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ABSTRACT

We define the term “digital object” and specify a variet
of qualities that are important during the object desig
phase. A digital object contains a set of models, and
meant to serve as a reusable entity to be used on
web or over the Internet. An example using a two lin
robot arm is presented. We have found the digital obje
design methodology to provide an information schema
describe where to locate information about the object, f
simulation of dynamic models as well as the execution
other model types.

1 INTRODUCTION

For simulation to work effectively, we must have a
collaborative, shared information architecture or reposito
where we can represent models. Moreover, we would li
this schema to be as general as possible, admitting
types of simulation, and all form of model. While this ma
seem to be an horribly complicated task, we have create
set of guidelines for creating such a schema. The prima
goals of this architecture are to 1) allow the scienti
or engineer to reason about physical objects and th
interactions, 2) provide a clear link between what is don
on the computer (i.e., programming) and what is done
the analyst (i.e., modeling), and to suggest the foundatio
for a future standard on digital object reusability. W
term the architecture Object Oriented Physical Modelin
(OOPM) (Fishwick 1996) since all information is materially
grounded on the physical structure under investigation.

We will employ the example of a two link robot arm
attached to the ground, shown in Figure 1. We use
convention of using a lower case first letter for representi
physical objects, and leave the upper case situation
representing classes (ref. 4.4). The entire scenarios
contains a two link robotr. Link l1 contains jointj1
and arma1, and link l2 contains jointj2 and arma2.
The joints are revolute and allow the arm to move in th
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Figure 1: A two-link planar robot.

represented two-dimensional plane. The end effectore is
able to grasp onto objects. The two arms have frames o
referencef1 and f2, which are considered to be part of
their geometry models. The groundg supportsr and has
its own framefg.

2 OBJECT PARADIGM

If we are to capture models inside objects, we need som
sort of information paradigm. The object-oriented approach
has gained favor for software engineering projects, an
is also useful for thinking of physical objects and their
components. We can think of all physical (where physica
means “material”) objects as being represented by digita
objects inside the computer. Using the physical metapho
also falls under this scope, where a non-physical item suc
as a “queue,” for example, could easily be turned into a
set of physical objects. The digital object contains a set o
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models as attributes. In addition to having attributes, a
object can have methods; however, we often bind metho
to models, which are encapsulated within their own object
The use of objects is highly intuitive since our natura
language is founded on object names and properties. W
will always defer to the way in which physical objects
are created, destroyed and modified as to how digit
objects are to be represented. In the natural world, obje
change over time and objects can be created from oth
objects, and so we should maintain these capabilities
the corresponding digital world.

The word “model” is severly overloaded, and yet we
talk of this modelor that modelwhenever we speak of
phenomena. Let’s define model as an abstract form
representation that substitutes for the physical phenomen
Example model types aredynamic and geometric. The
dynamic model serves to represent the behavior of
physical object, and the geometric model represents t
object’s structure or shape. Each model type abstrac
captures some aspect of the real object, and so the dig
object is simply a collection of all of these models. Model
tend to be visual because visualization of phenomena a
in our understanding of mechanism. All modern simulatio
software packages are driven by graphical user interfac
The user interface and the model are intertwined and c
be considered identical; the model is the window to th
physical object. Some models may be textual, and som
analysts may prefer to think of programming languag
source lines as model components. Intrinsically, there
nothing wrong with this opinion, however in practice, mos
analysts will agree that “model” and “code” are different
In particular, code is an end product of having translate
the model. Therefore, the code and the model are at tw
different abstraction levels, and therein lies the differenc
level of translation or abstraction. A similar argument ca
be made for formal languages representing the semant
of continuous and discrete event phenomena. It is not th
these languages compete with more abstract, often visu
representations. Instead, we form a chain of translatio
from representations that are easy to understand to low
level representations that maintain their own particula
benefits. We are working with Zeigler’s group on unifying
OOPM and DEVS methodologies (Barros, Zeigler, an
Fishwick 1998). OOPM currently has an implementatio
(Cubert and Fishwick 1997) which uses C++ as its targ
language, whereas (Barros, Zeigler, and Fishwick 199
are forming a bridge using DEVS as an intermediate form
specification language as the target.

