that have
proven useful in simulation, while Bechhofer, Santner, and
Goldsman (BSG) (1995) provide a comprehensive review
of SSPs.

MCPs approach the problem of determining the best
system by forming simultaneous confidence intervals on
the parameterg; — max;-; pu; for i =1,2,...,k, where
u; denotes the expected TTF for thgh reservation
system. These confidence intervals are knowmagiple
comparisons with the best (MCBand they bound the
difference between the expected performance of each
system and the best of the others. The first MCB
procedures were developed by Hsu (1984); a thorough
review is found in Hochberg and Tamhane (1987).

Matejcik and Nelson (1995) and Nelson and Matejcik
(1995) established a fundamental connection between
indifference-zone selection and MCB by showing timatst
indifference-zone procedures can simultaneously provide
MCB confidence intervals with the width of the intervals
corresponding to the indifference zon€he procedures we
display below are combined indifference-zone selection and
MCB procedures. The advantage of a combined procedure
is that we not only select a system as best, we also gain
information about how close each of the inferior systems is

W;; tend to decrease, and so the random subset size alsoto being the best. This information is useful if secondary

tends to decrease.

Sullivan and Wilson (1989) proposeestricted subset
procedures, in which the experimenter can specify an upper
bound on the subset size.
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criteria that are not reflected in the performance measure
(such as ease of installation, cost to maintain, etc.) may
tempt us to choose an inferior system if it is not deficient
by much.
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4.1.1 Independent Sampling 7.

The next two combined procedures use sampling strate-8'.

gies in which the normal observations between scenarios
are independent, i.eY;; is independent ofy; ; for all

i #4 and all j. The first combines Rinott's (1978)
two-stage indifference-zone procedure with accompanying
MCB intervals, simultaneously guaranteeing a probabil-
ity of correct selection and confidence-interval coverage
probability of at leasti — o under the stated assumptions.

Select the system with the smallést as best.
Simultaneously form the MCB confidence intervals

My —minp; €
J#i

- +
- }:/i—min?]’—é ) lz/'l—mml?]—&-&
J#i J#i
fori=1,2,...,k.

Nelson, et al. (1998) show how to combine Section

3.2’s subset procedure with the Rinott+MCB procedure.

Rinott + MCB

1. Specify the indifference-zone parametethe desired
probability of correct selectioh— «, and the common
first-stage sample size, > 2. Let h, solve Rinott's
integral for ng, k, and o (see the tables in Wilcox
1984 or BSG 1995).

2. Take an i.i.d. sampl&;;,Yis,...,Y;,, from each of 1
the k& systems simulated independently. '
3. Calculate the first-stage sample meaM¢ D
Z;‘il Y;;/no, and marginal sample variances
n (1
o - T =Yy
! ng — 1 ’
fori=1,2,... k.
4. Compute the final sample sizes 2.
Ni = maX{”Oa "(hasz/é)Q-‘} 3
fori=1,2,...,k, where[-] is the integer “round-up” 4
function. '

5. TakeN;—ng additional i.i.d. observations from system
1, independently of the first-stage sample and the other
systems, fori =1,2,... k.

6. Compute the overall sample means= Z;.V:’il Yi; /N;
fori=1,2,... k.

Select the system with the Iargé:s; as best.

Simultaneously form the MCB confidence intervals g,

i —max i €
Hi g Hj

- +
— izfifmax?jfé s ?ifmaxf/jJr(s
i i

for i = 1,2,...,k, where (a)* = max{0,a} and 6.

—(b)” = min{0, b}.

If we had been interested in selecting the system with the

smallestexpected value, then the final steps above would 7.

instead be
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This combined procedure is of great utility when the
experimenter is initially faced with a large number of
alternatives—the idea is for the subset procedure to pare
out non-contending systems, after which Rinott selects the
best from the survivors.

Subset + Rinott + MCB

Specify the overall desired probability of correct
selectionl — «, the indifference zoné, the common
initial sample sizeng > 2, and the initial number of
competing systemsé. Further, set

t 1
1-(1—a/2) k=1 no—1

and leth,/, solve Rinott’s integral forng, k, and
a/2 (see Wilcox 1984 or BSG 1995).

