
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

DEVELOPING A GRAPHICAL USER INTERFACE FOR DISCRETE EVENT SIMULATION

Hamad I. Odhabi
Ray J. Paul

Robert D. Macredie

Center for Applied Simulation Modelling (CASM)
Department of Information Systems and Computing

Brunel University
Uxbridge, Middlesex UB8 3PH, UNITED KINGDOM

tio
o
 o
ly
ity
ul
le
a
er
po
e
-

of
o
t
th
io
ei
 i
r
n

th
le
c

th
a
t
an
us
nt

r
s
on
nd
hat
ly
r.
-
as
se

ed by
s
ill
y
ve
ay
se

es
er.
e

n-
al
s
sed
er
H-

ir
e
s
e
ility
tion
e

ABSTRACT

A key concern for the area of discrete event simula
modelling is to encourage its adoption and use by n
specialists. To achieve this it is important that we focus
developing techniques and tools that can be used easi
people from outside the simulation modelling commun
This paper explores the usefulness of one partic
simulation modelling technique, hierarchical activity cyc
diagrams (H-ACDs). We suggest that though H-ACDs
useful to simulation specialists, they can often be ov
complex and can discourage non-specialists. We pro
and develop a simplified version of H-ACDs, which w
call simplified hierarchical activity cycle diagrams (SH
ACDs). We then go on to discuss the development
simple graphical user interface which is the front-end t
modelling environment which supports the developmen
SH-ACDs. We discuss the way that an interface of
type can offer those without experience in simulat
modelling the opportunity to develop simulations of th
problem domain. We suggest that the SH-ACDs
conjunction with a suitable graphical interface can offe
potentially significant contribution by promising to ope
up the field of simulation modelling to non-experts.

1 INTRODUCTION

Discrete event simulation modelling offers people
chance to develop an understanding of their prob
domain by building up a simulation of the problem spa
in which they are interested. This paper will suggest
the potential of discrete event simulation modelling m
not be realised because the techniques and tools tha
central to the field have generally been developed for
by specialists in simulation modelling. In this paper we
'simulation modelling' to implicitly refer to 'discrete eve
rather than 'continuous' simulation modelling.
42
n
n-
n

 by
.
ar

re
ly
se

 a
 a
of
is
n
r
n
a

e
m
e
at
y
are
d
e
'

We will develop this idea by focusing on a particula
technique, Activity Cycle Diagrams (ACDs), which ha
attracted widespread coverage in the simulati
community and is widely used by researchers a
developers alike. We will discuss ACDs and suggest t
they are a limited formalisms which are not particular
effective for modelling complex system behaviou
Modelling complex behaviour using ACDs requires in
depth knowledge and experience of simulation. This h
been a limiting factor in their use by non-specialists. The
issues have been realised and to some extent address
the development of Hierarchical Activity Cycle Diagram
(H-ACDs) (Kienbaum and Paul 1994a; 1994b). We w
briefly look at H-ACDs and suggest that whilst the
overcome some of the problems of ACDs, they still ha
characteristic limitations which suggest to us that they m
not significantly widen the user-base to include tho
without experience in simulation modelling.

The importance of developing tools and techniqu
with non-specialist users in mind is the focus of this pap
We will suggest and explore two related ways in which w
can move towards achieving the inclusion of no
specialists: (i) the development of simplified hierarchic
activity cycle diagrams (SH-ACDs) which are les
complicated and more usable through their decrea
functionality; and (ii) the design of a graphical us
interface through which non-specialists can develop S
ACDs.