There have been several attempts to unify modelin
One recent attempt is the creation of the Unified Modelin
Language (UML) (Muller 1997; Lee 1997; Larman 1998)
While UML may not unify all types of models ever
required of the modeler, it does at least create a structur
360
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object-oriented architecture for certain types of phenome
(generally, software processes). VHDL (Bhasker 199
serves to unify modeling for the VLSI community. The
most common approach in modeling is to choose o
or several model types and then to continue to use th
types. As an inertial approach to modeling, this familiarit
with a modeling language can cause problems when
comes to integrate with what others are doing. Often, t
author of a particular modeling approach will advocate
singular model type over all other types. If the approa
is found lacking, then it is augmented over time fo
completeness. Petri nets (Peterson 1981) are a g
example of this strategy, with many variations over th
original, surviving and prospering. There is no gettin
around the situation in which we currently find ourselve
there will always be many ways to define dynamic mode
and so we must work to describe the “glue” that allow
models of varying types to be used together in a flexib
information architecture. The architecture must be capa
of the invention of existing and new model types, whil
still supporting a unified structure. While it is tempting
to imagine that a unified modeling approach exists, th
remains a dream and does not correspond to the prac
and history of modeling. Our philosophy has been
formalize theinterfacesand glue without getting into an
argument of whether model X is better than model Y.
is most likely that model X is good for some tasks, an
model Y for others. Sometimes, model X can be translat
into model Y, which can make them complementary. On
could argue that since one model can be proved to
equivalent to another under certain translations that o
model or the other is superfluous. But, this is not th
case—each model has its own character and delivers
own peculiar benefits for the modeler.

Objects know nothing of their surroundings excep
that they can receive input onports and can post output to
ports. The ports of an object serve as its formal interfac
to the outside world. We define three types of por
input, output and input/output. Input and output represe
directional data flow, whereas input/output are appropria
for bidirectional energy flow as for bond graphs (Rosenbe
and Karnopp 1983).

3 SEMIOTICS

With regard to representation of objects, we understand
need to create a digital object for each physical object
our scenario, but what about all of the models inside ea
object? Are they to be represented as data, methods
objects? We represent a model as an object, whether
model is geometric, dynamic or otherwise. Surfacing th
model as an object is based on semiotic principles (No
1990) where one clearly separates form from interpretatio
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Figure 2: Painting by Rene Magritte.

or symbol from meaning. Figure 2 displays a paintin
which captures the essence of semiotics. In the same s
as Magritte’s painting “is not a pipe,” likewise our mod
representations are more than formal model descriptio
They are physical objects containing model description

If the robot armr moves through space according
forces applied, we may partition the space and call e
partition a state of the robot. Then, we create a fin
state machine (FSM) as a dynamic modelr.d inside of r.
If this FSM is created from circles, arcs, and labels,
surface their importance as physical objects on an arbit
physical medium (paper, pixels). The FSM is a mod
and also a physical object contained within the mediu
Likewise, the diameter of the circles and the geome
of the arcs are an intrinsic part of the model, and n
just of the Graphical User Interface (GUI). Therefore, t
GUI and the model are one and the same. Not only
the models objects, but each model component is also
object—a dynamic model object.

Each model object contains an attribute calledmodel
and a set of methods applicable to the model.
example, if we wish to simulate a model, we shou
have a simulate() method inside of the model objec
The simulation applies to the model and not directly
the physical object. However, through aggregation,
physical object contains the model objects, and so, a
contains the object’s methods. Given strict encapsulat
we store methods such assolve(), simulate(), and
optimize() in the model objects.

Figures 3, 4 and 5 represent the architecture of
physicals, r and l1 objects. We begin with the scenar
s in Figure 3. Like other physical objects, it is compos
of a set of attributes, three of which are models. T
three models areo for Object, g for Geometry andd for
Dynamic. The value ofs.o, for example, is an object with
nameobjects which is displayed to the right ofs with a
36
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pointer froms.o. The model is then the attribute value of
objects.model.

4 MODELS

A physical object is equivalent to a set of models
plus attributes, where each model provides a differen
perspective on the nature of the object. To the exten
that attributes of a physical object can be considered
degenerate data or static models, a physical object i
identical to the model set. There are as many types o
models as necessary to accurately represent a digital objec
Our models are encapsulated within objects, and they a
have two key properties of recursion and multimodeling.
The recursive property of all models states that a mode
is defined as a structure of models, and the multimodeling
property (defined further in Sec. 6) states that each mode
component may be replaced by components of any mode
type. This methodology was introduced by Fishwick
(Fishwick 1991) subsequently renamed “multimodeling,” a
1
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term coined by Oren (Oren 1991), and then combined w
Zeigler’s DEVS formalism (Fishwick and Zeigler 1992)
Recursiveness gives us hierarchy and multimodeling giv
us heterogeneity. The following are model types that a
frequently used in computer simulation, but the list is n
exhaustive.

4.1 Object

An object model is a graph of objects with object identifie
as the graph nodes and relational arcs. The relatio
represent how objects relate to one another. For exam
g supports the robotr and both r and g are part of
(i.e., po) s. This model is identical in structure to the
object modelin UML. Method object.update() operates
upon object.model as to be semantically driven. The
two po relations may indicate an aggregate relation fro
attributes or methods inr andg to an attribute or method
in s. The semantics can take any form that we lik
and a relationship that is as broad as aggregation can
semantically equivalent to operations such as concatenat
summation or integration.

