
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

A HETEROGENEOUS SIMULATION FRAMEWORK
BASED ON THE DEVS BUS AND THE HIGH LEVEL ARCHITECTURE

Yong Jae Kim
Tag Gon Kim

Department of Electrical Engineering
Korea Advanced Institute of Science and Technology

373-1, Kusung-Dong, Yusung-Gu, Taejun, 305-701, KOREA

VS

n
el
e

en
y
S
i

as
er
US

p
e

to
ic
F
a
a

ru

in
h

at
ion
s
A,

r

t

l

ABSTRACT

We describe a heterogeneous simulation framework
which conventional simulation models and the DE
(Discrete Event Systems Specification) models can
interoperable. The framework conceptually consists
three layers: the model layer, the DEVS layer, a
the HLA (High Level Architecture) layer. The mod
layer has a collection of heterogeneous simulation mod
such as DEVS, CSIM, SLAM, and so on, to repres
various aspects of a complex system. The DEVS la
provides a common framework, called the DEVS BU
so that such simulation models can communicate w
each other. Finally, the HLA layer is employed
a communication infrastructure, which supports sev
good features for distributed simulation. The DEVS B
has been implemented on the HLA and a simple exam
of communicating two heterogeneous models has b
developed to validate the DEVS BUS.

1 INTRODUCTION

A heterogeneous simulation includes many simula
having different simulation methodologies, each of wh
is dedicated to an aspect of a complex question.
example, simulation for a manufacturing system m
include a scheduler, a harbor, a traffic, a factory,
AS/RS, and an ecological simulator. The simulators
concurrently for answering the complex question.

High Level Architecture (HLA) has been defined
the DoD M&S sub-objective 1-1 (DoD 1995): “Establis
a common high-level simulation architecture to facilit
the interoperability of all types of models and simulat
among themselves and with C4I systems, as well a
facilitate the reuse of M&S components". The HL
however, gives no formal way to model a system.
42
in

be
of
d

ls,
t

er
,

th

al

le
en

rs
h
or
y
n
n

e

to

When an existing simulation model such as CSIM,
SLAM, and so on, wants to join a federation, the
simulation model should be modified so that the model
can send(receive) external messages to(from) the othe
federates. Such modifications seem difficult and sometimes
may be impractical. In this paper, we propose an alternative
way to heterogeneous simulation using the DEVS BUS
approach, in which existing simulation models need not
to be modified.

Kim and Kim (Kim and Kim 1996b) proposed
the DEVS BUS that virtually connects the supervisory
simulation model and node simulation models. They also
proposed a very simple protocol conversion method that
can be used only for server models. In this paper, we refine
the DEVS BUS and develop a general protocol converter
using a system theoretic approach (Kim and Kim 1998).

The rest of this paper is organized as follows. Section
2 describes an overview of the framework. Section 3
reviews the DEVS formalism and describes the DEVS
BUS architecture. Section 4 develops a DEVS/CSIM
simulation protocol converter with which a CSIM model
can be attached to the DEVS BUS. Sections 5 and 6 presen
an implementation and an execution of a DEVSim-HLA
environment, respectively. Finally, some conclusions and
future works are given.

2 OVERVIEW OF THE FRAMEWORK

The goal of the proposed framework is to provide a common
simulation infrastructure for heterogeneous simulation, in
which constructive simulations, live components, and
human interactions can be interoperable. The infrastructure
should have a simple, well-defined interface so that
a simulator can easily participate in a heterogeneous
simulation.