Before we move on to discuss ACDs and the
derivatives (H-ACDs and our SH-ACDs), we will provid
an overview of simulation modelling. We will use thi
overview to highlight why simulation modelling can b
inaccessible to non-specialist users, why this inaccessib
impacts on the development and acceptance of simula
modelling, and to provide a broad justification for th
developments that we report later in this paper.
9

Odhabi, Paul and Macredie

a

n

s

h

i

e

e

i

and
 the
tates
ue
 one
tity

 in

nd
the
es

ing
x
Ds

ary
 We
 can
me
a

the
ter
ce.
the
s of

le
b).
of
em.
ore
rs
ore

r to
g
the
n

ed
al
at
sing
sed
 at
for
his
o
rful
be
lists
UI)
2 SIMULATION MODELLING: AN OVERVIEW

One common approach to simulation modelling is for th
modeller to develop a detailed model to describe th
problem space in which we are interested. This model c
then be run to assess its behaviour in particula
circumstances, i.e. when particular objects and entities
the model are given particular values. Running the mod
provides a simulation of the problem in which we are
interested.

There are many levels at which the development, an
subsequent running, of a simulation model can be viewe
as problematic for those without an in-depth understandin
of simulation modelling.

One problem arises when we consider the steps th
generally constitute the development of a simulatio
model. These steps may involve problem definition
abstracting and modelling the problem, developing
suitable representation of the model, running the mode
testing the model, and analysing any results which ari
from these steps. Following these steps to develop
complex simulation model may be extremely time
consuming for the practised developer, let alone those w
may be unfamiliar with the ideas involved in simulation
modelling.

A more specific problem is that the model is often
written in some computer programming language
expressed through a suitable program. In our experience
is unlikely that the model will suitably capture the problem
space at the first attempt. The model developer (o
modeller) may have to significantly modify the program
code that represents the model. To both develop and ref
the model, the modeller will usually require a, potentially
in-depth, understanding of the programming languag
This precludes many people from outside the simulatio
modelling community.

Researchers in the simulation community hav
recognised the difficulties that exist for developers o
simulation models generally, and those with little
familiarity of simulation modelling specifically (Paul and
Balmer 1993). In the following sections we will discuss a
well established approach to developing a representation
the problem: activity cycle diagrams (ACDs). We will
then suggest a simplified version of this approach whic
may, in conjunction with suitable computer-based tools t
support its use, help address some of the problems fac
non-specialists interested in developing simulation models

3 ACTIVITY CYCLE DIAGRAMS (ACDS) AND
HIERARCHICAL ACDS (H-ACDS)

Activity Cycle Diagrams (ACDs) are based on Tocher’s
(1963) idea of stochastic gearwheels. We can use ACDs
430
e
e
n
r
in
el

d
d
g

at

,
a
l,
e
a

o

,
, it

r

ne

.
n

f

of

h
o
ng
.

 to

describe a problem space by specifying the objects
entities that exist in our problem space, and describing
states that the entities are in at any given time. These s
can typically be: the entity is idle; the entity is in a que
(either a real queue in the problem space or a notional
defined to model a delay in the problem space); the en
is active; or the entity is engaged with other entities
some times consuming activity.

Though ACDs are powerful and have been, a
continue to be, used to model problem spaces by
simulation modelling community, the ACD approach do
have limitations. ACDs are used in simulation modell
to provide a simplified formalism of a potentially comple
problem (Pidd 1998). This can cause difficulties as AC
may not provide the modeller with the necess
representations to capture their problem adequately.
can see this when we consider a simple example. We
imagine an entity whose behaviour will depend in so
way on its attributes at a particular point during
simulation. Since ACDs do not allow us to represent
attributes of an entity, we are bound to encoun
difficulties when using ACDs to model the problem spa
These and other limitations of using ACDs to model
problem space have led to the development of variant
ACDs which attempt to address the limitations.

One such variant is the Hierarchical Activity Cyc
Diagram (H-ACD) (Kienbaum and Paul 1994a; 1994
H-ACDs provide the modeller with a wide range
symbols which can be used to describe the probl
Whilst H-ACDs can represent complex problems m
completely that ACDs the trade-off that modelle
encounter is that the resulting diagrams seem m
complex than ACDs and can take considerably longe
develop (we will develop this point in the followin
section). This may be off-putting to those from outside
simulation modelling community and is unlikely to wide
the user-base of simulation modelling.