4.2 Geometry

A geometry model is a tree of geometry models, and so
recursively defined as for the object and dynamic mode
The sort of tree is referred to as a hierarchical structu
network (Foley, van Dam, Feiner, and Hughes 1990)
computer graphics. The labelst1s andt2s represent matrix
transformation operations that must occur on the fram
362
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associated with the child geometry models so that the
individual models are correctly positioned with the parent
frame. The semanticsstructure.update() is executed to
ensure that these geometric transformations occur correctly
There other other types of models that can be used in
geometry: voxels, particle systems, space-based partition
trees and constructive solid geometry (Samet 1990b; Same
1990a).

The termination of the recursion for geometry models
is in the form of a data structure. In Figure 5, arma1.g
has no sub-models, and is defined by a pair of points
in the plane (defining the line segmenta1 modeling the
shape of the arm).

4.3 Dynamic

A dynamic model is a structure of dynamic models.
Several types of dynamic models exist (Fishwick 1995)
and are presented in a taxonomy similar to the one used
for programming languages. Other taxonomies exist for
formal model specification, such as those for DEVS (Zeigler
1990) and for the more general model development process
(Overstreet and Nance 1985) In Figure 4, the behavior
of r is defined by a functional block model (FBM)
behavior.model. The termination of the recursion for
dynamic models is in the form of a code method. In
Figure 5, arma1.d has no sub-models, and is defined by
a code method (function) then when executed, takes the
output from l1.d (in r.d, Figure 4) and feeds it to the
input of l2.d in the same FBM.

4.4 Conceptual

Classes are not central to the specification of objects,
although they are useful for two reasons: 1) to permit the
creation ofconcepts, and 2) to enable a useful mechanism
for creating new objects from the class “template.” If it
were only for #2, we would not require the notion of
a class since it is easy to create objects through natura
(evolution) or artificial (manufacturing) means. One can
clone an object or create an object by creating a physical
object generator.

If we have a need to generate concepts, we can do
so by creating a conceptual model on a physical medium.
A conceptual model is similar to the class model in the
classic object-oriented literature. In what physical object
should a conceptual model be housed? One can create
a medium such as paper or a blackboard and then place
the conceptual model on it with all of its concept/class
components. If we denote concepts using uppercase,R for
robots andL for links, then we can create trees or graphs
not unlike what we have done for object models. We let a
concept be physically contained within that portion of the
physical medium where it is specified. For paper, concepts



gn for Digital Objects

t
a
,
e
s
t

t

e
ly
,

t

l
s

l

l
lf

e

ic

ch

cit
ch

in

ate
tate
he
the

m-
ect
nd

t

re
de-
lly
an
tree
at
he

in
po-
te

) a
nce.
s
k
et-
es

t
ta
e

to
An Architectural Desi

concepts

model

update()

c R.c

L.c E.c
=2 =1

po po

M.c
M isa

Figure 6: MechanismM Structure.

are encapsulated within the sections of paper where the
are drawn. While it may seem odd to characterize concep
as objects, this architectural necessity places conceptu
models on an even keel with all other model types (i.e.
all models are encapsulated within physical objects). Th
main difference between conceptual models and the other
is the conceptual model is referential—it refers to a se
of concepts about something entirely different than the
medium on which it is represented. The other models fi
inside—and describe—their physical containers. Conside
Figure 6. We define aMechanismM concept and a
concept for each object that we have created in Figure 3
A robot conceptR isa kind of mechanism, and a robot
has two links and one end effector. We can use thes
concepts to create specific objects, instead of manual
specifying them as we did in the earlier figures. Therefore
Rr1 creates robot objectr1 from conceptR. This syntax
is similar to that found in C++ and Java, with the concep
being called a class, a a constructor used to generate ne
objects from a pre-specified class.concepts.update() is
used to operate on the model, and this is where one wou
insert semantics to deal with familiar operations such a
specialization and inheritance.

4.5 From Code to Model

To increase the level of reusability, one can create mode
from logic that may appear in the model methods. Conside
dynamic models with theirsimulate() methods, operating
on the models. It is also possible, through physica
metaphor, to create a model of the simulation process itse
thereby extracting some of the semantics ofsimulate() and
surfacing these semantics in model form. The procedur
of surfacing models in an architecture such as OOPM
is a procedure where we are incrementally eliminating
code structure, while creating new model structure to
compensate.

