
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

MODSIM III
A Tutorial with Advances in Database Access and HLA Support

John Goble and Brian Wood

CACI Products Company
3333 North Torrey Pines Court

La Jolla, CA 92037, U.S.A.

n
c
a
h

d
ty

e
r

e
e
s

t
e
io
e

n

iv
e

f
ff

te

th
el;

e

ft
e
it
se,
o

ds

re
ABSTRACT

MODSIM II is an object-oriented discrete event simulatio
language featuring extensive run-time libraries, graphi
user interface and results presentation tools, datab
access, and hooks to HLA. This tutorial introduces t
MODSIM III language. It shows how MODSIM III’s
simulation “world view” together with its object-oriente
architecture, built in graphics, and interoperabili
contribute to successful simulation application building.

1 WHAT IS MODSIM III?

MODSIM III is a complete development environment. Th
Simulation Layer, Graphics Editor, Compilation Manage
and the Interactive Debugger provide the environm
required for the successful development of advanc
models. MODSIM III runs on Windows 95, 98, and NT a
well as Unix platforms.

MODSIM III is an object-oriented discrete even
simulation language. It offers extensive run-time librari
to help the developer create commercial quality simulat
applications quickly. These libraries include modul
focused on the unique aspects of simulation as well
modules for developing graphical user interfaces a
results presentation mechanisms. Because MODSIM
generates C++ that compiles using the platform’s nat
compiler, it also offers seamless interoperability with oth
tools.

MODSIM III combines CACI's three decades o
experience with advances in software engineering to o
the most productive environment for the development
large and complex models.

2 DEFINITION MODULE

Objects in MODSIM III are described in two separa
blocks of code. The Definition block describes the obje
type by declaring its variables and methods. This is
object description as known by other objects in the mod
19
al
se
e

,
nt
d

s
n
s
as
d

III
e
r

er
of

ct
e

it provides the formal interface specification. An exampl
of a Definition block for an aircraft object is shown below.

Aircraft = OBJECT
 BestCruise : REAL;
 InFlight : Boolean;
 ASK METHOD SetCruise (IN r : REAL);
 TELL METHOD Fly (IN dist : REAL);
END OBJECT;

The Definition block for an aircraft object declares the
variables (fields) and methods (functions) that aircra
objects use in the simulation model. The information th
aircraft knows is contained in its variables. The things
can do are described by its methods. In this simple ca
the aircraft is responsible for the management of tw
variables, which represent its state:

BestCruise - the optimal cruise speed
InFlight - whether or not the aircraft is in flight.

3 IMPLEMENTATION MODULE

The aircraft behaviors are described in the metho
provided in the Definition block. The logic of what they
do and how they affect the state variables of the object a
described in the Implementation block, shown below.

ASK METHOD SetCruise (IN speed : REAL);
BEGIN
 BestCruise := speed;
END METHOD;

TELL METHOD Fly (IN dist : REAL);
BEGIN
 InFlight := TRUE
 WAIT DURATION dist/BestCruise;
 END WAIT;
 InFlight:=FALSE;
 OUTPUT ("Arrived Safely at ",
SimTime);
END METHOD;
9

Goble and Wood

ll
th
th

y
ed

e
ve

us
se
n

tio
s

st
v
vi
le
de
ta

et
de

e
ntl
J
0

s
he
III
je

igh
ar
th

rs
’s
an
a
the
e
and

e
d

ode

s

st
es

ch

e
of
ility
ate
The behaviors that objects can perform are fu
described in the Implementation block. In this case
aircraft is capable of the behaviors described in
following two methods:

ASK METHOD SetCruise - When an aircraft
receives the SetCruise message, it immediatel
registers the new value for its optimal cruising spe
simulation time does not elapse.

TELL METHOD Fly - When an aircraft receives th
Fly message, it calculates the required flight time to co
this distance at its cruising speed. Next, the activity pa
in execution until the indicated period of time has elap
within the simulation model. It then prints a notificatio
that the plane has arrived safely. Unlike ASK methods,
TELL methods describe behaviors that elapse simula
time. While this method pauses, waiting for time to pa
other methods of other objects may execute.

A key benefit of MODSIM III in building complex
simulations is the ability to easily model these stocha
behaviors. In a large model, many objects will ha
behaviors that need to elapse time. Often, these beha
will be concurrent, or overlapping in time. For examp
our model can contain multiple aircraft created as nee
each can be given its own identifier, has its own s
variables and can execute its methods as requested.

