
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

INTRODUCTION TO SILK TM AND JAVA-BASED SIMULATION

Kevin J. Healy
Richard A. Kilgore

ThreadTec, Inc
P. O. Box 7

Chesterfield, MO 63017, U.S.A.

 th
ha
 fo
tio
 i
lia
rfu
in

en
elf-
the
s t
de
ay

 to
av

a
the
d
en
g

ca
ion
rst
-
ain

an
nd
e
ons
ge.

e
 in
ful
of
for
s.
d
ral

ss
ple
at
d
e
the
ing
s to
ion
ser
lso
d on
nd

he
for
her
s
ge
s a
3
Silk
her
n 4

nd
ral
of
ents
ng
ABSTRACT

Silk is a general-purpose simulation language based on
Java programming language. Silk, however, is more t
just another simulation language. It is a new standard
creating usable and reusable object-oriented simula
components and models. The Silk modeling language
usable because it represents a unique marriage of fami
process-oriented modeling constructs and the powe
object-oriented features of a general purpose programm
language. Silk models are reusable because they are
created using professional Java visual developm
environments that support graphical assembly of s
contained Silk modeling components based on
JavaBeans component architecture. Java’s adoption a
standard language for computation on the World Wi
Web also means that Silk models can be deployed in w
that exploit this new medium.

1 INTRODUCTION

The Silk language was designed to be different things
different people. To some users, Silk is a rich set of J
class libraries that can be creatively assembled into
variety of modeling constructs. To others, Silk is
process-oriented simulation language that provides
power and flexibility to program within a standar
programming language and industry standard developm
environments. To others, Silk is a visual modelin
environment where Silk-based modeling components
be graphically assembled to quickly create simulat
applications. Perhaps most importantly, Silk is the fi
practical implementation of a tool for building self
contained, reusable modeling components and dom
specific simulators.

Silk is not so much a language in itself as it is
extension of the Java language. The power, flexibility a
scalability of Silk derive directly from Java and th
seamless way in which the simulation-related extensi
that constitute Silk have been integrated into the langua
327
e
n
r
n
s
r
l
g

t

he

s

a
a

t

n

-

Achieving such a high level of integration would not b
possible were it not for a unique combination of features
the Java language. One is a simple yet power
framework that greatly facilitates the implementation
object-oriented design methodology and its capabilities
creating flexible, modular, and reusable program
Another is Java’s built-in support for multi-threade
execution, which is essential to representing in a natu
way the inherently concurrent flow of entities in proce
simulation models. Still another is JavaBeans, a sim
convention for defining software components th
automatically make known their functionality an
interoperability when incorporated into any of th
sophisticated visual development tools that support
JavaBeans standard. By incorporating the Silk model
environment into Java, users also have direct acces
Java’s native support for standard Internet communicat
protocols, database connectivity and graphical u
interface development. Java’s platform neutral design a
means that Silk models can be developed and execute
practically any combination of computer hardware a
software platforms.

This paper serves primarily as an introduction to t
language level features of Silk which are the basis
developing reusable simulation components and hig
level domain-specific simulators. A series of article
dealing with other important aspects of the Silk langua
are listed in the References section. Section 2 contain
brief overview of object-oriented modeling. Section
demonstrates the implementation of these concepts in
by way of an example that also serves to illustrate ot
important features of the language and their use. Sectio
provides the software requirements for building a
executing Silk models. Section 5 contains a gene
overview of the entire Silk feature set. A brief overview
Silk-based JavaBeans modeling and animation compon
is given in Section 6. Section 7 contains concludi
remarks.

Healy and Kilgore

n
th
ly

re
at
se

ec
f
ia
lf-

la

o
s

on
in

 T
f t
de
or

 t
he
 o

us
ti
s
io
ie
os
h
te
fte
m
en
or
em
 th
e
n
th
ty
ie
 t
th

han

to
gic
sent
and
and

 in
of
kes

d
is
n
ing

g a
ain
The
and
me
e
tant

ent
es.
er.

ose
re
to
nd,
size
are
ast

atch
 10
any
of
gly
the
to

ily
e

t is
es.
the
ing
her
2 OBJECT-ORIENTED MODELING

Silk is a wholly object-oriented modeling formalism. A
appreciation for object-oriented methods requires
understanding of a few simple concepts; name
encapsulation, classes, messages, and inheritance.