4 SIMPLIFIED HIERARCHICAL ACTIVITY
CYCLE DIAGRAMS (SH-ACDS)

In the remainder of this paper we will develop a simplifi
version of H-ACDs, which we call simplified hierarchic
activity cycle diagrams (SH-ACDs). We will suggest th
these SH-ACDs go at least some of the way to addres
the concerns over perceived complexity that we rai
when discussing H-ACDs. We will look in some detail
the key points of H-ACDs that provide the foundation
SH-ACDs, and the main differences between the two. T
will provide an introduction to SH-ACDs. We will then g
on to suggest that they SH-ACDs are sufficiently powe
to capture complex problems. Finally, we will descri
how SH-ACDs may be made accessible to non-specia
by the development of a graphical user interface (G

Developing a Graphical User Interface for Discrete Event Simulation

D)
Bat UnBat

Hier

Delay (Activity)

Start of process
for a transaction
(a source)

Batch

Assign

Queue

Transform

Pad

Interruptable hold

Termination of
process for a
transaction (a
source)

UnBatch

Branch

Bin

Hierarchical
Node

Arc

Figure 1: The Set of Process Nodes Supported by Simplified Hierarchical Activity Cycle Diagrams (SH-AC
d

D
t
 t .
through which users can develop SH-ACDs which mo
the problem in which they are interested.

Figure 1 shows the key process symbols that SH-AC
offer to the modeller, and that are used to capture
problem space. These symbols are called atomic nodes;
represent the process types that SH-ACDs support.
el

43
el

s
he
hey

4.1 Basic Commonalities Between H-ACD and
SH-ACD

We will look here at the commonalities between H-ACDs
and SH-ACDs, before moving on to the major differences
The common points can be categorised as follows:

1. Both H-ACDs and SH-ACDs support atomic nodes
which represent different types of process,
synchronisation, and queues that can be used to mod
the problem space.
1

Odhabi, Paul and Macredie

D

tit
al

m'
io
 a

s
h

ta

Ds
 fo

al
e

od

at
s

an
d
 is
k

the
im
th
an
th
e

tie

ot
re
h
th
 o

ms
his

.
er.
s

or

uld

e
e

er

n

d
e
e

e
.
h
d
ent

m

d
t
.

s
,

,
:
l

'
er
2. The process nodes in both H-ACDs and SH-AC
include source and sink nodes. They are used
represent the arrival and departure of an en
transaction in both specific parts of, and the over
problem space being modelled.

3. Both H-ACDs and SH-ACDs support a 'transfor
node which is used to describe a transformat
process. Transformation refers to the change of
entity from one category to another.

4. The interruptable hold in both H-ACDs and SH-ACD
allows the modeller to build in interrupts whic
suspends an activity or process.

5. H-ACDs and SH-ACDs support the fundamen
queue type.

6. The bin node is used by both H-ACDs and SH-AC
to model the most general relationships between,
example, producers and consumers.

7. Both H-ACDs and SH-ACDs support hierarchic
definitions of node types. This means that a 'fath
class of node can be 'created'; subsequent 'child' n
inherit the characteristics of the parent.

4.2 Basic Differences Between H-ACD and SH-ACD

To gain a better picture of SH-ACDs, we will now look
the major differences between SH-ACDs and H-ACD
which can be summarised as follows:

(i) The 'assemble', 'request', 'delay', 'release',
'disassemble' nodes that exist in H-ACDs are replace
SH-ACDs by the 'activity node'. The motivation for this
that the use of five nodes to represent one activity ma
the modelling more complex, tends to lead to
development of large models and can be very t
consuming. The activity node is given attributes by
modeller such as its required number of resources
entities. These attributes govern the behaviour of
activity. For example, a particular activity may b
modelled to only begin when a certain number of enti
have 'entered' the activity.

(ii) The 'trigger' queue which exists in H-ACDs is n
supported in SH-ACDs. Its function in instead sha
between the 'branch' and 'activity' nodes. The branc
responsible for routing the entity correctly, in line wi
particular conditions which may relate to the entity type
its attributes.