For a simple example of concurrent behaviors, l
look at how an aircraft dispatcher in our model might or
two aircraft to fly to different destinations:

VAR
 JumboJet : AircraftObj;
 Biplane : AircraftObj;

BEGIN
 ...
 ASK jumboJet TO SetCruise(600.0);
 TELL jumboJet TO Fly(3000.0);

 ASK biplane TO SetCruise(100.0);
 TELL biplane TO Fly(200.0)IN 1.0;

Using TELL methods, the flight times of both th
jumboJet and biplane aircraft can be modeled concurre

In this example, the aircraft object named Jumbo
will elapse 5 hours flying a distance of 3000 miles at 6
mph. One hour after the JumboJet takes off (... IN
1.0) , the Biplane aircraft will take off and fly 200 mile
at 100 mph. It will complete its flight two hours before t
JumboJet arrives at its destination. MODSIM
sequences the execution of the methods of both ob
instances, including the delays representing the fl
times, so that the events of taking off and landing
played out in the correct order in the model. ASKing
object does not elapse any simulation time.
200
y
e
e

;

r
es
d

n
s,

ic
e
ors
,
d;
te

's
r

y.
et
0

ct
t
e
e

4 TIMING AND INTERACTION

Besides executing concurrently, time elapsing behavio
may interact. To make the model more realistic, let
consider the effect of changing the cruising speed of
aircraft while it is in flight - perhaps in response to
change in weather conditions. This change invalidates
original computation of flight time, and a new arrival tim
must be determined based on the new cruising speed
the distance remaining.

Let's look at how to refine the implementation, of th
methods of our aircraft object to incorporate this modifie
behavior. The SetCruise method can interrupt the Fly
method if appropriate. On recognition of this
INTERRUPT, the remaining time to WAIT is reevaluated.
To see the changes that we've made, compare this c
with the original Implementation block for the aircraft.

ASK METHOD SetCruise(IN speed : REAL);
BEGIN
 BestCruise := speed;
 IF InFlight
 Interrupt(SELF,"Fly");
 END IF;
END METHOD;

TELL METHOD Fly (IN dist : REAL);
BEGIN
 InFlight := TRUE
 WHILE dist > 0.0
 speed := BestCruise;
 start := SimTime;
 WAIT DURATION dist/BestCruise
 dist := 0.0;
 ON INTERRUPT
 elapsed := SimTime-start;
 dist := dist-(elapsed*speed);
 END WAIT;
 END WHILE;
 InFlight:=FALSE;
 OUTPUT ("Arrived Safely at ",
SimTime);
END METHOD;

The aircraft's CruiseSpeed can now be changed
while in flight, and the arrival time will be recomputed a
needed.

Look at how the Fly method describes the entire
flight from take off to landing, allowing multiple speed
change events, in a logical activity description. Contra
this with the numerous disconnected event subroutin
required in a conventional programming language whi
does not support the concept of time-elapsing behaviors.

Because MODSIM III provides features to manage th
complex scheduling, interaction and synchronizing
behaviors that elapse time, you get increased readab
and consistency in your models. These factors transl
directly to increased productivity and maintainability.

MODSIM III: A Tutorial with Advances in Database Access and HLA Support

se
 fo

 su
ut
ith

re
 a

nd
me
ts
u

he
la
s
nd
 t

ver
o

ime

as
 I
as

y
st-

. T
ra
rge
ke

s t
tin
d

ec
din
d

jec
d

 i
est

wil

.
r'

re

ial

r

a

k
t
of

,

.

sy-
a
,
l
he
a

MODSIM III understands the meaning of the
simulation features. Thus it detects misuse early;
example, WAIT statements are not allowed in ASK
methods that are always instantaneous. Not only does
checking save time in building and running a model, b
can help you avoid subtle logic errors in models w
complex interactions.

These specialized features for modeling concur
and interacting behaviors distinguish MODSIM III as
simulation model development tool.

5 SIMULATION LIBRARIES

MODSIM III includes a rich collection of already built a
tested simulation components. These library objects
many common simulation modeling requiremen
MODSIM III’s object oriented architecture lets yo
customize these library objects to your special needs.

Consider contention for resources an issue at the
of many discrete system simulations. Objects incur de
in competing for resources and queue for resource
some priority basis. The objects may choose to aba
requests after a time-out interval. Otherwise, they use
resource for a while and then release it. Almost e
simulation model that includes resource will want to rep
measurements of resource utilization, waiting t
statistics, and so on.