We propose the DEVS BUS approach as shown in
Figure 1. There are conceptually three layers: the mode
1

Kim and Kim

on
l,
on

a

ous
nd
tem
eou
he

a
on.

so

so
ach
ou
ith
la-
ter
ro-
tes
ot
tio

els
is

ted
m-
ing

a-
res
e

ce
se
tim
57,�,QWHUIDFH 57,�,QWHUIDFH57,�,QWHUIDFH

'(96�PRGHO

'(96�&6,0
&RQYHUWHU

&6,0�PRGHO

'(96�6/$0
&RQYHUWHU

6/$0�PRGHO

'(96�/D\HU

02'(/�/D\HU
'(96

�KLHUDUFKLFDO
VFKHGXOLQJ�

&6,0
�SURFHVV�OLVW�

6/$0
�HYHQW�OLVW�

'(96�%86

+/$�/D\HU

&RPPXQLFDWLRQ�1HWZRUN

'(96�%86
&RQWUROOHU

'LVSDWFKHU $UELWHU

Figure 1: DEVS BUS Approach

layer, the DEVS layer, and the HLA layer. Each simulati
node, called afederate, consists of a simulation mode
a simulation protocol converter, and an HLA simulati
facility. Federates communicate with each other via
communication network.

The model layer has a collection of heterogene
simulation models, such as DEVS, CSIM, SLAM, a
so on, to represent various aspects of a complex sys
There are two main advantages of using heterogen
simulation models: modeling power and reusability. T
layer enables a modeler to build a global model with
combination of world views to answer a complex questi
Also, well-developed simulation models can be reused
that we can build rapidly an overall simulation model.

The DEVS layer provides a common framework
that such simulation models could communicate with e
other. Simulation models participating in a heterogene
simulation, however, may not communicate directly w
each other due to different simulation protocols: simu
tion protocol conversion is required. A protocol conver
is an interface module between different simulation p
tocols. For example, a DEVS/CSIM converter transla
DEVS requests into CSIM messages and vice versa. N
that such a converter does not translate each simula
model into a DEVS model but enable simulation mod
to communicate with each other. The DEVS BUS
virtually located between simulation models. Instrumen
with protocol converters, the DEVS BUS coordinates co
munications between simulation models while preserv
causal relationships of events.

Finally, the HLA layer is employed as a communic
tion infrastructure, which supports several good featu
for distributed simulation. For example, the Run-Tim
Infrastructure(RTI) of the HLA supports a time advan
mechanism based on the conservative approach and
eral message delivery schemes such as receive and
422
.
s

s

e
n

v-
e

stamp ordered. Moreover, the layer enables us to enlarge
our simulation framework to include live components and
human interactions.

3 DEVS BUS

Before describing the DEVS BUS, we briefly review the
DEVS formalism and abstract simulators for DEVS models.

3.1 DEVS Formalism

DEVS (Discrete Event System Specification) is a set-
theoretic formalism to specify discrete event systems (Zei-
gler 1984). There are two kinds of models, atomic and
coupled. An atomic model, called AM, specifies the
dynamics of a model and is defined as:

Definition [AM]

AM =< S, X, Y, δext, δint, λ, ta >
where
S: sequential states set,
X: input events set,
Y : output events set,
δext: Q × X → S, external transition function

whereQ is the total state set of
Q = {(s, e)|s ∈ S and 0 ≤ e ≤ ta(s)},

δint: S → S, internal transition function,
λ: S → Y , output function,
ta: S → R+

0,∞, time advance function
where theR+

0,∞ is the non-negative real numbers
with ∞ adjoined.

The interface of an atomic model is defined byX
and Y . The model can process events defined atX and
produce events defined atY . δext and δint specify how
to change the states of the model. An output event is
produced at a state according toλ. Finally, a sojourn time
of a state is defined byta.

A coupled model provides the way of composition
of several atomic and/or coupled models. When we want
to specify a complex system, we can specify each of
subcomponents individually and construct big one using
the coupled model, which has only structural informations
and is defined as:

Definition [CM]

CM =< X, Y, {Mi}, EIC, EOC, IC, SELECT >
where
X: input events set,
Y : output events set,
Mi : component basic model,

A Heterogeneous Simulation Framework Based on the DEVS Bus and the High Level Architecture

ra

er

en
te
rs
ic

en

.

a

d
nd
ve
e
at

FF

en

e
h
u

g
iti
OC

ion

:

tter

nk

g

n

EIC ⊆ X × ∪Xi : external input coupling
relation,

EOC ⊆ ∪Yi × Y : external output coupling
relation,

IC ⊆ ∪Yi × ∪Xj : internal coupling relation,
SELECT : 2M − φ → Mi, tie-breaking selector.

