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ABSTRACT

ALPHA/Sim is a general-purpose, discrete-eve
simulation tool.  ALPHA/Sim allows a user to graphical
build a simulation model, enter input data via integra
forms, execute the simulation model, and view t
simulation results, within a single graphical environme
In this paper, we introduce ALPHA/Sim and describe h
to use ALPHA/Sim to build, simulate, and analyze 
simple manufacturing system.  In addition, we brie
describe some advanced features and list some sa
applications.

1 INTRODUCTION

ALPHA/Sim is a general-purpose, discrete-event simu
tion tool.  With ALPHA/Sim you can graphically build 
simulation model, enter input data (timing delays, routi
rules, initial conditions, and other data) via integrat
forms, execute the simulation model, and view the resu
within a single graphical environment.

ALPHA/Sim provides a hierarchical modelin
capability that allows models to be built from the botto
up, top-down, or both.  Models can be built without see
or writing a single line of code; it is also possible to link 
external software.  ALPHA/Sim automatically collec
statistics on populations (queues), delays, activity ra
and attributes.

ALPHA/Sim has been used in a wide number 
applications including computer hardware system
manufacturing systems, queuing systems, and milit
command and control.  ALPHA/Sim currently runs on t
PC (Windows NT) and Sun Workstation (SunOS a
Solaris under the X Window System or Motif).

The modeling paradigm used in ALPHA/Sim is bas
on Petri nets (PNs).  PNs were developed in the e
1960s to model concurrent operations in computer syste
Over the years PNs have been extended and applied
wide range of systems characterized as being concur
asynchronous, distributed, parallel, and stochastic.  PNs
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a mathematical and graphical modeling tool.  As a
mathematical tool, PNs can be used to set up sta
equations, algebraic equations, and simulation models.  A
a graphical tool, PNs provide a visual modeling technique

In this paper, we present a brief overview of PNs an
describe how to use ALPHA/Sim to implement a simple
manufacturing model.  Specifically, we describe how to
build the graphical model and define attributes, toke
types, timing delays, decision rules, output attribute
definitions, and statistics collection.  In addition, we briefly
describe some advanced features and list some sam
applications.

2 PETRI NETS

Petri nets (PNs) are a graphical and mathematical modeli
technique originally developed by C.A. Petri in the early
1960s to characterize concurrent operations in comput
systems (Petri 1962).  PNs have been extended to capt
many important aspects of large-scale systems, includin
attributes, timing relationships, and stochastic even
(Moore and Lynch 1990, Moore et al. 1986, Murata 1989
Peterson 1981).  The greatest appeal of PNs is the
conceptual simplicity.

PNs consist of four primitive elements (tokens, places
transitions, and arcs) and the rules that govern their ope
tion (Figure 1).  PNs are based on a vision of tokens
moving around a network.  Tokens appear as dots a
represent the objects or entities in a system.  Places are
shown as circles and represent the locations where obje
await processing.  Location can be either a physica
location (e.g., the queue where a message waits to be p
cessed) or a state (e.g., an idle resource).  Transitions
appear as rectangles and represent processes or ev
(e.g., processing a message or machining a part).  Final
arcs represent the paths of objects through the system
Arcs connect places to transitions and transitions to place
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an arrowhead at the end of the arc indicates the direction
the path.

(a)  Token (b)  Place (c)  Transition (d)  Arc

Figure 1: Depiction of PN Primitives

PN firing rules specify the behavior of transitions; i.e.
the conditions under which processes or events can occ
Three rules govern transition firing:

1. When all upstream places are occupied by at least o
token, the transition is enabled.

2. Once enabled, the transition fires.

3. When a transition fires, exactly one token is remove
from each upstream place and exactly one token 
placed in each downstream place.

Figure 2 depicts these rules for a transition (Assembl
with two upstream places (Part A, Part B) and on
downstream place (Assembly).

Assembly

Part A

Part B

Assemble

(a)  Simple model.

Assembly

Part A

Part B

Assemble

(b) Arrival of token in one upstream
place—Assemble partially enabled.

Assembly

Part A

Part B

Assemble

(c) Arrival of token in second upstream
place—Assemble is enabled.

Assembly

Part A

Part B

Assemble

(d) Assemble fires, removes one token
from each Part A and Part B and
puts  one in Assembly.