MODSIM III provides a prebuilt Resource object
one of many objects in its simulation support libraries.
our airport model, for example, we can model runways
resource. We can use an instance of ResourceObj taken
directly from MODSIM III's library to model runwa
allocation, servicing the aircraft on a first-come-fir
served basis, and recording statistics.

We need to make one important change, however
avoid the danger of wake turbulence effects, light airc
must not use a runway immediately following a la
aircraft; they should delay a short time to allow wa
vortices in the air to dissipate. Inheritance allows u
describe a Runway object in terms of the exis
ResourceObj provided by MODSIM III. We only nee
to specify the differences between the new RunwayObj
and ResourceObj .

Inheritance is one of the chief benefits of obj
oriented software construction, and the basis for provi
libraries of useful objects which can be readily adapte
specialized needs.

In the example below, we import a resource ob
from the MODSIM III library, define an enumerate
variable called AircraftCategory and show the
Definition block for Runway. Since our Runway object is
derived from the library-supplied resource object,
inherits all the built-in capabilities for enqueueing requ
and maintaining utilization statistics. The Give method is
overridden, meaning that a different implementation
201
r

ch
it

nt

et
.

art
ys
on
on
he
y

rt

n
 a

o
ft

o
g

t
g
to

t

t
s

l

be substituted in the Implementation block (not shown)
The Runway object also has an extra field to 'remembe
the last aircraft type. Our specialized implementation logic
can now be designed to impose appropriate delays befo
giving the runway to aircraft of different categories.

FROM ResMod IMPORT ResourceObj;

AircraftCategory = (Light, Heavy);
 ...
Runway = OBJECT(ResourceObj)
 lastUse : AircraftCategory;
 OVERRIDE
 TELL METHOD Give(IN n : INTEGER);
END OBJECT;
...

The Runway object, derived from MODSIM III's
resource object has been customized to meet our spec
modeling requirements.

New object types, derived through inheritance from
existing types, conform to common interfaces but
incorporate additional capability. This is an excellent
match to the evolutionary nature of successful simulation
models; we add details in areas of special focus as ou
understanding of the system increases.

The reuse of libraries of pre-built objects holds out the
promise of real productivity gains in software
development. The extensibility offered by inheritance,
coupled with the modular separation of interface
definitions from actual implementation code support
practical reuse of object libraries.

Object orientation offers other benefits to model
development. The controlled access to object dat
structures through the object methods allows us to build
robust objects which can be the basis of reuse. Look bac
at the modified aircraft object implementation: any reques
to change the aircraft speed now ensures a reevaluation
the flight time, which is faithful to the way things happen
in the real world.

Taken together, support for object modeling concepts
along with concurrent time based behaviors, make
MODSIM III an effective simulation productivity tool.

6 GRAPHICS AND SIMULATION

Through inheritance, the objects in your simulation can
aquire a rich set of graphical properties and behaviors
You can use this to provide an interactive, graphically
managed model that speeds up analyses and produces ea
to-understand results. Adding graphics is easy. You use
graphical editor to configure the appearance of icons
menus, dialog boxes and presentation charts. Minima
code then connects these to the entities and variables in t
model. Adding graphics can enhance the appeal of
model in three principal areas.

Goble and Wood

rio
ing
ug

the
nd
wn
 on
w

ied
y
an

av
ic
h t
pa

he
te
be

s,
the
g
 a
es
se

a
ne
a

th
 a
e
 th
en

t th
the

e

e
-
e

n

,

,

Interactive graphical editing lets you define a scena
to simulate by selecting icons from the palette, position
them on the screen, and configuring parameters thro
dialog boxes.

With a scenario on the screen, you can begin
simulation and see an animated picture of the system u
study. In addition, you can study plots that are dra
while the simulation is running. You can pan and zoom
areas of special interest. These results, sho
dynamically, will suggest alternatives that can be tr
immediately. Interacting with the model in this wa
increases understanding of the system under study
speeds your analysis. Often, errors that may h
otherwise been difficult to find will be obvious. Dynam
analysis contrasts sharply with the old iterative approac
analysis where the following steps were repeated: pre
data, simulate, examine results, modify data, simulate.

Finally, through animation, you can dramatize t
effect of alternative system configurations, spot unexpec
behavior, and back up your recommendations. It's the
way to sell your ideas.

7 DATABASE ACCESS

Harry Markowitz is a Nobel Prize winner in Economic
one of the founders of CACI Products Company, and
co-inventor of the SIMSCRIPT II.5 programmin
language. Late last year, Harry noted “The world is
database.” We listened, and MODSIM III now provid
tools that allow you to access ODBC-compliant databa
through your MODSIM code.

