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ABSTRACT S

We define the term “digital object” and specify a variety
of qualities that are important during the object design
phase. A digital object contains a set of models, and is
meant to serve as a reusable entity to be used on the
web or over the Internet. An example using a two link
robot arm is presented. We have found the digital object
design methodology to provide an information schema to
describe where to locate information about the object, for
simulation of dynamic models as well as the execution of
other model types.

1 INTRODUCTION

For simulation to work effectively, we must have a

collaborative, shared information architecture or repository

where we can represent models. Moreover, we would like Figure 1: A two-link planar robot.

this schema to be as general as possible, admitting all

types of simulation, and all form of model. While this may

seem to be an horribly complicated task, we have created arepresented two-dimensional plane. The end effeetisr

set of guidelines for creating such a schema. The primary aple to grasp onto objects. The two arms have frames of

goals of this architecture are to 1) allow the scientist referencef1 and f2, which are considered to be part of

or engineer to reason about physical objects and their their geometry models. The groumdsupportsr and has

interactions, 2) provide a clear link between what is done jts own framefg.

on the computer (i.e., programming) and what is done by

the analyst (i.e., modeling), and to suggest the foundations

for a future standard on digital object reusability. We 2 OBJECT PARADIGM

term the architecture Object Oriented Physical Modeling

(OOPM) (Fishwick 1996) since all information is materially  If we are to capture models inside objects, we need some

grounded on the physical structure under investigation.  sort of information paradigm. The object-oriented approach
We will employ the example of a two link robot arm  has gained favor for software engineering projects, and

attached to the ground, shown in Figure 1. We use a is also useful for thinking of physical objects and their

convention of using a lower case first letter for representing components. We can think of all physical (where physical

physical objects, and leave the upper case situation for means “material”) objects as being represented by digital

representing classes (ref. 4.4). The entire scenario objects inside the computer. Using the physical metaphor

contains a two link robotr. Link /1 contains jointj1 also falls under this scope, where a non-physical item such

and armal, and link 2 contains jointj2 and arma?2. as a “queue,” for example, could easily be turned into a

The joints are revolute and allow the arm to move in the set of physical objects. The digital object contains a set of
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models as attributes. In addition to having attributes, an
object can have methods; however, we often bind methods
to models, which are encapsulated within their own objects.
The use of objects is highly intuitive since our natural
language is founded on object names and properties. We
will always defer to the way in which physical objects
are created, destroyed and modified as to how digital
objects are to be represented. In the natural world, objects
change over time and objects can be created from other
objects, and so we should maintain these capabilities in
the corresponding digital world.

The word “model” is severly overloaded, and yet we
talk of this modelor that modelwhenever we speak of
phenomena. Let's define model as an abstract form of
representation that substitutes for the physical phenomenon.
Example model types ardynamic and geometric The
dynamic model serves to represent the behavior of a
physical object, and the geometric model represents the
object’s structure or shape. Each model type abstractly
captures some aspect of the real object, and so the digital
object is simply a collection of all of these models. Models
tend to be visual because visualization of phenomena aids
in our understanding of mechanism. All modern simulation
software packages are driven by graphical user interfaces.
The user interface and the model are intertwined and can
be considered identical; the model is the window to the
physical object. Some models may be textual, and some
analysts may prefer to think of programming language
source lines as model components. Intrinsically, there is
nothing wrong with this opinion, however in practice, most
analysts will agree that “model” and “code” are different.
In particular, code is an end product of having translated
the model. Therefore, the code and the model are at two
different abstraction levels, and therein lies the difference:
level of translation or abstraction. A similar argument can
be made for formal languages representing the semantics
of continuous and discrete event phenomena. It is not that
these languages compete with more abstract, often visual,

object-oriented architecture for certain types of phenomena
(generally, software processes). VHDL (Bhasker 1995)
serves to unify modeling for the VLSI community. The
most common approach in modeling is to choose one
or several model types and then to continue to use these
types. As an inertial approach to modeling, this familiarity
with a modeling language can cause problems when it
comes to integrate with what others are doing. Often, the
author of a particular modeling approach will advocate a
singular model type over all other types. If the approach
is found lacking, then it is augmented over time for
completeness. Petri nets (Peterson 1981) are a good
example of this strategy, with many variations over the
original, surviving and prospering. There is no getting
around the situation in which we currently find ourselves:
there will always be many ways to define dynamic models
and so we must work to describe the “glue” that allows
models of varying types to be used together in a flexible
information architecture. The architecture must be capable
of the invention of existing and new model types, while
still supporting a unified structure. While it is tempting
to imagine that a unified modeling approach exists, this
remains a dream and does not correspond to the practice
and history of modeling. Our philosophy has been to
formalize theinterfacesand glue without getting into an
argument of whether model X is better than model Y. It
is most likely that model X is good for some tasks, and
model Y for others. Sometimes, model X can be translated
into model Y, which can make them complementary. One
could argue that since one model can be proved to be
equivalent to another under certain translations that one
model or the other is superfluous. But, this is not the
case—each model has its own character and delivers its
own peculiar benefits for the modeler.