Mi can be an atomic and/or coupled model.EIC
specifies how to route external messages toMi andEOC
how to route output events ofMi to the outside ofCM .
An output event ofMi is sent toMj according toIC.
Finally, SELECT is a tie breaking function.

3.2 DEVS Abstract Simulator

Attached to each DEVS model is an associated abst
simulator, either asimulator for an atomic model or a
coordinator for a coupled model (Zeigler 1984). Consid
Figure 2, where a solid line with?event corresponds
to an external state transition by an external input ev
and dashed one with!event represents an internal sta
transition with an external output event. Two simulato
S1 and S2, are managed by a coordinator, COOR, wh
is not shown in the Figure. Assume that S1 wants to s
an output event to S2. After receiving(∗, t), S1 produces
an output(y, t) by executingλ and sends it to COOR
Then, S1 changes its state as defined inδint, calculates a
sojourn time,tN1, of a new state usingta, and sends a
(done, tN1) to COOR. After receiving(x, t), S2 updates
its state according toδext and sends(done, tN2) to COOR.
The abstract simulator algorithm is a composition of th
of S1 and S2, as shown in the lower part of Figure 2.

The hierarchical simulation algorithm for a couple
model, PEL, which has two atomic models, BUFF a
PROC, is shown in Figure 3. BUFF and PROC ha
associated simulators of S:BUFF and S:PROC, respectiv
The coupled model, PEL, has the associated coordin
of C:PEL. Finally, R:PEL is theroot-coordinator whose
job is to manage the overall simulation clock.

Assume that the next simulation time is 10 and BU
produces an output at 10. First, R:PEL sends(∗, t = 10)
to C:PEL. C:PEL routes the message to its compon
whose tN is 10. In this case, C:PEL routes(∗, 10) to
S:BUFF. S:BUFF requests BUFF to execute consecutiv
the output function, the internal transition function, and t
time advance function of BUFF while producing an outp
message,(y, 10). S:BUFF sends(y, 10) to C:PEL. Then,
C:PEL translates(y, 10) into an input message,(x, 10),
and sends it to S:PROC. After receiving the input messa
S:PROC requests PROC to execute the external trans
function and the time advance function. Then, S:PR
reports(done, tN1 ≥ 10) to C:PEL, which indicates the
next event time of S:PROC istN1. Also, S:BUFF reports
its next event time by sending(done, tN2 ≥ 10) to C:PEL.
423
ct

t

,
h
d

t

ly.
or

t,

ly
e
t

e,
on

"�[��W�

:DLW

"�
��W�

��\��W�

��GRQH��W1� ��GRQH��W1�

6����VHQGHU 6����UHFHLYHU

6
W1

�[��W�

�
��W�

�\��W�

�GRQH��W1�

�[��W����H[WHUQDO�LQSXW

�
��W����VFKHGXOH�QRWLILFDWLRQ

�\��W����H[WHUQDO�RXWSXW

�GRQH��W1����QH[W�VFKHGXOH�WLPH

�[��W�

�
��W�

�\��W�

�GRQH��W1�

WDdLQWl

:DLW

WD dH[W

"�[��W�

:DLW

"�
��W�

��\��W�

��GRQH��W1�

WDdLQWl dH[W

6

Figure 2: DEVS Simulator Algorithm

&�3(/

����
��W�

����
��W�
����\��W�

����[��W�
����GRQH��W1������GRQH��W1��

����GRQH��PLQ�W1��W1���

%8))
�$WRPLF�

352&
�$WRPLF�

3(/�&RXSOHG�

5�3(/ *OREDO�6FKHGXOHU

,&

%8))

dH[W��dLQW�l���WD

3(/
(,&�(2&�,&

352&

dH[W��dLQW��l��WD

6�352&6�%8))

Figure 3: Hierarchical Simulation Algorithm for DEVS
Coordinator

The newtN of C:PEL is set to the minimum of twotNs
and reported to R:PEL by sending(done, min(tN1, tN2)).
Once R:PEL receives the message, it updates the simulat
clock into min(tN1, tN2) and sends(∗, min(tN1, tN2))
to C:PEL.