In the same way that you can use the ResourceObj
from MODSIM III’s ResMod module, you can use
number of database access objects from the
DatabaseMod module. For example, to connect to
database, you use the following protocol.

VAR
 db : DatabaseObj;
BEGIN
 NEW(db);
 ASK db TO Connect(foo, "", "");

To determine the status of the connection , use
GetStatus () method of the database object to get
StatusObj containing detailed information about th
current status of the database. Once you have verified
you have a good connection, you create SQL statem
using the database object’s CreateNewStatement
method, format an SQL string, and pass the statemen
Execute message to actually fire it. Given a handle to
database (db), a table name (table), a string with
comma-separated field names (fields), and a string with
comma-separated values (values) you might use a code
fragment like this.
202
h

er

n

d
e

o
re

d
st

s

w

e

at
ts

e

statement := db.CreateNewStatement();
OutputError(db.GetStatus());
sqlStr := "Insert Into " + table +
 " (" + fields + ") " +
 "VALUES (" + values + ");";
ASK statement TO Execute(sqlStr);
OutputError(statement.GetStatus());
result := statement.GetResult();
OutputResults(result);
DISPOSE (statement);

If we make the following assignments and call a
procedure containing the code fragment show above, w
will insert a record into the table named Ages with the
value of Kevin for the Name field and 39 for the Age field.

table := "Ages";
fields := "Name,Age";
values := "Kevin,39";

The DatabaseMod module provides tools to retrieve
data from a database as well as commit data to th
database. With its roots in ODBC and SQL, and its object
oriented design and implementation, you are able to mak
your MODSIM III application a player in the database-
centric world.

8 HLA

HLA (The High Level Architecture) is a standard for
interoperability among simulations within the Department
of Defense. HLA is related to earlier DoD standards such
as DIS. The DoD vision for modeling and simulation to be
able to construct simulation or training exercises from
libraries of component simulations. HLA has been
proposed as an IEEE standard and its standardizatio
process is proceeding. More information on HLA can be
obtained at http://hla.dmso.mil/.

HLA is supported by a Run-Time Interface (RTI) that
is callable from many popular languages, including C++
Ada, and Java. The C++ bindings for HLA are usable
from MODSIM applications and two of the first HLA
federations included JSIMS and NASM/MP, models
written in MODSIM. The RTI supports both local
intranets and the global internet.

CACI's vision for MODSIM III is to harness the
power of networks to make it easy for you to build
simulation models that operate through a network and
interoperate with useful components written in any
language.

In order to provide the best possible support for HLA,
CACI is developing MODSIM object library support for
the HLA, integrated with other parts of the MODSIM
system such as SimGraphics.

MODSIM's new HLA support packages the raw HLA
API into MODSIM objects. These objects address all HLA
areas, including Federation Management Services

MODSIM III: A Tutorial with Advances in Database Access and HLA Support

e

g

b
n

e
d

o

-
rs
ng
d

k

te
h

I's
a
at

ng
d
al
h

s,
a
y

t

m
r

o

d.

nd
te

g
,

d
n

d

y

,

g

a

,

Declarations, Object Management and Ownership, Tim
Management, and Data Distribution. MODSIM’s HLA
support provides automatic handling of message pumpin
exceptions, and callbacks.

MODSIM III with HLA support also provides
universal data value representation so that data can
seamlessly transported "through the wire" betwee
different computers and operating environments.

Since MODSIM III with SimGraphics is available on
Windows 95/98/NT as well as on all popular Unix
Systems, it is easy to load-balance a simulation mod
through a network or to display the user interface an
animated graphical output on different or remote
computers.

9 MAJOR APPLICATIONS AND USERS

Data Communications - CACI Products Company.
COMNET III, a graphical, off-the-shelf package, lets you
quickly and easily analyze and predict the performance
networks ranging from simple LANs to complex
enterprise-wide systems. COMNET III supports a building
block approach where nodes representing serve
computer, routers, and switches and links representi
ethernet, token ring, FDDI, and satellite can be configure
to model your own network. COMNET III interfaces with
most network Management Systems and Networ
Monitoring Systems. Extensive libraries of real-world
network devices are supplied for rapid and accura
modeling of networks. Hierarchical modeling objects suc
WAN clouds simplify modeling of X.25, Frame Relay, and
ATM networks.