Objects and their software implementation a
patterned after real-world objects. They have d
(attributes, characteristics, properties, etc.) that repre
the state of the object and a set of behaviors that describe
the ways in which they can be operated on. In an obj
oriented approach, the association between the state o
object and it’s set of behaviors is made explicit v
encapsulation whereby both are defined in an integral, se
contained unit called a class. This collective definition
serves as a template or blueprint for creating particu
instances of the corresponding class. Each instance (of
which there may be many) possesses its own unique c
of the state-related data defined by the class but share
behaviors. Communication between objects is confined
a formalized system of messages. It is convenient to think
of message generation and processing as just additi
types of behaviors defined on the sending and receiv
classes. Finally, inheritance is a mechanism by which new
classes can be defined as extensions of existing ones.
derived class has all the characteristics and behaviors o
parent class (perhaps derived from others) plus ad
functionality in the form of new characteristics and/
behaviors.

These concepts can be applied in beneficial way
traditional process-oriented simulation, where t
prevailing frame of reference is through the transactions
transient system entities. In this case, encapsulation is
to make explicit the association between the representa
of an entity and its sequence of processing steps a
moves through the system. Most commercial simulat
software is restricted to this push-type assembly-line v
of the world where the focus is on transient entities wh
aim is to complete a series of process steps, each of w
may require a set of passive, unintelligent, capacity-limi
resources. For simplistic models, this approach is o
sufficient. However, in real-world engineered syste
there is almost always a need to model active, intellig
resources who from a modeling standpoint are m
naturally seen to control decision making within the syst
rather than the transient entities being acted upon. For
situation, a pull-oriented description of activity from th
resource’s point-of-view yields a more natural and efficie
model of the system dynamics. In some cases,
resource-pull world-view can be modeled within an enti
push framework through the creation of executive entit
whose purpose is to manage the interplay between
transient entities and static resources. However,
dddddd
328
e
,

a
nt

t-
an

r

py
the
to

al
g

he
he
d

o

f
ed
on
 it
n
w
e
ich
d
n

s
t

e

is

t
is
-
s
he
is

approach is never ideal and almost always less t
satisfactory.

The Object-oriented design of Silk is ideally suited
combining entity-push and resource-pull process lo
within the same model. Classes can be created to repre
entities that lend themselves to push-type descriptions
other classes can be created that define the state
behaviors of each of the types of intelligent resources
the systems. There also exists within Silk a variety
mechanisms to coordinate the communication that ta
place between these types of submodels.

The ability to make explicit the decomposition an
encapsulation of entity-push and resource-pull logic
important to managing the complexity of simulatio
models. It is also a fundamental requirement for creat
reusable simulation modeling components

3 AN EXAMPLE

In this section, we present a simple example containin
batch service operation that is characteristic of cert
stages of semiconductor fabrication processes.
example demonstrates how easily the entity-push
resource-pull viewpoints can be combined in the sa
model using Silk’s object-oriented framework. Th
example also serves to demonstrate other impor
features of the language and their use.

The example model consists of a tandem arrangem
of two servers fed by a single stream of arriving entiti
The two servers must process each arriving entity in ord
Input queues in front of both servers accommodate th
entities that must await the availability of the server befo
initiating service. The first server has the capability
process only a single entity at a time. The seco
however, processes customers in batches that vary in
from 10-20. The dynamics of the batch sizing decision
as follows. The server always waits until there are at le
10 entities in the preceding queue before beginning a b
service. If, after finishing a batch, there are more than
in the preceding queue, then the server will take as m
entities as it can up to a limit of 20. The introduction
min and max batch size thresholds results in a surprisin
complex tradeoff between the wait times of entities and
utilization of the server capacity that is well-suited
analysis by simulation.

The dynamics of the first stage of service are eas
described from the viewpoint of arriving entities in th
form the queue-seize-delay-release sequence tha
characteristic of traditional process simulation languag
This same approach, however, is ill suited to describing
dynamics of the second stage of where the batch siz
decision is more naturally coordinated by the server rat
than the arriving entities.