Take an i.i.d. sampl&’;,Yi,...,Y:,, from each of
the k& systems simulated independently.

As in Step 3. of Rinott+MCB.

Calculate the quantity

52 4 52\ '/?
Wi = t(Z ]>
no

for all i # j. Form the screening subsét containing
every alternativel such thatl <i < k and

v > v (Wi - 8)* forall j #£.

If I contains a single index, then stop and return that
system as the best. Otherwise, for alf 7, compute
the second-stage sample sizes

N; = max{no, [(ha/25:/6)*]} -

Take N; — ng additional i.i.d. observations from all
systemsi € I, independently of the first-stage sample
and the other systems.

Compute the overall sample means= Zj.v;l Yij/Ni
forie 1.
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. < \/ n % k
8. Select the system with the largést as best. vyhere Y =352, Yi/no, Y = >, Yi;/k, and
Vo= 30 252, Yy /kno.
4. Compute the final sample size
N = max {no, [(95/6)*]}.

Take N — ng additional i.i.d. observations from each
system, using CRN across systems.

9. With probability at leasi — «, we can claim that

* For all i € I¢, we haveyu; < max;z;pu; (i.e., the
systems excluded by the screening are not the best),
and

* If we define J; ={j:j €1 andj # i}, then for all

1 €1,
Ha —maxhy € 6. Compute the overall sample means= """ | ¥;;/N
_ T fori=1,2,...,k.
—(YVi—maxY,;—6) ,|Yi—max¥V,;+56 : . =
[ ( jer 7 > < et ) ] 7. Select the system with the largést as best.

(Thus, these confidence intervals bound the difference g,
between each alternative and the best of the others in
L)

Simultaneously form the MCB confidence intervals as
in Rinott+MCB.

4.2 Multinomial Selection Approach

4.1.2 Correlated Samplin
ping Another approach to the airline-reservation problem is to

A fundamental assumption of the Rinott+MCB and the select the system that is most likely to have the largest
Subset+Rinott+MCB procedures is that tiie systems  actual TTF (instead of the largesixpectedTTF). To this
are simulated independently (see Step 2 in both of the end, one can defing; as the probability that designwill
above procedures). In practice this means that different produce the largest TTF from a given vector-observation
streams of (pseudo)random numbers are assigned to they’; = (Yv3;,Ys;,...,Y,;). The goal now is to select the
simulation of each system. However, under fairly general design associated with the largest-value. This goal
conditions, assigning common random numbers (CRN) is equivalent to that of finding the multinomial category
to the simulation of each system decreases the varianceshaving the largest probability of occurrence; and there is
of estimates of the pairwise differences in performance. a rich body of literature concerning such problems.
Unfortunately, CRN also complicates the statistical analysis More specifically, suppose that we want to select
whenk > 2 systems are involved. The following procedure the correct category with probability — a whenever the
from Nelson and Matejcik (1995) provides the same ratio of the largest to second largest is greater than
guarantees as Rinott+MCB under a more complex set some user-specified constant, gay 1. The indifference

of conditions, but has been shown to be quite robust to constantd can be regarded as the smallest ratio “worth
departures from those conditions. And unlike Rinott+MCB,  detecting.”

it is designed to exploit the use of CRN to reduce the The following single-stageprocedure was proposed
total number of observations required to make a correct by Bechhofer, Elmaghraby, and Morse (BEM) (1959) to
selection. guarantee the above probability requirement.

NM + MCB BEM

For the giverk, and(«, §) specified prior to the start
oL (E—1)(mo—1),0.5" of_ sampling, findn from the Tables in BEM (1959),
of the equicorrelated multivariate centtadlistribution; Gibbons, Olkin, and Sobel (1977) or BSG (1995).
this constant can be found in Hochberg and Tamhane 5 Take a
(1987), Appendix 3, Table 4; BSG (1995); or by using
the FORTRAN program AS251 of Dunnett (1989).