5 ENCAPSULATION

A key aspect of digital objects is that information about an
object should be encapsulated within that object. If link
l1 weighs 10kg then there should be a “weight” attribute
inside thel1 object. If l1 has a behavior represented by
363
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a dynamic model, then all components of that dynam
model must be encapsulated withinl1. This prompts the
question of how to “get information” from other objects
into l1. Information within l1 must be 1) declared locally
within l1, 2) enter l1 through its ports, or 3) be copied
into l1 via a static relation betweenl1 and another object
(i.e., as found in object models). This relational approa
works similarly for classes.

Encapsulation is a relation that can be made expli
one of two ways within a model. Consider any object su
as structure in Figure 3. Bothmodel and update() are
encapsulated withinstructure. This form of encapsulation
is represented in the rectangular box instead of explicitly
tree form as for the value ofmodel. However, the concepts
are similar. s.g encapsulates bothr.g and g.g. The key
difference is that when a labeled tree is used to demonstr
encapsulation, the tree arcs have semantics which dic
an operation to occur between parent and child. In t
rectangular box encapsulation, there is no operation;
box is aplaceholderfor the internal structure.

Two frequently used encapsulation relations are co
position and containment. They both represent one obj
encapsulating other objects, but the meaning is different a
the semantics can be different. The robotr is physically
composed ofl1, l2 and e whereas a wooden crate migh
containr but would not be composed ofr. Composition
tends to be represented with “value attributes,” which a
local to the object, whereas contained objects have in
pendent lifetimes from their parent, and are referentia
maintained in the parent. Large, flat tree structures c
be created from the encapsulated structures, through
traversal. This has the benefit of showing all relations
once, but the local, encapsulation knowledge is lost in t
process.

6 COUPLING

Models are connected from model components, whether
a graph or set of equations. There are four types of com
nents from the object-oriented perspective: 1) an attribu
name/reference, 2) an attribute value/dereference, 3
method name/reference, and 4) a method value/derefere
For example, an FSM is a network of attribute value
with the attribute being the state. An FBM is a networ
of method names. A System Dynamics model is a n
work of attribute names (levels,rates) and method nam
(source,sink).

The primary concern with coupling is to ensure tha
one component fits into another and that their da
types match. The “fitting” is made clear through th
semantics for a model type. Thesimulate() within
an FSM object specifies how model execution is
occur, whereas thesimulate() inside of an FBM is
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particular to the FBM type, and so the semantics are
different. On the same level, a model’s coupling is
dictated by rules that define the semantics for tha
model. Between levels (inter-level coupling), one can
perform homogeneous or heterogeneous decomposition.
homogeneous decomposition/refinement, the component
a model of type X is refined into another model of type
X. In heterogeneous coupling (Fishwick, 1991) there isn’
the limitation of matching model types, so we can refine
the state of an FSM into a different target model type.

To ensure that coupling is accurate in the heterogeneou
case, we first consider that models are composed of th
four previously defined types of components. For each
component type, we define the inter-level coupling as
functional coupling. Each model component is a dynamic
model object. In each dynamic model, there is an attribut
model. This attribute points to either 1) another dynamic
model object, or 2) a code method. The simplest way to
ensure proper coupling between different model types is t
create a uniform structure for models and their component
For example, if every model and model component is a
method, then we are assured proper coupling throug
recursive substitution of model for model component.
Unfortunately, the method is not the best choice since
models are objects, and require attribute information
Therefore, we achieve coupling by recognizing that to
execute a model is to begin scheduling of anevent chain
with model components comprising the events. Ultimately
we terminate each dynamic model with a scheduled cod
method. All dynamic models are event scheduled via th
simulate() method.

7 SUMMARY

We have specified some steps for a new information
architecture where digital objects, and their encapsulate
models, are defined. The architecture is similar to the effort
of UML, especially with the focus on visual structures.
However, the key differences are that our architecture i
focused on physical object and model representation (an
not software design), multimodeling (for heterogeneous
coupling), and the “open architecture” ability to choose
new model types at any time. With regard to existing
standards for physical objects, one wonders where OOPM
fits. For standards such as VHDL, we envision a situation
where one could use the VHDL model type as a dynami
model type and then acquire methods that operate o
VHDL models. This requires a slight shift in attention for
software tool builders so that they build methods that ar
meant to be encapsulated (through inheritance, aggregati
or direct insertion). The architecture presented is genera
enough to accommodate VHDL model types or any othe
model type as long as the code (methods) and mode
364
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are clearly separated, and yet encapsulated within the
respective physical objects. We end with some stated rule
of this architecture:

• An object contains attributes and methods.

• A digital object has a one-to-one map with a physica
object, and contains models for many, if not all, of
its attributes.

• All models and model components are objects, an
these areequivalent to their graphical or textual
representations.

• Each model object contains an attribute “model”
pointing to the model structure, and a set of method
applicable for that model.

• Multimodeling is the principle where one model
component object may be replaced by componen
objects of any model type.
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