(iii) H-ACDs support complex messaging mechanis
which explicitly pass information between nodes. T
432
s
to
y
l,

n
n

l

r

r'
es

,

d
in

es

e
e
d
e

s

d
is

r

information reflects the on-going state of the simulation
In SH-ACDs these messages are hidden from the modell
From the modeller's perspective, this suppresse
unnecessary complexity.

(iv) Unlike H-ACDs, SH-ACDs do not limit resources to
their initial values. Instead. resources may be added
removed from the model at runtime; the only stipulation
being that these instances of these resource types sho
initially exist in the model. We believe that this more
accurately reflects real-world problems, and reduces th
burden on the modeller to fully specify the model at th
outset.

(v) SH-ACDs simplify the use of 'pads' in defining the
problems space, by offering a generic 'pad' type, rath
than the four supported by H-ACDs.

(vi) Unlike H-ACDs, the 'arc' which connects nodes is
provided with the name of the token that it carries. Upo
completion, an activity will use this information to
correctly route any relevant tokens.

This very brief review of the main commonalities and
differences between H-ACDs and SH-ACDs has allowe
us to point key points relating to SH-ACDs. Some of thes
points have helped us define a simpler environment for th
modeller. In the following section we will expand on this
theme by discussing the 'front-end', or interface, that w
have developed to support the formulation of SH-ACDs
We will use this to demonstrate the mechanisms whic
support modellers in their development of SH-ACDs an
suggest that the front-end represents a usable environm
which may be helpful to non-specialist modellers.

5 A GRAPHICAL USER INTERFACE TO
SUPPORT THE DEVELOPMENT OF SH-ACDS

A key motivation in our work is to develop a modelling
environment that is accessible and usable by people fro
outside the simulation modelling field. The SH-ACD
approach that we have developed from Kienbaum an
Paul's (1994) H-ACDs provides the basic functionality tha
we feel a simulation modelling environment should offer
Crucially, this functionality has to be offered to the
modeller in a way that supports their objectives: that offer
them the chance to model their problem as easily
effectively, and quickly as possible.

A variety of front-ends to computer systems generally
and simulation modelling environments specifically, exist
from command line interfaces which rely on purely textua
interaction through to graphical user interfaces which allow
the user to graphically drive, or directly 'manipulate
(Shneiderman 1983; 1988) the interaction. Graphical us

Developing a Graphical User Interface for Discrete Event Simulation

fo

e
t
e

d
d
e
a
h
m

a
m

a
ie
n
r

n

e

t

e
n
c
l
e
e

o

e
a
n
e

u
n
th
l
e

e
p

l,

r
t
a

g
nd
o
e
e
s
the
f

in
or
 .
ss
t
e,
le,
s
s,
nd

t

y
d

to
e
 it.

.

s
y
h
or

h

.
n
.

y'
interfaces are generally considered to provide support
novice users through their naturalness and intuitiveness.

The following sections of this paper will describe th
graphical user interface (GUI) that we have developed
support the creation of SH-ACDs. The front-end and th
underlying software to support the creation an
manipulation of SH-ACDs represents a containe
modelling environment which offers non-specialists th
opportunity to graphically and interactively develop
model of their problem space. The interactive nature of t
environment means that the user can be given real-ti
visual feedback as they construct their model.

The environment uses the iconic representations th
we saw in figure 1 to represent components of the proble
in developing the model. The use of icons which look,
least at some abstract level, like the objects and activit
that they represent supports more natural interaction a
helps make the system more usable than less natu
interaction styles, such as that offered by command-li
interfaces.

Each element of the model (icon) is displayed in th
environment as a separate object with distinct propertie
In the model, operations are performed on an object
change its state. The modeller uses the icons to build
representation, or model, of their problem spac
graphically on the screen. To support this the environme
allows the modeller to select icons from a 'palette', conne
them together, assign them attributes, and to genera
manipulate the icons to define their problem space. Wh
they have modelled the problem they can run th
simulation to assess its behaviour.