There are four kinds of message in the algorithm
(∗, t), (done, tN), (x, t) and (y, t). The former two
messages are used for simulation scheduling and the la
two for data transfer.

3.3 DEVS BUS Architecture

A computer bus serves as a shared communication li
between various parts of a computer system. Amasteris a
device that can initiate a communication with a respondin
device, which is called aslave. A bus has multiple masters
when there are multiple CPUs or when I/O devices ca

Kim and Kim

ers
is

nd
ow
ce

a
n

jor
ha
.
at

ec
tag
nd
se
u

ts

re
S

s a
he

m
he
so
n

.
the

to

or
ly
ns
st
ve
th
er-
al

he
e
to

r

is

,

.

l

initiate a communication. Anarbitration is a mechanism
to resolve conflicts that arise when more than two mast
try to use the bus at the same time. A device that
dedicated to the arbitration is called abus arbiter.

The bus has the two major advantages: low cost a
versatility (Hennessy and Patterson 1990). The cost is l
because a single set of wires is shared by several devi
We can add new devices to the bus by implementing
single interconnection scheme already well defined. O
the other hand, a communication bottleneck is the ma
disadvantage of the bus. If the bus is in use, a device t
is newly trying to use it should wait until it becomes free

The basic idea of the DEVS BUS is the same as th
of the hardware bus. The approach may arise a bottlen
problem as the hardware bus and also has the advan
of the common interface. When a simulator wants to se
a message to others, it should wait until granted to u
the bus. When a simulator wants to join a heterogeneo
simulation, it comes true if the simulator just implemen
the DEVS BUS protocol.

Figure 4 shows the DEVS BUS architecture. The
are four communication paths between the DEVS BU
controller and node simulators.(x, t) and(y, t) are for data
transfer. (∗, t) corresponds to abus grantof the hardware
bus. (done, tN) has the composite meaning of abus release
and abus reservation. The DEVS BUS controller consists
of a dispatcher and an arbiter. Basically, the dispatcher i
coupling scheme of a coupled DEVS and the arbiter is t
root coordinator of the hierarchical simulation algorithm
for the coupled DEVS. The dispatcher receives data fro
source model and forwards it to destination model. T
arbiter selects a simulator among several simulators
that the simulator exclusively use the DEVS BUS for a
instant.

Once a simulator receives(∗, t), it use the bus and
eventually sends(done, tN) as a bus release/reservation
The bus reservation reports it to the dispatcher that
simulator should be scheduled at the next event timetN .
So, whenever a simulator receives(∗, t) or (x, t), it sends
(done, tN) to the dispatcher. It differs from abus request
of a common hardware bus, in which a master want
use the bus not later but immediately.

An addressing scheme should be considered to c
rectly transfer data. Actually, a hardware bus arbiter on
deals with control signals. Data read and write operatio
are performed between a master and a slave. The ma
should select the designated slave among several sla
according to the predefined addressing scheme. On
other hand, in the DEVS BUS, the bus dispatcher det
mines the destination simulator. The dispatcher has
connection information, called a coupling scheme. T
coupling scheme is a relation in which all pairs of sourc
and destination models are specified. When a simula
424
s.

t

k
e

s

-

er
s

e

l

r

'(96�%86�&RQWUROOHU

�[��W�������������'DWD�UHDG

6� 6�

'LVSDWFKHU

�
��W�������������%86�JUDQW
�\��W�������������'DWD�ZULWH

�GRQH��W1����%86�UHOHDVH�	
��������������������%86�UHVHUYDWLRQ

6� 6�

+LHUDUFKLFDO
6LPXODWLRQ
$OJRULWKP

�[��W�
�
��W�

�\��W�
�GRQH��W1�

�[��W�
�
��W�

�\��W�
�GRQH��W1�

&225

$UELWHU

Figure 4: DEVS BUS Architecture

produces(y, t), the bus dispatcher translates it into(x, t)
and forwards(x, t) to the destination simulator as specified
in the coupling scheme.