Introduction To Silk™ and Java-Based Simulation

ie
 th
i

en
n
T
s
,

st

e
r
T

im
io
 I
ci

is
y

on
lis
 t

a

ti
i
e

th
n

ic

si
a
er

tr
a
 for
for
uent

ng

al
ed
at
at
the
e
ng

is

he
of
y’s
ge
a

f
f

he

f
the

e
s
 of

s as
e
ut
ey
e.

s
e
of
n

r
in
the
o

Figure 1 contains a Java class definition nam
MyEntity that models the representation of the trans
entities in the system and the behavior associated with
first stage of service. The class definition begins w
declarations of the data that represent the state of the
types. Each instance of the MyEntity class is assigned a
attribute that stores its time of arrival to the system.
interarrival and processing time generators, the pas
resource that models the server, its associated queue
the statistical accumulators also constitute part of the
of the MyEntity class. The static qualifier that
precedes each of these declarations means that thes
are shared by all instances of the MyEntity class rathe
than being unique to each entity that is created.
remaining components of the state consist of static
instances of other Silk classes used to record t
weighted statistics on the queue length and observat
statistics on the time customers spend in the system.
significant that to note that each of the simulation spe
data types (Exponential , Queue, Resource ,
Observational , and TimeDependent) are
themselves implemented as objects in the Silk formal
Access to them from the MyEntity class is enabled b
the inclusion of the import statement.

In Java, class behaviors are implemented as methods,
which are analogous to executable functions in traditi
procedural programming languages. The Silk forma
requires that each entity class definition contain, at
least, one distinguished method named process()
which serves as the starting point of execution for e
instance that is created. In this case, the process()
method consists of a sequence of other method invoca
that model the familiar inter-create, wait-for-server, se
server, delay, release-server process logic of a single s
queue. The corresponding methods that implement
particular behaviors are all inherited from the predefi
Silk class named Entity by virtue of the extends
qualifier included in the MyEntity class definition.

In Silk, there is no implicit status delay log
associated with the queue() method, nor is it linked
directly with the seize() and release() methods
which merely toggle the state of a specified pas
resource between idle to busy. Delays based on the st
the system are modeled more generally by the pow
and flexible while(condition()) construct which
delays an entity as long as the prescribed condition is
As a result, an entity can reside simultaneously in
number of queues. This is a particularly useful feature
modeling certain types of dynamic behavior or
decomposing a wait time or queue length into constit
32
ed
nt
eir

th
tity

he
ive
 and
ate

 data

he

e-
nal
t is
fic

m.

al
m
he

ch

ons
ze
rver
ese
ed

ve
te of
ful

ue.
ny

parts. An entity departs a queue only after dequeuei
itself or after being removed by another entity.

Support for multithreaded execution is an essenti
aspect to the implementation of a natural process-orient
modeling capability in Java. Instances of classes th
extend Entity run as separate threads of execution th
are alternately suspended and resumed to coordinate
time-ordered sequencing of entity movements in th
model. A thread is suspended when the correspondi
entity encounters an unconditional wait at a delay()
method or a status delay, the most general of which
modeled by the while(condition()) construct. An
executive thread running in the background coordinates t
management of simulated time and the resumption
suspended threads whenever a corresponding entit
deterministic time delay expires or a system state chan
occurs that triggers the emergence of an entity from
status delay.

After completing the first stage of service, instances o
MyEntity join the input queue to the second stage o
service and then activate the halt() method which
unconditionally delays the entity until it is explicitly
reactivated. In this case, the entity that coordinates t
reactivation is an instance of the class BatchServer
defined in Figure 2.

The BatchServer class models the second stage o
service from the perspective of the server as opposed to
arriving entities. When its process() method is
invoked, an instance of BatchServer initiates an
endless loop of idle-busy cycles. The cycle starts with th
server delaying until the minimum batch size of 10 entitie
are present in the queue preceding the second stage
service. If there are at least 10 in queue, the server take
many as it can up to the maximum capacity of 20. Th
designated number of entities are removed from the inp
queue and inserted into a temporary queue where th
reside while the server delays by the batch processing tim
After delaying, the server removes the individual entitie
from the temporary batch queue and invokes th
activate() method on each one. This causes each
the activated entities to resume executing their ow
process() method at the point following the call to
halt() where they were previously suspended. Afte
resuming executing, the entities merely record their time
system, and dispose of themselves. At the same time,
BatchServer sets its status to idle, and loops around t
recheck the condition for initiating another batch service.
9