Objects know nothing of their surroundings except
that they can receive input grorts and can post output to
ports The ports of an object serve as its formal interface
to the outside world. We define three types of port:

representations. Instead, we form a chain of translation INPUL, output and input/output. Input and output represent
from representations that are easy to understand to lower directional data flow, whereas input/output are appropriate
level representations that maintain their own particular for bidirectional energy flow as for bond graphs (Rosenberg
benefits. We are working with Zeigler's group on unifying and Karnopp 1983).

OOPM and DEVS methodologies (Barros, Zeigler, and

Fishwick 1998_). O_OPM current_ly has an implem_entation 3 SEMIOTICS

(Cubert and Fishwick 1997) which uses C++ as its target
language, whereas (Barros, Zeigler, and Fishwick 1998)
are forming a bridge using DEVS as an intermediate formal
specification language as the target.

With regard to representation of objects, we understand the
need to create a digital object for each physical object in
our scenario, but what about all of the models inside each
object? Are they to be represented as data, methods or
objects? We represent a model as an object, whether that
Language (UML) (Muller 1997; Lee 1997; Larman 1998). model is geometric, dynamic or otherwise. Surfacing the
While UML may not unify all types of models ever model as an object is based on semiotic principles (Noth
required of the modeler, it does at least create a structured 1990) where one clearly separates form from interpretation,

There have been several attempts to unify modeling.
One recent attempt is the creation of the Unified Modeling
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or symbol from meaning. Figure 2 displays a painting, moddl %0\\;{
which captures the essence of semiotics. In the same sense 11.0; 5 -212.076ir€0
as Magritte’s painting “is not a pipe,” likewise our model update() jons =)
representations are more than formal model descriptions.
They are physical objects containing model descriptions. — structure

If the robot armr moves through space according to I model—
forces applied, we may partition the space and call each ports update)
partition a state of the robot. Then, we create a finite
state machine (FSM) as a dynamic model inside of r. pehavior
If this FSM is created from circles, arcs, and labels, we || type=FBM

L S ¢ model ———— >-_

surface their importance as physical objects on an arbitrary smulate()

physical medium (paper, pixels). The FSM is a model
and also a physical object contained within the medium.
Likewise, the diameter of the circles and the geometry
of the arcs are an intrinsic part of the model, and not
just of the Graphical User Interface (GUI). Therefore, the
GUI and the model are one and the same. Not only are
the models objects, but each model component is also an
object—a dynamic model object.

Each model object contains an attribute calieddel 4 MODELS
and a set of methods applicable to the model. For
example, if we wish to simulate a model, we should A physical object is equivalent to a set of models
have asimulate() method inside of the model object. plus attributes, where each model provides a different
The simulation applies to the model and not directly to perspective on the nature of the object. To the extent
the physical object. However, through aggregation, the that attributes of a physical object can be considered
physical object contains the model objects, and so, also degenerate data or static models, a physical object is
contains the object’s methods. Given strict encapsulation, identical to the model set. There are as many types of
we store methods such asolve(), simulate(), and models as necessary to accurately represent a digital object.
optimize() in the model objects. Our models are encapsulated within objects, and they all

Figures 3, 4 and 5 represent the architecture of the have two key properties of recursion and multimodeling.
physical s, » and 1 objects. We begin with the scenario The recursive property of all models states that a model
s in Figure 3. Like other physical objects, it is composed is defined as a structure of models, and the multimodeling
of a set of attributes, three of which are models. The property (defined further in Sec. 6) states that each model

Figure 4: Robotr Structure.

pointer froms.o. The model is then the attribute value of
objects.model.

three models are for Object, g for Geometry and{ for component may be replaced by components of any model
Dynamic. The value of.o, for example, is an object with  type. This methodology was introduced by Fishwick
nameobjects which is displayed to the right of with a (Fishwick 1991) subsequently renamed “multimodeling,” a
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objects I1.o associated with the child geometry models so that the
) modd | po po individual models are correctly positioneq with the parent
_ frame. The semanticstructure.update() is executed to
update() j1Lo—=>alo ensure that these geometric transformations occur correctly.
attached .
There other other types of models that can be used in
11 structure 119 geometry: voxels, particle systems, space-based partition
8 model | trees and constructive solid geometry (Samet 1990b; Samet
d ' 1990a).
ports update() ilg alg The termination of the recursion for geometry models
is in the form of a data structure. In Figure 5, ath.g
behavior has no sub-models, and is defined by a pair of points
type=code in the plane (defining the line segmeit modeling the
7 model ————> codel() shape of the arm).
simulate()
4.3 Dynamic
al structure
0 fr%odel ] (o1.p2] A dynamic model is a structure of dynamic models.
g ’ Several types of dynamic models exist (Fishwick 1995)
ports updatey) and are presented in a taxonomy similar to the one used