1. Specify the constant$, «, and ng. Let g = 1
7 an equicoordinate critical point

random sample ofn observations
Yi1,Y0,...,Y;,, from each alternativei, i =
1,2,...,k.  Turn these inton independent multi-
nomial observationsX ; = (X1;, Xoj,..., Xg;), j =
1,2,...,n, by setting

X, — 1, if Y;‘j > maX#i{ng}
71 0, otherwise

2. Take an i.i.d. sampl&;y,Yio,...,Y;,, from each of
the k& systemsusing CRN across systems

3. Compute the approximate sample variance of the
difference of the sample means

Jj=1

ek Y (Y - Y -V 4 7))
- (k—1)(ng — 1) ,

SQ
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where we assume (for notational convenience) that
there are never ties for the maximum observation
within a particular vectory”;.
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3. LetW; =37 X fori=12...k Select the
design that yielded the large8t; as the one associated

with the largestp; (randomize in the case of ties).

A more efficient procedure, due to Bechhofer and Goldsman
(1986), usesclosed, sequentiakampling; that is, the
procedure stops when one design is “sufficiently ahead”
of the others.

BG

1. For the giverk, and(«, 8) specified prior to the start
of sampling, find théruncation numbe(i.e., an upper
bound on the number of vector-observationg)from
the tables in Bechhofer and Goldsman (1986) or BSG
(1995).

At the mth stage of experimentationm( > 1),
take the random multinomial observatioX,, =
(X1m, Xom, -, Xkm) (defined above) and calculate
the ordered category totalsiyj,,, < Wigjy, < --- <
Wikm: also calculate

e

-1
Don = (1/0)(W[k]7n ~Wiipm)

1

-
Il

Stop sampling at the first stage wheither

Zm <a/(l—a) or m=ng

or Wiim — Wi—1jm = no —m,
whichever occurs first.

Let N (a random variable) denote the stage at which

the procedure terminates. Select the design that yielded

the largestiV;y as the one associated with the largest
p; (randomize in the case of ties).

Miller, Nelson, and Reilly (1998) present a remarkably
efficient procedure that directly uses the origingl;
observations (instead of the 0;;, which lose informa-
tion). Their procedure AVC, based ofl possible \ector
comparisons of the observations, always results in an in-
creased probability of correct selection when compared to
the analogous implementation of the BEM procedure.

AVC

1. For the giverk, and («, ) specified prior to the start
of sampling, use the same as in BEM.

2. Take a random sample ofn observations
Yi1,Yi,...,Y,, from each alternativei, ¢ =
1,2,...,k. Consider alln* vectors of the form
Y, = (Y, Y, Yy), 4 =1,2,...,nF, whereY;
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is one of then observations from alternative Turn
these inton* (non-independent) multinomial obser-
vations, X ; = (X1, Xojeo s Xp)s = 1,2,...,nF,
by setting

X -

where we again assume that there are never ties for
the maximum observation within a particular vector

’
Y.

J’

1, if Yy > maxe{Y,;}
0, otherwise

3. LetW, = Z?; X;; for i =1,2,....k. Select the
design that yielded the Iarge@f; as the one associated
with the largestp; (randomize in the case of ties).

5 COMPARISONS WITH A STANDARD

Example 3 Several different investment strategies will
be simulated to evaluate their expected rates of return.
The strategy ultimately chosen may not be the one with
the largest expected return—since factors such as risk
could be considered—but none of the strategies will be
chosen unless its expected return is larger than that of a
conservative U.S. Government bond fund.

Here the goal is to select the best investment strategy
only if it is better than the standargbond fund); if no
strategy is better than the standard, we continue with the
standard. More precisely, we have the following probability
requirement: Denote the (known or unknown) expected
value of the standard by, and the ordered means of the
other investment strategies Ry < pp) < - < ppg-

For specified constants and 6 with § > 0, we require

P{Select the standajd> 1 — a whenever ) < po
and

P{Select best strategy> 1 —«a whenever

pRy > max{fio, pr—1]} + 0.

We now present a generic procedure for the problem of
comparison with a standard due to Nelson and Goldsman
(1997); this generic procedure can be used for a variety of
situations (e.g.uxo known or unknown, unequal variances
across systems, etc.), thus generalizing earlier results due
to Bechhofer and Turnbull (1978).