Healy and Kilgore
import com.threadtec.silk.*;

public class MyEntity extends Entity {

 double attArvTime;
 static Exponential expInterArvTime = new Exponential (1.5),
 expServTime = new Exponential (1);
 static Queue queStage1 = new Queue(“Stage 1 Input Queue”);
 static Resource resServer = new Resource (“Stage 1 Server”);
 static TimeDependent tdQueue = new TimeDependent(queStage1.length, “Stage 1 Input Queue”);
 static Observational obsSysTime = new Observational(“Time in System”);

 public void process () {
 create(expInterArvTime.sample());
 attArvTime = time;
 queue(queStage1);
 while (condition(resServer.getAvailability() == 0));
 dequeue(queStage1);
 seize(resServer);
 delay(expServTime.sample());
 release(resServer);
 queue (BatchServer.queStage2);
 halt();
 obsSysTime.record(time – attArvTime);
 dispose();
 }
}

Figure 1: MyEntity Class Definition.

import com.threadtec.silk.*;

public class BatchServer extends Entity {

 int batchSize, IDLE=0, BUSY=1;
 IntStateVar isvStatus = new IntStateVar(IDLE);
 public static Queue queStage2 = new Queue(“Stage 2 Input Queue”),
 queTemp = new Queue(“Temporary Queue”);
 Exponential expServTime = new Exponential(20.);
 TimeDependent tdQueue = new TimeDependent(queStage2.length, “Stage 2 Input Queue”);
 Observational obsBatchSize = new Observational(“Batch Size”);
 Entity entTemp;

 public void process () {
 while (true) {
 while(condition (queStage2.getLength() < 10));
 batchSize = Math.min(20, queStage2.getLength());
 obsBatchSize.record(batchSize);
 for (int i=1; i<=batchSize; ++i) {
 entTemp = (Entity)queStage2.remove(1);
 queTemp.insert(entTemp);
 }
 isvStatus.setValue(BUSY);
 delay(expServTime.sample());
 while(queTemp.getLength() > 0) {
 entTemp = (Entity)queTemp.remove(1);
 entTemp.activate();
 }
 isvStatus.setValue(IDLE);
 }
 }
}

Figure 2: BatchServer Class Definition.
330

Introduction To Silk™ and Java-Based Simulation

lk

f

o

t
d

t

s
ly
n

e

o

e

es

y

n
he
ed

re
y

al

n
nd
k
ty
h
a
f
e
,
,
s,
 4
m

l
y
re

ue

 a
o
to
e
x

or
te
In addition to MyEntity and BatchServer , two
other classes are needed to produce a working Si
simulation. The first is a class named Simulation
whose run() method serves as the starting point o
execution for the model. Users can also define init()
and finish() methods in the Simulation class
which are called at the beginning and end of each run
the simulation, respectively. The Simulation class also
serves as a place for users to define model specific da
that is global to all instances of classes that are derive
from Silk’s predefined Entity class. The other required
class is part of every Java program and defines the poin
of-entry at which the program begins executing. By
convention, this is the init() method for programs
implemented as browser-based applets or the main()
method for those implemented as stand-alone application
Silk simulations can be implemented as either. The on
requirement is that this distinguished class create a
instance of the predefined class named Silk and invoke
its begin() method. The two class definitions appearing
in Figure 3 along with the MyEntity and
BatchServer classes defined in Figures 1 and 2
constitute a complete model of the tandem server exampl

The model begins execution at the run() method of
the Simulation class which in this case initializes the
simulation run length and number of replications and als
activates Silk’s ConstrolConsole – an interactive tool
for parameterizing and controlling the execution of a Silk

import com.threadtec.silk.*;
public Class Example {

 public static void main(String args[]){
 Silk mySilk = new Silk();
 mySilk.begin();
 }
}

import com.threadtec.silk.*;
public Class Simulation extends Silk {

 public void run () {
 setReplications(1);
 setRunLength(100);
 setControlConsole(true);
 }

 public void init() {
 MyEntity first = new MyEntity();
 first.start(0.0);
 BatchServer only= new BatchServer();
 only.start(0.0);
 }
}

Figure 3: Required Silk Simulation Classes.
331
f

a

-

.

.

simulation. The init() method, which is called at the
beginning of each simulation, is used to instantiate th
BatchServer and the first instance of the MyEntity
class. Invoking the start() method on each causes
their process() method to be invoked after the
specified amount of simulated time. Subsequent instanc
of the MyEntity class are introduced into the model
when an arriving entity explicitly creates its successor b
invoking the create() method. A standard statistical
summary report is printed at the end of each simulation ru
which here summarizes the time-dependent statistics on t
input queue for each server and the observational-bas
statistics on the batch size and system time of entities.