The graphical interface that we have developed as
front-end to our modelling environment will be referred to
in the remainder of this paper as SH-ACDGUI.

5.1 SH-ACDGUI: Core Functionality

In this section we will look in a little more detail at the
main functionality that the modelling environment offers t
the modeller through the front-end (SH-ACDGUI). We
will discuss the general functions before looking at th
ways in which the front-end supports interactive graphic
specification of the model. The general functionality ca
be described in terms of the following components of th
modelling environment:

(i) editor: the editor has five main components - the men
bar, the location field, the palette bar, the status bar, a
the layout area. The menu bar is located at the top of
editor and contains a number of menus. The location fie
gives the user an indication of their position in th
hierarchical model that they have developed to represe
their problem space by showing the full name of th
current topmost node. If the user is at the highest (or to
level, the name of the model will be shown. If the use
433
r

o

e
e

t

t
s
d
al
e

s.
o
a

t
t

ly
n

a

l

d
e

d

nt

)
r

entered a hierarchical node, the name of the mode
followed by a colon, followed by the name of the node will
be visible. The third area is the palette bar. The palette ba
contains icons representing various kinds of objects tha
can be added to develop the model. The layout are
contains an iconic representation of the topology of the
model. It contains graphical model elements representin
nodes, pads, and arcs, and visual cues such as backgrou
icons and text. The background icons and text have n
bearing on a simulation; they are used only to enhance th
visual appearance of a model. The last component of th
editor is the status bar. The modelling environment send
error, warning, and trace messages to the status bar as
editing session or simulation progress to inform the user o
the progress of their simulation.

(ii) nodes: nodes are, as we have already seen, shown
the environment as icons. Nodes represent processes
hierarchically arranged groups of processes in model and
These are implemented as two separate classes- proce
nodes and hierarchical nodes. The modelling environmen
has a node type which is a common ancestor, or base typ
of these subtypes. A process node is a non-decomposab
or atomic, model element. Different subtypes of proces
node are used to model sources, delays, transformation
batch and unbatch processes, branches, assignments a
sink processes. The modeller can quickly edit the
parameters of a node by double-clicking on the relevan
node icon and filling in the fields of the resulting dialogue
box. A hierarchical node contains other nodes that ma
themselves be hierarchical nodes. There is no impose
limit of depth to which nodes can be nested.

(iii) pads: pads model input and output controllers for
nodes to which they are attached. When a node has
route an entity in the simulation, it 'passes' the entity to on
of its associated pads and requests that the pad routes
Individual pads 'know' the node to which they are
connected; and nodes maintain lists of pads that they own

(iv) arcs: arcs are used to connect pads. Individual arc
know the pads that they connects and the entity that the
are designed to carry. Pads keep lists of the arcs wit
which they are associated. Arcs do not delay, process,
transform entities; they merely indicate a connection
between two pads.

(v) tokens: the token represents an entity moving throug
the simulation model. Tokens only exist as the simulation
model is run. Tokens can model any kind of entity,
depending on the problem domain being modelled
Examples may be: packets or frames in a communicatio
network, parts on a factory floor, or customers in a bank
Our modelling environment actually implements the
concept of a token through two objects: the token 'categor

Odhabi, Paul and Macredie

th
 th
l
e
e
, a
s t
ec
e
it
ar
ue
n

c
e
ig
tio
w
f
es
 i
ce
ev

le
on
fin
Fo
th
 o
we

es
lin
H

rc
rm
m
rit
a
f

o

 t
ho
h

 the
the
ited
It then
n to
de's
ccept
moves
ompt
ives

mber

ome
lays
 for
rce
city
ame
 an
token
vity
 the
 the

n all
tivity
nd the
 the
s the
.

ich
the
e a
xit

r of
 lose
ens
ifies
gory
ot it
t, it
lation
sage
are

ries

 that
oken
oses
kens
and the token itself. The token category holds
parameters of the token, such as its name, the icon
represents it, its attributes. When the simulation mode
run, the modelling environment creates appropriate tok
(in line with the model's logic) that flow through th
model. Each token has an associated token category
represents a single instance of the specific category. A
model runs, tokens which point back to the corr
category are created (by the source node as we shall s
the following sections). Separating the token from
category means that individual tokens do not have to c
the name, icon name, attributes, and statistics req
information; this information is only held in the toke
category pointed at by the token.