Figure 2: Transition Firing

Timing rules are associated with transitions and repre
sent the time required to complete some activity.  A timin
rule may be stochastic, based on an assigned probabi
function, a computed value, or a constant.  Decision rules
are associated with places and resolve cases where m
than one transition is enabled by the same token or set
tokens.  There are three types of decision rules:  priorit
probability, and constructed.  The priority decision rule
(shown in Figure 3) states that, if all other firing rules ar
met, the token will leave by the path with the highest prior
ity.  The probability decision rule states that if all other
firing rules are met, the token will select a path based o
290
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assigned probabilities.  The constructed decision rule
allows the user to specify the conditions under which 
token will select a particular path, given that the firin
rules are met.

Filled Orders

Product

Orders

Fill

WarehouseStore

(p=1)

(p=2)

Filled Orders

Product

Orders

Fill

WarehouseStore

(p=1)

(p=2)

(a) Both transitions enabled; Fill will
fire since its priority is higher than
the priority of Store.

(b) Fill fires, consuming tokens from
Product and Order, and putting one
token in Filled Orders.

Figure 3: Effect of a Priority Decision Rule

Attributes on tokens are used to specify a set 
characteristics associated with a token (e.g., size, ty
priority, identity, etc.).  The values of the attributes may 
changed at transitions.  They can also be used to deter
timing and decision rules.  Finally, the values of t
attributes can be passed to external algorithms and 
results incorporated into the PN model.

There are two types of arcs in addition to the stand
arc which provide complex transition logic.  The enable
arc is depicted as a line with a solid filled circle at the e
where the arrowhead normally appears.  This arc enabl
transition when the upstream place has a token, but d
not consume the token (the token remains in the upstr
place).  The inhibit arc is depicted as a line with a hollow
circle at the end where the arrowhead normally appe
This arc disables a transition when the upstream place
a token in it (the token is not consumed along the inh
arc).

Box nodes are used to encapsulate portions of a P
model and to provide a hierarchical modeling capabili
Box nodes are used to group or cluster PN fragments 
relate to various subsystems, functions, or organizatio
units.

3 BUILDING MODELS WITH ALPHA/Sim

With ALPHA/Sim you can: build and debug your mode
graphically; build models from the top-down, bottom-u
or both; easily modify model parameters and structu
navigate through the model; monitor results at any poin
the simulation run; and save any model component 
reuse in other models.

In the remainder of this section we illustrate how 
use ALPHA/Sim to implement a simple manufacturin
system which produces two types of parts.  Type 1 p
are turned, milled, and plated, in that order; Type 2 pa
are turned and milled.  Input parameters include part m
and part processing times.  Output parameters incl
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buffer sizes (queue lengths), machine utilization, p
latency, and throughput.

3.1 Drawing the Graphical Model

We begin by drawing the graphical model.  Figure 4 sho
an ALPHA/Sim screen.  The screen has a menu bar a
top, an icon palette on the left, and a drawing window w
scroll bars.  We create the graphical model by using 
mouse and icon palette to drop icons in the draw
window and connect them with arcs.  Icons a
automatically assigned default names (see Figure 4); th
can be changed to be more meaningful.

Figure 5 shows the complete manufacturing mod
The place-transition combination in the upper left corn
periodically generates new parts into the place labe
Lathe_Q.  Arriving parts wait in the Lathe_Q, until the Lat
becomes available.  They are then turned and enter
Mill_Q, where they wait for the Mill to become availabl
Once the parts are milled, they are passed to the Plat
Since Type 2 parts are done, they are immediately route
the stock of Finished_Type_2 parts; meanwhile, Type
parts remain in the Plate_Q until the Plating_Mach
becomes available.  Once plating is complete, the Typ
parts enter the Finished_Type_1 stock.

3.2 Defining Token Types

Once we have built the graphical model, we can define
token types using the Token Type Edit Form.  For th
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model, we will use two token types:  Part and Machin
Figure 6 shows the Token Type Edit Form for the Pa
token type.  This form contains a field for identifying th
token type and allows us to define the attributes associa
with the token type.  Each attribute definition consists of
name, class, type, and an initial range.

The attribute’s class is a scalar (single) value, an ar
of values, or a matrix of values.  If an attribute’s class 
array or matrix, we must also specify its size (rows a
columns).  The attribute’s type refers to its format.  Val
types include: Boolean, integer, real, string, or anoth
(previously defined) token type.  If the type is not anoth
token type, we have the option of specifying an initi
range for the attribute.  Table 1 summarizes the token t
definitions for the manufacturing model.