4 SOFTWARE REQUIREMENTS

The Silk simulation extensions to the Java language a
themselves implemented entirely in Java. The onl
requirements for building and executing Silk simulation
models are a Java language compiler and run-time Virtu
Machine that are compatible with Sun’s JDK 1.1
specification of the language. Most commercial simulatio
software vendors constrain users to a single proprietary a
often cumbersome development environment. With Sil
users can choose from a variety of professional, third-par
Java Integrated Development Environments (IDE’s) suc
as Symantec’s Visual Café, Borland’s Jbuilder, Sun’s Jav
WorkShop, and Microsoft’s Developer Studio. Each o
these IDE’s provides a sophisticated graphical interfac
and a rich collection of tools for project management
source code creation and modification, compilation
debugging, and deployment as standalone application
browser-based applets, or server-based servlets. Figure
contains a screen snapshot of the example problem fro
the previous section within Symantec’s Visual Café
development environment.

5 SILK LANGUAGE FEATURES

Silk was designed to be a small but powerful genera
purpose modeling capability that could be extended b
users in a straightforward and unrestricted manner. Figu
5 contains a partial listing of the Silk class library and
some of the more commonly used methods. What is uniq
about the design of Silk is the flexibility provided to the
user to make complex models more manageable through
combination of programming and modeling extensions t
the fundamental Silk classes. Users are encouraged
make full use of Silk and the Java programming languag
to write customized extensions that include more comple
process classes such as “transport”, “warehouse”
"schedule". And users are encouraged to demonstra

Healy and Kilgore
Figure 4: The Visual Café Integrated Java Development Environment.

Silk

SetControlConsole
setDebugLevel
setGlobalTrace
setReInitStats
setRunLength
setReplications
getReplication
setReInitStats

setReInitSystem
setSummaryReport

setAnimation
setSmoothness
setTimeScale
setStepMode

StateVar

getDoubleValue
getValue
setValue

setReInitVal
reInitAll

reInit

TimeDependent

reSet
update
getArea
getAvg

getStdev
getMax
getMin
reSetAll
setLabel

summarize

Queue

setLabel
getLength

setCapacity
addAnimator

removeAnimator
remove
insert

getContents
reInitAll

reInit

Observational

reset
record
getSum
getAvg

getStdev
getMax
getMin

getCount
reSetAll
setLabel

summarize

Resource

getAvailability
getNumBusy
setNumActive
setCapacity

setLabel
reInitAll

reInit

Random

RandomStream
Uniform
Normal

LogNormal
Erlang

Exponential
Gamma

Bernoulli
Discrete

Entity

activate
condition

create
delay

dequeue
dispose

endSimulation
halt

process
queue
release
seize
start

Figure 5: List of Silk Language Features.
332

Introduction To Silk™ and Java-Based Simulation

r
t
le

i
c
l

ze
 t
lin

h
e
u
m

e

al
’

e
er
fo
g
t

g
ce
 a
ly

n
w
d
h
e

m

ir

in
d
n
d
e
e

h
it
g
f

ic
rs.

r

l
e

to
tly
e
n
e

d

re
on
e
a

m

ns
 of

e-
h
et
f
s

n

and share these extensions with their internal and exte
clients who can browse and execute Silk models over
network on any hardware platform using a Java-enab
web browser.

The value of these types of extensions to the S
language may be best appreciated by more experien
modelers who can better visualize the possib
consolidation of the base Silk classes into a customi
higher-level language. But the ultimate value may be
those new users who are attracted to visual mode
techniques where models are created through point-and-
click/drag-and-drop interfaces with libraries of modeling
components.

6 JAVABEANS AND VISUAL MODELING

Integrating components to create an application
preferable to developing applications from scratc
Component-based applications bring economies of sp
in development and testing by capitalizing on previo
successes. JavaBeans is a set of classes and program
conventions that constitute a component developm
model for the Java language.

Beans are designed to be manipulated graphic
within visual development environments like Symantec
Visual Café. Visual programming allows for th
concentration and separation of skills among develop
Skilled programmers build and make available beans
other developers with more domain-specific knowled
(and typically less technical programming expertise)
assemble visually into custom applications.