Specification of connection information in the coupling
scheme, not in models, gives much flexibility in changing
destination simulator. Consider that some models ofS2
are moved intoS3. There is no need forS1 to know the
movement. S1 just sends(y, t) to the dispatcher not to
directly S2 or S3.

A possible scenario of the DEVS BUS arbitration
is shown in Figure 5. Initially, both simulators report
their tNs to the arbiter. When the arbiter receives both
messages, it determines that a simulator with the smalle
tN , S1, can use the bus. The arbiter sends(∗, 3) to S1.
Once S1 receives the message, it produces(y, 3) to the
dispatcher. Then, the dispatcher translates it into(x, 3)
and forwards(x, 3) to S2. After receiving(x, 3), S2
reports itstN to the arbiter by sending(done, tN = 5).
Also, S1 produces(done, tN = 10). Then, the arbiter
generates(∗, 5) so that S2 can use the bus and so on.

Table 1 shows a comparison between the DEVS BUS
and a common hardware bus. There are two differences
between them: bus request and addressing. Scheduled
a bus request of the DEVS BUS, by which a simulator
reserves the bus for a future use. On the other hand
immediate is that of the hardware bus, by which a master
can use the bus right away if granted. Because the
dispatcher in the DEVS BUS controller has all addressing
information, the simulator just sends data to the dispatcher
In the hardware bus, however, the arbiter only controls
bus arbitration and the master should know a destination
address. Specification of connection information in the
dispatcher, not in models, gives much flexibility in changing
the destination address. We did not define a bus protoco
for data transfer such as timing requirements used for a

A Heterogeneous Simulation Framework Based on the DEVS Bus and the High Level Architecture

S
Table 1: Comparison between DEVS BUS and Hardware BU

Feature DEVS BUS Hardware Bus

Bus request (done, 0) BR
Bus reservation (done, tN) N/A

Bus grant (∗, t) BG
Bus release (done, tN) BREL

Addressing Method Dispatcher base Source base
l

e
o
e
s

ts

io
e
M
h
g

o
a

n

l

s

�
����

�\����

�[���

�GRQH�W1� ��� �GRQH�W1� ���

�GRQH�W1� ���

�GRQH�W1� ����

�
����

�[����

�\����

�GRQH�W1� ����

6� 6�
'(96�%86
&RQWUROOHU

'LVSDWFKHU $UELWHU

WLPH

Figure 5: DEVS BUS Arbitration

hardware bus. Those requirements are considered use
for our purpose.

4 SIMULATION PROTOCOL
CONVERSION

4.1 DEVS/CSIM Simulation Protocol

Conventional simulation environments can be easily add
to the DEVS BUS by using a dedicated simulation protoc
converter. DEVS models are interpreted using the hi
archical simulation algorithm. Simulation methodologie
for conventional simulation models, however, differ from
that of the DEVS models. When a DEVS model wan
to communicate with a conventional model, asimulation
protocol mismatchexists and should be resolved.

In this section, we consider a heterogeneous simulat
environment that consists of a DEVS simulation mod
and a CSIM simulation model. We design a DEVS/CSI
simulation protocol converter to resolve the mismatc
using a system theoretic protocol conversion methodolo
(Kim and Kim 1998). Generally speaking, the protoc
conversion problem is to find a missing component th
is connected with two end components while satisfying
given high level specification. In the protocol conversio
425
ess

d
l
r-

n
l

y
l
t
a

methodology, the two components and the high leve
specification are described in the DEVS formalism and
a protocol converter, the missing component, is found
algebraically.