(vi) resources: the modelling environment uses 'resour
to model domain elements that constrain the mod
performance. Examples of domain elements that m
constrain performance are manpower, communica
links, or processing elements. Tokens are required to
at the relevant node until the resource requirements o
activity are available. For example, a particular proc
may require a particular minimum level of stock before
can begin. The stock is the resource on which the pro
is dependent. The process has to wait until the stock l
is appropriate.

(vii)attributes: the modelling environment uses variab
which are called global 'attributes' to carry informati
around the model. This information may be used to de
particular aspects of the model's performance.
example, 'attributes' may be used to constrain
performance of the model by setting global constraints
activities, i.e. processes have to be suspended bet
certain hours.

We will now go on to look in more detail at the typ
of process nodes that are available in the model
environment and the ways in which the front-end (S
ACDGUI) supports their use by the modeller.

5.2 SH-ACDGUI: Process Types

The types of process nodes supported include 'sou
'queue', 'delay', 'sink', 'batch' and 'unbatch', 'transfo
'branch', and 'assign'. All of these types are derived fro
process node. Many of these process are directly inhe
and/or developed from those supported by Kienbaum
Paul's (1994) H-ACDs. The following are brie
descriptions of the process types that are presented t
user through SH-ACDGUI:

(i) source nodes: the 'source' node is a process node
creates tokens of a particular token category. It knows
to own a signal generator and accept a signal from it. W
434
e
at

is
ns

nd
he
t
e in
s
ry
st

es'
l's
ht
n
ait
an
s
t
ss
el

s

e
r
e
n
en

g
-

e',
',
 a
ed
nd

the

hat
w

en

the 'source' node receives the a message from
simulation manager instructing it to begin running
simulation model, the 'source' node performs the inher
processing and passes the message to its generator.
resets initial numbers of tokens so the feedback give
the modeller through the account displayed on the no
icon is correct. The 'source' node's generator sends a
signal messages to the source node as the generator
through time. The 'source' node uses the signal as a pr
to create a suitable number of tokens. Each time it rece
a signal, the node draws a sample to determine the nu
of tokens to create.

(ii) delay nodes: the 'delay' node delays tokens for s
amount of time before sending them on their way. De
are required for particular activities in the model when,
example, activities have to wait for particular resou
levels to be built-up. The 'delay' node itself is not capa
limited: it can process any number of tokens at the s
time. The activity node's primary input pad passes
accept message to the delay node when it accepts a
from an upstream pad in the model. When the acti
node receives a message from any node, it checks
required numbers of tokens in the previous nodes and
required resources which are idle in the system. Whe
the required tokens and resources are ready, the ac
node sends messages to all the previous nodes to se
required tokens. The activity node then assembles
tokens, requests the appropriate resources, perform
inherited processing and implements the required delay

(iii) sink nodes: the 'sink' node terminates tokens wh
arrive at it. It marks the location at which tokens exit
model. The 'sink' node is also allowed to terminat
simulation prematurely if a certain number of tokens e
the system at the node.

(iv) batch nodes: the 'batch' node batches a numbe
tokens into a single token. The batched tokens do not
their identity, as they are merely added to a list of tok
carried by the resulting batch token. The node ident
the number of tokens to put into a batch, and the cate
of batch token. The 'batch' node assess whether or n
has a reference to a token category. If it does no
generates an error message that prevents the simu
from being run. The node receives an accept mes
when a token enters its input pad. Batch tokens
produced when sufficient tokens in relevant catego
exist at the node.