Component architectures that exist for other langua
are designed primarily for graphical user interfa
components. JavaBeans, however, can be applied to
aspect of an application. In particular, it is a relative
simple matter to write self-contained, simulation modeli
components based on Silk, that automatically make kno
their functionality and interoperability when incorporate
into a JavaBeans visual development environment. Wit
the environment, they can be added to user-defin
component toolboxes or palettes. Users can then asse
components visually into a model by placing them in
workspace and editing their properties to create a des
behavior. None of these manipulations require code to
written by the application developer.

While JavaBeans provides a means for packag
functionality into reusable units; beans by themselves
not ensure reusability. To exploit the potential that bea
have to offer, policies that define the functionality an
modes of interoperability that allow beans to be reus
must be developed and adhered to. For example, th
exist a set of policies and supporting classes in Silk t
define the ways in which components must interact w
Silk to produce animated displays of system state chan
These conventions were used in the implementation o
333
nal
he
d

lk
ed
e
d

o
g

is
.
ed
s

ing
nt

ly
s

s.
r

e
o

es

ny

g
n

in
d
ble

a
ed
be

g
o
s

d
re

at
h
es.
 a

core capability in Silk that provides for animating entity
movements, entity queueing, entity delays, and numer
and analog displays of state variable values among othe
If the prescribed conventions are followed, it is a simple
matter for users to modify these existing components o
define new ones that will interoperate with any Silk
simulation model.

Developing guidelines for enterprise modeling
components will be more challenging. Consideration wil
need to be given to the application domain as well as th
range of model granularity the components are required
accommodate. Silk and JavaBeans, however, significan
facilitate the manner in which these issues can b
approached - both from a design and implementatio
standpoint. In combination, they have the potential to rais
component model development, interoperability, an
reusability, to a new level.

7 SUMMARY

The Java language extensions that constitute Silk we
designed to encourage better discrete-event simulati
through better programming by better programmers. Sinc
the modeling language is integrated into the Jav
programming language, the full power and flexibility of the
Java programming language is available. Unlike
proprietary modeling environments, users also benefit fro
the growing number of commercially available
professional Java development tools. Silk and JavaBea
also greatly advance both the state of the art and practice
visual modeling with reusable industry specific and
company-specific modeling components. These languag
level and component-level advances in combination wit
the ability to distribute and execute models via the Intern
will also foster increased activity in the development o
high-level, domain-specific simulation tools that end-user
favor.

REFERENCES

Healy, K. and R. Kilgore. 1998. Next Generation
Simulation with Java. Proceedings of the 1998 Winter
Simulation Conference, ed. D. Meideros, E. Watson, J.
Carson, and M. Manivannan. IEEE, Piscataway, NJ.

Healy, K. and R. Kilgore. 1998. Java, Enterprise
Simulation and the SilkTM Simulation Language.
Proceedings of the 1998 International Conference o
Web-Based Modeling & Simulation, ed. P. Fishwick,
D. Hill, and R. Smith. SCS, San Diego CA..

Healy, K. and R. Kilgore. 1997. SilkTM: A Java-Based
Process Simulation Language. Proceedings of the
1997 Winter Simulation Conference, ed. S.
Andradóttir, K. Healy, D. Withers, and B.L. Nelson.
IEEE, Piscataway NJ.

Healy and Kilgore

d

is

7

g

Healy, K., R. Kilgore and G. Kleindorfer . 1998. SilkTM:
Usable and Reusable Java-Based Object-Oriente
Simulation. Proceedings of the 12th European
Simulation Multiconference. SCS International, Ghent,
Belgium.

AUTHOR BIOGRAPHIES

KEVIN J. HEALY is the author of the Silk simulation
language and a partner in ThreadTec, Inc.. He received h
Ph.D. in Operations Research from Cornell University. He
served as Associate Editor for the Proceedings of the 199
Winter Simulation Conference.

RICHARD A. KILGORE is a partner in ThreadTec, Inc..
He has over 15 years of experience as a modelin
consultant to Fortune 500 firms in a variety of industries.
He received his B.B.A. and M.B.A degrees from Ohio
University and Ph.D. in Management Science from the
Pennsylvania State University. Formerly, he was a
capacity-planning analyst with Ford Motor Co. and Vice-
President of Products for Systems Modeling Corp.

*Silk is a registered trademark of ThreadTec, Inc.
334

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