�
"LQWHUQDO
UHVXOW

�LQWHUQDO
VFKHGXOH

�VHQG
� �

�

"UHFY
�LQWHUQDO
VFKHGXOH

�FUHDWH
SURFHVV

� �

4����VHQGHU

4����UHFHLYHU

�

"�
��W���GRQH�W1�

��\��W�
� �

�

"�[��W���GRQH�W1�

�LQWHUQDO
IRUZDUG

� �

3����VHQGHU

3����UHFHLYHU

'(96 &6,0

Figure 6: DEVS-CSIM Communication

Figure 6 describes the DEVS and the CSIM simulation
protocol. The DEVS simulation protocol consists of a
sender,P0, and a receiver,P1. Q0 and Q1 are those of
the CSIM simulation protocol. The simulation protocols
only include capabilities on communication with other
simulation models. We abstracted the details such a
interactions with models and scheduling algorithms.

Assume thatP0 sends a message toQ1 at t = 0.
Initially, the DEVS BUS arbiter,Arb, receives two different
messages,(done, tNP = 0) and (done, tNQ > 0), from
the DEVS and the CSIM simulator, respectively. (Let’s
assume(done, tNQ) can be sent.) The next scheduling
time, tN , is set to the minimum oftNP and tNQ, that is
tN = 0. Once tN is determined,Arb grants one of two
simulators to use the bus by sending(∗, tN = 0) to the
simulator. In this case, the DEVS simulator is granted.
After receiving(∗, 0), P0 produces an output event,(y, 0),
which is eventually sent toQ1. Then,P0 reports its next
scheduling time toArb by sending(done, tNP ′). When
P1 receives an external input message,(x, t), from Q0, it

Kim and Kim

d

o
d

:
of

p

d

g

he

g

f
d

,

s
re

t

e

e
d

l
in
ch
d

e

O
at
h

l,

t

&'&

"�
4��W�
� �

"VHQG
��

��GRQH4��W1� ��[��W�
�

� � �

��GRQH4��W1� ��GRQH4��W1� ��GRQH4��W1�

"VHQG ��[��W�

�UHFY
� �

"�\��W�

'&&

�UHFY

"VHQG

"�\��W�

"�
4��W�

��[��W�

��GRQH4��W1�

Figure 7: DEVS/CSIM Protocol Converter

forwards the message to the destination model and sen
(done, tNP ′′) to Arb.

On the other hand,Q usessend and recv messages
instead of(done, tN), (∗, t), (x, t), and (y, t). WhenQ1
receives an externalrecv message, it creates a process t
perform jobs for the message and is internally reschedule
If there is an internal result,Q0 produces asend message
and is rescheduled.

Evidently, the simulation methodology of the DEVS
model is different from that of the CSIM simulation model
their simulation protocols are mismatched. Because
the protocol mismatch, the DEVS model can’t directly
communicate with the CSIM model. We should develo
a simulation protocol converter, which makes the CSIM
model interoperable with the DEVS model.

4.2 DEVS/CSIM Simulation Protocol
Conversion

We build a protocol converter that can be decompose
into two separate parts (Figure 7).CDC is for the
communication path fromP0 to Q1 andCCD from Q0 to
P1. CDC andCCD are individually found using the system
theoretic approach (Kim and Kim 1998). The resultin
converter,C, is constructed by composition ofCDC and
CCD. When C is to be constructed directly fromP and
Q, the complexity may be high. The decomposition ofC
into CDC and CCD is efficient.

5 IMPLEMENTATION OF DEVSIM-HLA

In this section, we describe the connection between t
DEVS layer and the HLA layer. The environment is
developed on the RTI version 1.0.3 (DMSO 1997) usin
the D-DEVSim++ simulation environment (Kim et al.
1996a) and the CSIM environment (Schwetman 1988).
426
s

.

5.1 Implementation of the DEVS BUS
Protocol

In the RTI, federates communicate with each other in
two ways: object and interaction. An object represents a
simulation entity and has several attributes for states o
the entity. On the other hand, an interaction is best suite
to represent a message between federates.

The DEVS Bus protocol has four kinds of messages
each of which corresponds to an interaction. To route
the message correctly, we add some routing information
such as address and port information. The interactions a
considered as reliable TSO messages.