(vi) unbatch nodes: the 'unbatch' node ignores tokens
are not batch tokens. For a batch token - that is, a t
carrying other tokens - the node empties and then disp
of the batch token, and sends each of the consistent to

Developing a Graphical User Interface for Discrete Event Simulation

,
r

t
t
t
h
e
r
d
a
w
it

t

t
t

th

a

n

o
g
e
b

ie
o
a

t
s

ns.
ss,
is

to
.

e
om

del
lt
rs,
e
rs,
ox
n
the

ch
e

he
ts
ith

a
cs
o
 a

,
e
eir
the
n
he
th
s
er
the

t-
e
n
e

on its way. The 'unbatch' node has no new parameters
so needs no dialogue control or load and save behaviou

(vii) transform nodes: the 'transform' node transforms
token of one type into another. The transformation is p
defined by the modeller.

(viii) queue nodes: the 'queue' node delays tokens un
message has been received from the appropriate ac
node. The queuing conditions are pre-defined by
modeller as part of the overall model logic. When t
simulation is started the queue will initialise the pr
defined requirements and wait to receive a message f
the related activity node. If there is no activity no
connected to it, the 'queue' node sends the tokens str
through. When a token arrives at the 'queue' node, it
send a message to the relevant activity node informing
how many tokens are queued.

(ix) branch nodes: the 'branch' node routes decisions in
simulation. These decisions reflect the modelle
individual problem space. For example, the modeller m
want to route tokens to different arcs, depending on
token name or its attributes.

(x) assign nodes: in most practical simulation models i
necessary to change the values of entities or sys
attributes at some time during the running of the mod
The 'assign' node is used to perform this process.

5.3 SH-ACDGUI: Development Platform

Our modelling environment was developed using
MODSIM II language (MODSIM II 1992) and the
SIMOBJECT library (SIMOBJECT 1994). The flexibility
that they offer is critical to they environment. Of particul
importance are the following provisions: concurrenc
simulation time facilities, random sampling, animation, a
graphics facilities. They also provide other facilities th
support the implementation of our graphical user interfa
(SH-ACDGUI), including support for dialogue
management and menus.

In this section we will look at the main features
MODSIM II and SIMOBJECT that underpin our modellin
environment. We will not focus in detail on th
implementation of the features. Rather we will
interested in the concepts that they represent. The m
features that we make use of can be listed as follows:

(i) concurrency: concurrency allows a number of activit
to occur simultaneously in the timescale of the simulati
Activities can operate autonomously or they c
synchronise their operation.
43
 and
s.

 a
re-

il a
ivity
he
e
-
om
e
ight
ill

 of

 the
rs
ay
he

 is
em
el.

e

r
y,
d

at
ce

f

e
ain

s
n.
n

(ii) simulation time: MODSIM II supports discrete even
simulation. Through its modules it contains the definition
of all constructs needed to run process-driven simulatio
The units of time used by the simulation are dimensionle
and they can represent whatever granularity of time
thought appropriate by the simulation modeller. It is up
the modeller to explicitly perform any unit conversions
Simulation time is automatically maintained by MODSIM
and is reset each time that the simulation is run.

(iii) random sampling: in many cases, an object will hav
some behaviour that is best characterised by rand
sampling from a statistical distribution. SIMOBJECT
supports a basic object type which is designed to mo
this behaviour. It is possible to establish a defau
distribution, draw samples, load and save paramete
format the distribution for presentation to the user, provid
dialogue box interaction for the user to specify paramete
present a plot of the distribution, and manage a combo b
to let the user pick from a list of available distributions. I
most cases, it is necessary to let the user modify both
distribution type and its parameters via a dialogue.

(iv) animation: an animation manager is supported, whi
controls the amount of animation performed during th
simulation. The manager does not actually perform t
animation processing; that is up to the individual objec
involved in the simulation. Instead, it presents the user w
a single point of control over the animation processing.