3.3 Place and Transition Forms

Once we have defined the token types, we can use 
place and transition forms to assign token types to pla
and specify timing, routing, and other logical rules. Figu
7 shows a sample place form.  The top of the place fo
lists the input and output transitions; and allows us 
ddddd
Icon 
Palette

Status Bar Menu Bar

Drawing Area

Figure 4: Sample ALPHA/Sim Screen
1
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Figure 5: Completed Model

Figure 6: Token Type Edit Form for the Parts Token Type
e

e

Table 1: Token Type Definitions for Model

Token Type Attributes Class Type

Part

id
type
arrive
wait
process
latency

Scalar
Scalar
Scalar
Scalar
Scalar
Scalar

Integer
String
Real
Real
Real
Real

Machine
id
type
p_time

Scalar
Scalar
Scalar

Integer
String
Real
292
specify the token type and the number of initial tokens.
The middle of the form allows us to specify statistics
collection and set the queuing order (FIFO, LIFO, or
ascending/descending on an attribute value).  The bottom
of the form allows us to set decision rules (priority,
probability, or constructed) for routing tokens out of the
place.

Figure 8 shows a sample transition form.  The left side
of the transition form lists the input places; clicking on one
of these places opens the input token profile displaying th
input token type definition.  Similarly, the right side of the
form lists the output places and clicking on one opens th
output token profile.
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Figure 7: Place Form for the Plate_Q Place

Figure 8: Transition Form for the Interarrival_Delay Transition
293
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Ordinarily, the input attribute values are mapped to 
output attribute values; however, we can assign new va
to these attributes using the area below the output to
profile.

The center of the transition form is used to set a tim
rule and to specify statistics collection.  Regarding 
timing rules, we can choose None, Selected Distribution
Constructed.  If we choose Selected Distribution, we 
prompted to select one of the available distributions 
provide the appropriate parameters.  Table 2 lists th
distributions and their parameters.  If we choo
Constructed, we can enter an expression utilizing o
distributions or attribute values.  The language used for
expression is English-like; e.g., the timing rule in t
Interarrival_Delay transition is:

IF (Initial_Token.type = 1)
exponential(10)

ELSE exponential(5)

“Initial_Token.type” is the value of the attribute “type” o
the token coming from the place “Initial_Token”.  Th
lower left corner of the transition form is used to 
specific enabling or inhibit logic (using attributes) 
conditions for stopping the simulation.

Table 2:  Built-In Timing Distributions

Distribution Parameters

Constant Value

Exponential Mean

Gamma Alpha, Beta

Normal Mean, Std Dev, Min, Max

Triangular Min, Mode, Max

Uniform Min, Max

3.4 Specifying the Model Logic via the Forms

We use these forms to associate the token types 
places, and specify the initial tokens, the decision (rout
rules, timing rules, and output attribute definitions.  Fi
we associate token types with places using the Toke
option menu in the Place Forms.  At this time, we set 
initial tokens in Initial_Token (one for each type of par
and one initial token in each of the machine places (La
Mill, and Plating_Machine).  Table 3 lists the token ty
assignments and initial populations for each place in
model; Table 4 lists the initial values of the attributes 
those places with initial token populations.

Next, we specify a constructed decision rule for 
place labeled Plating_Q to route Type 1 and Type 2 p
Figure 7 shows the decision rule used for routing parts 
appears in the Plate_Q place form.  Alternatively, we 
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use enabling logic in the Plate and Done transitions.  
desired, we can set a queuing order in the Lathe_Q a
Mill_Q places.

Table 3: Token Type Assignments and Initial Populations

Token Type Places # Init. Tokens

Initial_Token 2

Part
Lathe_Q, Mill_Q,
Plate_Q,
Finished_Type_1,
Finished_Type_2

0

Machine
Lathe, Mill,
Plating_Machine

1

Table 4: Initial Token Values

Place Attributes Initial Value

type 1 or 2
Initial_Token

all others 0

id Unique integer
Machine

type
“lathe”, “mill”,
“plating”

Finally, we set various output attribute definitions to
collect information on the machines and on individual part
as they pass through the system.  ALPHA/Sim provide
four system variables that can be used in expressions; the
are $time$ (the current simulation time), $delay$ (th
timing delay of an individual transition firing), $count$
(the number of times a specified transition has fired), an
$pop$ (the current number of tokens in a place).  Since w
are interested in the queuing, service, and system times 
the customers, we will make use of the $time$ and $dela
variables.  Table 5 lists the expressions that are used 
output attribute definitions; Fig. 8 shows a sample outpu
attribute definition in a transition form (lower right).  In
addition, we can turn on statistics collection for place
(average population), transitions (firing rates), and
attributes, using the place and transition form statistic
panels (see Figs. 7 and 8).