5.2 Time Management

There are two factors to determine time managemen
service in RTI: time constrained and time regulating
(DMSO 1996). Time constrained indicates whether the
federate will be constrained by the logical time of other
federates; time regulating indicates whether the federat
proposes to participate in determining the logical time of
other federates. Time constrained federates can receiv
time-stamp ordered (TSO) messages and time regulate
federates can send them.

Among four possible different services of time man-
agement according to the two factors, we use the logica
time synchronized service so that a federate participates
other federate’s time advance decisions and accepts su
participation from other federates. The federates can sen
and/or receive TSO messages.

There exists a semantic gap between the RTI time
management and the time advance mechanism of th
DEVS BUS protocol. Consider a logically synchronized
federate. In the RTI, the fact that the current time of the
federate is 2 means that there is no more external TS
message with a time-stamp less than or equals to 2, th
is ts ≤ 2. The federate can only generate messages wit
ts ≥ 2 + lookahead. On the other hand, the DEVS BUS
protocol uses next schedule times,tNs. tN = 2 means
that the arbiter makes(∗, 2). Once a simulator receives
(∗, 2), it sends(done, tN) after a set of executions of
the output function, the internal transition function, and
the time advance function. At this time, anothertN = 2
is possible if azero time advanceis modeled. So, in
the DEVS BUS, there may be possibletN = 2 after
processing(∗, 2).

The problem is more difficult when we consider a
(y, t) message routing. Assume that a coupled mode
c0, which is mapped into a federateA, consists of two
atomic models,a1 anda2 which are mapped into another
federateB. Considera1 wants to send(y, 2) to a2. Then,
a1 should send the message toc0 because in the DEVS
formalism, a basic model in a coupled model can no

A Heterogeneous Simulation Framework Based on the DEVS Bus and the High Level Architecture

d

g

e

r

d
e
r
re

e

o

,

e

directly send an output message to another in the couple
model. Oncec0 receives the message att(FedA) = 2, c0
should send(x, 2), the translated message of(y, 2), to a2
at t(FedA) = 2. In the RTI, however, it’s illegal because
ts = 2 < 2 + lookahead(> 0).

We solve the problem using two epsilons scheme,
which uses predefined small values,ε1 and ε2, while
preserving the overall logical sequence of events.ε1 is
used to resolve the zero time advance problem by adding
ε1 to tN whenever a zero time advance occurs.ε2 is used
for the (y, t) message problem. When the message time
of a (y, t) is the same as the federate’s current time,ε2 is
added to the request message to the RTI, while preservin
t of (y, t). ε1 is slightly modified from theε-delay scheme
(Kim et al. 1997) andε2 is from theEPSILON of the
RTI (DMSO 1997).

6 AN EXECUTION

We develop a simple example, calledEF PEL (Figure 8),
which consists of four different components. The generator
produces jobs at a predefined rate and sends them to th
buffer. Once receiving a job, the buffer forwards it to
the processor if the processor is free, otherwise the buffe
saves it until the processor is available. After finishing the
job, the processor reports a result to the transducer an
sends a message to the buffer so that another job can b
sent. When a termination condition meets, the transduce
sends a stop message to the generator so that no mo
jobs are generated.

We build theEF PEL simulator using two federates.
The processor model is developed as a CSIM model and
mapped into the Federate P2. The others are DEVS
models and mapped into the Federate P1. To enabl
communication between two simulation models, we use
the DEVS/CSIM protocol converter constructed at the
previous section.

The DEVS simulator and the CSIM simulator run
concurrently. (x, t) and (y, t) messages are well passed
obeying timing constraints. The simulation goes well so
that every jobs generated are processed in the process
model and finally reported to the transducer model. We
can get the statistics of facilities of the processor model
from the CSIM environment and the overall performance
results from the DEVS environment.