Business Process Modeling - CACI Products Company.
SIMPROCESS is a process simulation tool based on CAC
object-oriented MODSIM language. SIMPROCESS is
hierarchical and integrated process simulation tool th
radically improves your productivity for process modeling
and analysis. SIMPROCESS integrates process mappi
hierarchical event-driven simulation, and activity-base
costing into a single tool. The object-oriented, hierarchic
approach provides development of Reusable Templates. T
building blocks of SIMPROCESS, namely processe
resources, and entities (flow objects) and its graphic
modeling features minimizes the time it takes to rapidl
prototype large MODSIM III applications.

Supply Chain Management - IBM Research
BPMAT is a supply chain simulation modeling tool tha
allows detailed modeling of various supply chain
management processes. A supply chain is defined in ter
of seven major process objects, namely, Custome
Manufacturing, Distribution, Transportation, Inventory
Planning, Forecasting, and Supply Planning.
e

203
,

e

l

f

,

,

e

l

s
,

Maintenance - HQ AFOTEC
The Rapid Availability Prototyping for Testing Operational
Readiness (RAPTOR) tool is a PC/Windows-based
modeling framework, built in MODSIM III, which allows
for quick creation of RM&A models for almost any
system. Using this tool, time for a completed RM&A
model of nearly any system can be reduced from months t
minutes. Users model their systems graphically by drawing
Reliability Block Diagrams (RBDs) and answering
questions about the way components fail and are repaire
The component failure and repair rates can then be
simulated over time to determine RM&A characteristics of
the overall system.

Transportation - Union Pacific Railroad
The transportation network simulation model is a strategic
planning tool for determining if there are adequate
resources to achieve the next year's projected business a
the train schedules to transport that business. It is a discre
event simulation developed in MODSIM III with
preliminary requirements and processes defined usin
SIMPROCESS. The model is driven by train schedules
crew and locomotive requirements that are downloaded
from a database. The traces from the simulation are loade
to a Microsoft Access based output database for decisio
making.

Aircraft/Air Traffic Management - Logistics Management
Institute
The Aircraft/Air Traffic Management Functional Analysis
Model (FAM) is a discrete event model designed to
analyze alternate concepts of air traffic management an
control. FAM is a completely flexible modeling
environment where the user can set up an airspace b
defining a number of aircraft, airport controllers, TRACON
controllers, airline operations centers and sector
controllers. The main question to be answered by FAM is
the FAA study of alternate, more efficient ways of
improving air traffic management. By manipulating the
model input files, a user can essentially construct an
airspace by defining number of airborne objects (i.e.,
aircraft) and land objects (e.g., airports, sectors, tracons
etc.) in the model.

Airdrop Risk Assessment Model (ARAM)- Air Force
Institute of Technology
The Airdrop Risk Assessment Model (ARAM) is a
MODSIM III-based object-oriented simulation designed to
provide an advanced risk assessment tool for predictin
paratroop/vortex encounters. The model essentially
converts a Wright Laboratory vortex model and the Purvis-
Doherr paratroop trajectory model into vortex and
paratroop "objects", respectively. The model can simulate
range of aircraft formations and wind conditions, and
incorporates random perturbations due to aircraft motion
wind shear, individual body weight, and parachute glide. It
encompasses two coordinate systems -- one air and on

Goble and Wood

ll

r
te
,
ort
-
ut

ts
in
.

a.
at

l
a,
m
s
e

ir
ground -- and can give ground dispersal information on a
paratroop objects.

Additional applications of MODSIM III can be found
on http://www.caciasl.com/modsim_major_apps.html.

10 MODSIM III AVAILABILITY

MODSIM III is developed and supported by CACI
Products Company. MODSIM III is available to your
organization for a free trial in your environment, on you
computer. We provide everything you need for a comple
evaluation at your site including training, software
documentation, sample models, and immediate supp
when you need it. In addition, CACI regularly offers time
tested training courses. More detailed information abo
MODSIM III can be found on http://www.caciasl.com/
modsim.html.

AUTHOR BIOGRAPHIES

JOHN GOBLE is Vice President and Chief Engineer in
the Professional Services Group at CACI Produc
Company in La Jolla, CA. He holds a MSc degree
Industrial Engineering from the University of Nebraska
Prior to coming to CACI he worked with Motorola as a
simulation developer in the Cellular Infrastructure are
John also worked in the Modeling and Analysis group
The Aerospace Corporation in El Segundo, CA.

BRIAN WOOD is a Project Engineer in the Professiona
Services Group at CACI Products Company in La Joll
CA. He holds a BS degree in Industrial Engineering fro
the California Polytechnic State University at San Lui
Obispo. Prior to coming to the Products Company, h
worked as a consultant in CACI’s projects division on a
traffic control simulation models for the European
Community.
204

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