for programming languages. Other taxonomies exist for
formal model specification, such as those for DEVS (Zeigler
1990) and for the more general model development process
(Overstreet and Nance 1985) In Figure 4, the behavior
term coined by Oren (Oren 1991), and then combined with of » is defined by a functional block model (FBM)
Zeigler's DEVS formalism (Fishwick and Zeigler 1992). behavior.model. The termination of the recursion for
Recursiveness gives us hierarchy and multimodeling gives dynamic models is in the form of a code method. In
us heterogeneity. The following are model types that are Figure 5, armal.d has no sub-models, and is defined by
frequently used in computer simulation, but the list is not a code method (function) then when executed, takes the
exhaustive. output fromi1.d (in r.d, Figure 4) and feeds it to the
input of /[2.d in the same FBM.

Figure 5: Linki1 and Armal Structures.

4.1 Object

. ) ) ) . . 4.4 Conceptual
An object model is a graph of objects with object identifiers

as the graph nodes and relational arcs. The relations Classes are not central to the specification of objects,
represent how objects relate to one another. For example, although they are useful for two reasons: 1) to permit the
g supports the robot and bothr and g are part of creation ofconceptsand 2) to enable a useful mechanism
(i.e., po) s. This model is identical in structure to the for creating new objects from the class “template.” If it
object modelin UML. Method object.update() operates ~ were only for #2, we would not require the notion of
upon object.model as to be semantically driven. The a class since it is easy to create objects through natural
two po relations may indicate an aggregate relation from (evolution) or artificial (manufacturing) means. One can
attributes or methods in and ¢ to an attribute or method ~ clone an object or create an object by creating a physical
in s. The semantics can take any form that we like, object generator.

and a relationship that is as broad as aggregation can be If we have a need to generate concepts, we can do
semantically equivalent to operations such as concatenation, S0 by creating a conceptual model on a physical medium.
summation or integration. A conceptual model is similar to the class model in the
classic object-oriented literature. In what physical object
should a conceptual model be housed? One can create
a medium such as paper or a blackboard and then place
A geometry model is a tree of geometry models, and so is the conceptual model on it with all of its concept/class
recursively defined as for the object and dynamic models). components. If we denote concepts using upperdader

The sort of tree is referred to as a hierarchical structure robots andL for links, then we can create trees or graphs
network (Foley, van Dam, Feiner, and Hughes 1990) in not unlike what we have done for object models. We let a
computer graphics. The labélss and¢2s represent matrix concept be physically contained within that portion of the
transformation operations that must occur on the frames physical medium where it is specified. For paper, concepts

4.2 Geometry
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Figure 6: Mechanism\/ Structure.

are encapsulated within the sections of paper where they
are drawn. While it may seem odd to characterize concepts
as objects, this architectural necessity places conceptual
models on an even keel with all other model types (i.e.,
all models are encapsulated within physical objects). The
main difference between conceptual models and the others,
is the conceptual model is referential—it refers to a set
of concepts about something entirely different than the
medium on which it is represented. The other models fit
inside—and describe—their physical containers. Consider
Figure 6. We define aMechanismM concept and a
concept for each object that we have created in Figure 3.
A robot conceptR isa kind of mechanism, and a robot
has two links and one end effector. We can use these
concepts to create specific objects, instead of manually
specifying them as we did in the earlier figures. Therefore,
Rrl creates robot objeatl from conceptR. This syntax

is similar to that found in C++ and Java, with the concept

being called a class, a a constructor used to generate new

objects from a pre-specified classoncepts.update() is
used to operate on the model, and this is where one would
insert semantics to deal with familiar operations such as
specialization and inheritance.

4.5 From Code to Model

To increase the level of reusability, one can create models
from logic that may appear in the model methods. Consider
dynamic models with theisimulate() methods, operating
on the models. It is also possible, through physical
metaphor, to create a model of the simulation process itself,
thereby extracting some of the semanticsofiulate() and
surfacing these semantics in model form. The procedure
of surfacing models in an architecture such as OOPM
is a procedure where we are incrementally eliminating
code structure, while creating new model structure to
compensate.