7 CONCLUSIONS AND
FUTURE WORKS

We have described a software bus, called the DEVS BUS
as a common simulation infrastructure for heterogeneous
simulation. The DEVS BUS provides a well-defined
interface so that a simulator could be easily added
427
r

*(15
�'�'(96LP���0RGHO�

75$16'
�'�'(96LP���0RGHO�

%8))
�'�'(96LP���0RGHO�

352&
�&6,0�0RGHO�

LQ UHDG\

RXW

LQ

RXW

RXW

VWRS

VROYHG

RXW

3�

'�'(96LP��
(QYLURQPHQW

3�

&6,0
(QYLURQPHQW

Figure 8: EFPEL Model

to heterogeneous simulation just by implementing the
interface. The DEVS BUS controller consists of a
dispatcher and an arbiter. Basically, the dispatcher is
a coupling scheme of a coupled DEVS and the arbiter is
the root-coordinator of the hierarchical simulation algorithm
associated with the coupled DEVS.

We have implemented the DEVSim-HLA, a heteroge-
neous simulation environment based on the DEVS BUS
and the High Level Architecture. Currently, the envi-
ronment consists of the D-DEVSim++ environment and
the CSIM environment on the Run-Time Infrastructure of
the HLA. A DEVS/CSIM simulation protocol converter
is implemented to provide the DEVS BUS. The EFPEL
model showed that the framework is a feasible solution to
heterogeneous simulation.

To show advantages of our framework, we’ll evaluate
a large, complex example including more than two
federates. Live components and human interactions ar
also considered.

REFERENCES

Data Modeling and Simulation Office (DMSO). 1996.
HLA Time Management Design Document Version
1.0, August

Data Modeling and Simulation Office (DMSO). 1997. High
Level Architecture Run-Time Infrastructure Program-
mer’s Guide Version 1.0, May

Department of Defense (DoD), USA. 1995. Modeling and
Simulation (M&S) Master Plan, October

Hennessy, J. L. and D. A. Patterson. 1990.Computer Archi-
tecture A Quantitative Approach. Morgan Kaufmann
Publishers, Inc.

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park.
1996a. Distributed Simulation of Hierarchical DEVS
Models: Hierarchical Scheduling Locally and Time

Kim and Kim

l

Warp Globally. TRANSACTIONS of The Society for
Computer Simulation13(3): 135-154.

Kim, K. H., Y. R. Seong, T. G. Kim, and K. H. Park.
1997. Ordering of simultaneous events in distributed
DEVS simulation. Simulation Practice and Theory
5(3): 253-268.

Kim, Y. J. and T. G. Kim. 1996b. A Heterogeneous Dis-
tributed Simulation Framework Based on DEVS For-
malism. InProceedings of the Sixth Annual Conference
On Artificial Intelligence, Simulation and Planning in
High Autonomy Systems, La Jolla, California, USA,
116-121.

Kim, Y. J. and T. G. Kim. 1998. A Circuit Theoretic
Approach to Protocol Conversion. (in preparation.)

Schwetman, H. 1988. Using CSIM to model complex
systems. InProceedings of the 1988 Winter Simulation
Conference, San Diego, California, USA, 246-253.

Zeigler, B. P. 1984.Multifacetted Modeling and Discrete
Event Simulation. Academic Press Inc.

AUTHOR BIOGRAPHIES

YONG JAE KIM is a Ph.D. candidate in the Department
of Electrical Engineering at Korea Advanced Institute of
Science and Technology (KAIST). He received a B.S.
degree in electrical engineering from Yonsei University,
Korea, and a M.S. degree in electrical engineering from
KAIST.

TAG GON KIM is a professor in the Department of
Electrical Engineering at KAIST. He received B.S. and M.S.
degrees in electronics engineering from Pusan Nationa
University, Korea, and Kyungpook National University,
Korea, respectively. He received a Ph.D. degree in
computer engineering from the University of Arizona,
Tucson, AZ. He is a senior member of IEEE, and a
member of ACM, AAAI, SCS, and ETA Kappa Nu. He
is an associate editor ofSimulationand TRANSACTIONS
of SCS.
428

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