3.5 Controlling the Simulation Run

Additional forms are available to set the simulation run
time, the number of replications and random number seed
and statistics collection preferences.  ALPHA/Sim ha
facilities for collecting aggregate, interval, and sample
statistics.  At runtime, ALPHA/Sim checks all expressions
to make sure that there are no errors and executes 
simulation.  The results can be observed on-screen or s
to a file for further analysis. The simulation can also be ru
in batch mode.
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4 ADVANCED FEATURES

ALPHA/Sim incorporates a number of additional features
These include: functions, enable and inhibit logic, sto
when conditions, boxes, show tree, and various printin
and file handling features.  ALPHA/Sim includes over

thirty built-in mathematical functions as well as arithmetic
and logical operators that can be used in timing rule
decision rules, output attribute definitions, and othe
expressions.  In addition, it is possible to incorporate use
defined functions and interact with external code.  Enab
and inhibit logic can be used in transition forms to specif
which combinations of tokens will cause a transition to
fire.  Stop when conditions are logical expressions that ca
be used to halt the simulation if a specified condition i
reached.  Boxes provide a hierarchical modeling capabilit
Show tree allows you to view a model’s hierarchy in a tre
structure and provides an easy way to navigate through
model.  The graphical model and the information containe
in the forms can be printed out to a laser printer or sent to
file.

5 SAMPLE APPLICATIONS

ALPHA/Sim has been used to develop a wide array o
discrete-event simulation models including compute
components and systems (Ethernet system (Brenna
Walenty, and Moore 1995), client-server system, and high
speed disk systems), manufacturing systems (Moore a
Gupta 1996), large-scale military command and contro
systems (Moore and Lynch 1990), and business proce
reengineering and workflow models for a charter air carg
and passenger service system.

The client-server system consists of several dat
processing nodes connected via a local area netwo
(LAN).  The model evaluates the impact of changing th
number of hardware components and their capabilities o

Table 5: Sample Output Attribute Definitions

Transition Attribute Definition

Interarrival_ id $count$
Delay arrive $time$ + $delay$

wait $time$ - arrive
Turn

process $delay$

wait $time$ - arrive - process
Mill

process process + $delay$

wait $time$ - arrive - process

Plate process process + $delay$

latency $time$ - $delay$ - arrive

Done latency $time$ - arrive
295
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throughput and latency for individual processes.  It also
identifies bottlenecks in the system, thereby indicating
good candidates for increasing capacity.

The manufacturing system of (Moore and Gupta 1996
is constructed from a series of predefined modules t
generate a serial-line just-in-time (JIT) production system
A JIT model consists of four basic types of modules: a
Supply module, a Demand module, some number o
workstation modules, and an optional kanban contro
module.  These modules may be combined to form bot
single- and multiple-product JIT systems of arbitrary
length.  The resulting model can be used to determine th
impact of the demand, processing times, line length, th
number of kanbans, and kanban control policies on syste
performance.  In addition, the model can be used to explo
the impact of variations in processing and demand o
system performance.  System performance measur
include throughput, part time in system, order completion
time, and work-in-process.

The charter air cargo and passenger service mod
depicts the workflow for a thirty-person office responsible
for handling and scheduling domestic and internationa
transportation.  This workflow is unique in that the staff’s
activities are frequently interrupted by higher priority tasks
and phone calls or delayed due to communication
interruptions.  The model was used to determine the impa
of automation and task redefinition on staffing
requirements, particularly overtime requirements, and
throughput.

6 SUMMARY AND CONCLUSIONS

In this paper, we described a general-purpose, discret
event simulation software tool called ALPHA/Sim.  With
ALPHA/Sim you can: build and debug your models
graphically; build models from the top-down, bottom-up,
or both; easily modify model parameters and structure
navigate through the model; monitor results at any point i
the simulation run; and save any model component fo
reuse in other models.

With ALPHA/Sim’s graphical modeling and
simulation environment it is possible to develop and
exercise simulation models without having to see or write 
line of code.  The graphical interface allows you to design
the model using the mouse and icons.  Integrated form
provide the means for specifying logic and input
parameters for the model.  ALPHA/Sim also provides the
ability to interface with external software.

We described how to use this tool via a simple
example of a manufacturing system.  This example
illustrates the key features of ALPHA/Sim.  In addition, we
briefly listed some of the advanced features of the too
We also listed a number of sample applications and briefl
described three of these, namely a client-serve
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performance model, a serial-line JIT production syste
and a business process workflow model.
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