(v) graphics: the graphics library manager provides
simple mechanism for getting an image from a graphi
library file. It also provides a tool to allow the developer t
easily build a combo box list containing icons suited for
particular application.

6 CONCLUSION

This paper has introduced a simplified form of H-ACDs
called SH-ACDs, and has briefly described th
environment which we have developed to support th
implementation. The focus of the paper has been on
importance of developing an interactive, graphically drive
environment which supports the modeller and has t
potential to be accessible to those without in-dep
knowledge of simulation modelling. The work that ha
been reported in this paper is the first stage of wid
research which will go on to assess the effectiveness of
modelling environment.

This will allow us to test our assertions that the fron
end to the environment, SH-ACDGUI, is likely to reduc
the time required to build a model by allowing a
interactive graphical development which is more intuitiv
to the user.
5

Odhabi, Paul and Macredie

h
e
o

a
n
n

a

n
n

ts

t

p

n

,

f
.
’s
c.

t
the
in
al

ly
in
nly
in

d

.
nd

n,

so
We believe that this will allow the modeller to
concentrate on understanding the modelling process rat
than the tools that they are using to develop their mod
We believe that this will help remove a major barrier t
widespread use of simulation.

REFERENCES

Kienbaum, G. and R. J. Paul, (1994a). H-ACD: hierarchic
activity cycle diagrams for object-oriented simulatio
modelling. In the Proceedings of the Winter Simulatio
Conference (IEEE Cat. No. 94CH35705), edited by
Tew, J. D., Manivannan, M. S., Sadowski, D. A., Seil
A. F. (New York: USA).

Kienbaum, G. and R. J. Paul (1994b). H-ACDNET: A
object-oriented graphical user interface for simulatio
modelling of manufacturing systems. Simulation
Practice and Theory, 2: 141-157.

MODSIM II (1992). The Language for Object Oriented
Programming (reference manual) CACI Produc
Company (La Jolla, CA.).

Paul, R. J. and D. W. Balmer (1993). Simulation
Modelling (Lund, Sweden: Chartwell Bratt).

Pidd, M. (1998). Computer Simulation in Managemen
Science (4rd edition) (Chichester, UK: John Wiley and
Sons).

Shneiderman, B. (1983). Direct manipulation: a ste
beyond programming languages. IEEE Computer,
August: 57-62.

Shneiderman, B. (1988). Designing the Interface:
Strategies for Effective Human-Computer Interactio
(Reading, Mass.: Addison-Wesley).

SIMOBJECT (1994). CACI Products Company (La Jolla
CA.).

Tocher, K. D. (1963). The Art of Simulation (London:
English University Press).

AUTHOR BIOGRAPHIES

HAMAD I. ODHABI is a researcher in the Department o
Information Systems and Computing, Brunel University
He received a B.Sc. degree in Physics from King Suad
University, Saudi Arabia in 1988, and he received an M.S
degree in Simulation Modelling from Brunel University in
1994.

RAY J. PAUL holds the first U.K. Chair in Simulation
Modelling, at Brunel University. He previously taugh
Information Systems and Operational Research at
London School of Economics. He received a B.Sc.
Mathematics, and a M.Sc. and a Ph.D. in Operation
Research from Hull University. He has published wide
in book and paper form (two books, over 200 papers
journals, edited books and conference proceedings), mai
in the areas of the simulation modelling process and
436
er
l.

l

,

software environments for simulation modelling. He has
acted as a consultant for variety of United Kingdom
Government departments, software companies, an
commercial companies in the tobacco and oil industries.

ROBERT D. MACREDIE is a reader in the Department
of Information Systems and Computing, Brunel University
He received a B.Sc. in Physics and Computer Science a
a PhD in Computer Science from Hull University. His
research interests are in human-computer interactio
simulation modelling, and virtual environments/virtual
reality. He has published widely in these areas, and is al
executive editor of the international journal Virtual Reality:
Research, Development and Applications.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