Comparison with a Standard

1. Given k alternative systems and a standard (call it
system 0), specify an initial first-stage sample size
ng, an indifference zon&, and a confidence level
1 — «. Determine appropriate constantsand h, and
let ¢ = 6h/g.
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2. Generate a random sampl;,Ys,...,Y;,, from REFERENCES
systemi, for i =0,1,2,...,k.

Bechhofer, R. E., S. Elmaghraby, and N. Morse. 1959. A
single-sample multiple decision procedure for selecting
the multinomial event which has the highest probability.

. . . Ann. Math. Stat30:102-119.

4. Determine the required total sample size from system Bechhofer, R. E.. and D. M. Goldsman. 1986. Truncation
v as of the Bechhofer-Kiefer-Sobel sequential procedure for

N; = max{ng, [(9S;/6)*1}. selecting the multinomial event which has the largest
probability (II): Extended tables and an improved
procedure Comm. Stat.—Simul. and Cont15:829—
851.

Bechhofer, R. E., T. J. Santner, and D. Goldsman. 1995.
Design and Analysis of Experiments for Statistical
Selection, Screening and Multiple ComparisoNew
York: John Wiley and Sons.

Bechhofer, R. E., and B. W. Turnbull. 1978. Twbk -+ 1)-
decision selection procedures for comparingormal
means with a specified standadd.Amer. Stat. Assoc.

3. Compute an appropriate variance estimaiprto be
associated with systern

5. TakeN; —ng additional i.i.d. observations from system
i_if needed, and compute the overall sample mean
Y=Y 00 Yy /N; for i =0,1,2,... k.

6. With confidence level of at least — «, apply the
following rule:

* If maxi<i<ik X:Q < }:/0 + ¢, then choose the standard

and form the one-sided confidence intervals 73:385-392.
- - Boesel, J., and B. L. Nelson. 1998. Accounting for ran-
po—pi < Yo—Yitec domness in heuristic simulation optimization. Technical
Report. Dept. of Industrial Engineering and Manage-
fori=1,2,... k. ment Sciences, Northwestern Univ., Evanston, lllinois.
Chen, H.-C., C.-H. Chen, L. Dai, and E. u¥esan.

* Otherwise, choose the alternative associated with the 1997. New development of optimal computing budget
largest sample meanax;<;< Y;, and form the MCB allocation for discrete event simulation. Rroc. 1997
intervals of the form given in Step 8 of Rinott+MCB Winter Simulation Conferenged. S. Andradttir, K. J.
fori=0,1,2,...,k. Healy, D. H. Withers, and B. L. Nelson, 334-341.

Piscataway, New Jersey: |IEEE.
Chick, S. E. 1997. Selecting the best system: A decision-
6 FINAL THOUGHTS theoretic approach. IfProc. 1997 Winter Simulation
Conference ed. S. Andradttir, K. J. Healy, D. H.
Space limitations preclude detailed discussion, but we also Withers, and B. L. Nelson, 326—333. Piscataway, New

mention the interesting technical results to be found in Jersey: IEEE.

Damerdji, et al. (1997ab), Damerdji and Nakayama (1996), Damerdji, H., P. W. Glynn, M. K. Nakayama, and J. R.

and Nakayama (1997), in which the authors rigorously Wilson. 1997a. Selection of the best system in steady-
show that certain selection-of-the-best procedures satisfy state simulations. Technical Report 97-5, Dept. of
probability requirements similar to those in Section 4. Industrial Engineering, North Carolina State Univ.,

Chen, et al. (1997) propose a completely different approach Raleigh, North Carolina.
in their discussion on optimal budget strategies. Chick Damerdji, H., P. W. Glynn, M. K. Nakayama, and J. R.

(1997) takes a decision-theoretic view on the selection- Wilson. 1997b. Selection of the best system in transient
of-the best problem. And Boesel and Nelson (1998) use simulations. Technical Report 97—6, Dept. of Industrial

the techniques discussed in the current paper to present a  Engineering, North Carolina State Univ., Raleigh,

methodology for optimization of stochastic systems. North Carolina.

Damerdji, H. and M. K. Nakayama. 1996. Two-stage
multiple-comparison procedures for steady-state sim-
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