5 ENCAPSULATION

A key aspect of digital objects is that information about an
object should be encapsulated within that object. If link
11 weighs 10kg then there should be a “weight” attribute
inside thell object. If [1 has a behavior represented by
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a dynamic model, then all components of that dynamic
model must be encapsulated withih This prompts the
qguestion of how to “get information” from other objects
into /1. Information within/1 must be 1) declared locally
within 1, 2) enter/1 through its ports, or 3) be copied
into /1 via a static relation betweell and another object
(i.e., as found in object models). This relational approach
works similarly for classes.

Encapsulation is a relation that can be made explicit
one of two ways within a model. Consider any object such
as structure in Figure 3. Bothmodel and update() are
encapsulated withigtructure. This form of encapsulation
is represented in the rectangular box instead of explicitly in
tree form as for the value ohodel. However, the concepts
are similar. s.g encapsulates both.g and g.g. The key
difference is that when a labeled tree is used to demonstrate
encapsulation, the tree arcs have semantics which dictate
an operation to occur between parent and child. In the
rectangular box encapsulation, there is no operation; the
box is aplaceholderfor the internal structure.

Two frequently used encapsulation relations are com-
position and containment. They both represent one object
encapsulating other objects, but the meaning is different and
the semantics can be different. The robois physically
composed of1, [2 and e whereas a wooden crate might
containr but would not be composed aef Composition
tends to be represented with “value attributes,” which are
local to the object, whereas contained objects have inde-
pendent lifetimes from their parent, and are referentially
maintained in the parent. Large, flat tree structures can
be created from the encapsulated structures, through tree
traversal. This has the benefit of showing all relations at
once, but the local, encapsulation knowledge is lost in the
process.

6 COUPLING

Models are connected from model components, whether in
a graph or set of equations. There are four types of compo-
nents from the object-oriented perspective: 1) an attribute
name/reference, 2) an attribute value/dereference, 3) a
method name/reference, and 4) a method value/dereference.
For example, an FSM is a network of attribute values
with the attribute being the state. An FBM is a network
of method names. A System Dynamics model is a net-
work of attribute names (levels,rates) and method names
(source,sink).

The primary concern with coupling is to ensure that
one component fits into another and that their data
types match. The “fitting” is made clear through the
semantics for a model type. Theimulate() within
an FSM object specifies how model execution is to
occur, whereas thesimulate() inside of an FBM is
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particular to the FBM type, and so the semantics are
different. On the same level, a model's coupling is
dictated by rules that define the semantics for that
model. Between levels (inter-level coupling), one can
perform homogeneous or heterogeneous decomposition. In
homogeneous decomposition/refinement, the component of
a model of type X is refined into another model of type
X. In heterogeneous coupling (Fishwick, 1991) there isn’t
the limitation of matching model types, so we can refine
the state of an FSM into a different target model type.

To ensure that coupling is accurate in the heterogeneous
case, we first consider that models are composed of the
four previously defined types of components. For each
component type, we define the inter-level coupling as
functional coupling. Each model component is a dynamic
model object. In each dynamic model, there is an attribute
model This attribute points to either 1) another dynamic
model object, or 2) a code method. The simplest way to
ensure proper coupling between different model types is to
create a uniform structure for models and their components.
For example, if every model and model component is a
method, then we are assured proper coupling through
recursive substitution of model for model component.
Unfortunately, the method is not the best choice since
models are objects, and require attribute information.
Therefore, we achieve coupling by recognizing that to
execute a model is to begin scheduling of @rent chain
with model components comprising the events. Ultimately,
we terminate each dynamic model with a scheduled code
method. All dynamic models are event scheduled via the
simulate() method.

7 SUMMARY

We have specified some steps for a new information
architecture where digital objects, and their encapsulated
models, are defined. The architecture is similar to the efforts
of UML, especially with the focus on visual structures.
However, the key differences are that our architecture is
focused on physical object and model representation (and
not software design), multimodeling (for heterogeneous
coupling), and the “open architecture” ability to choose
new model types at any time. With regard to existing
standards for physical objects, one wonders where OOPM
fits. For standards such as VHDL, we envision a situation
where one could use the VHDL model type as a dynamic
model type and then acquire methods that operate on
VHDL models. This requires a slight shift in attention for
software tool builders so that they build methods that are
meant to be encapsulated (through inheritance, aggregation
or direct insertion). The architecture presented is general
enough to accommodate VHDL model types or any other
model type as long as the code (methods) and models
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are clearly separated, and yet encapsulated within their
respective physical objects. We end with some stated rules
of this architecture:

e An object contains attributes and methods.

e A digital object has a one-to-one map with a physical
object, and contains models for many, if not all, of

its attributes.

All models and model components are objects, and
these areequivalent to their graphical or textual
representations.

Each model object contains an attribute “model”
pointing to the model structure, and a set of methods
applicable for that model.

Multimodeling is the principle where one model
component object may be replaced by component
objects of any model type.
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