Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EFFICIENT LARGE-SCALE PROCESS-ORIENTED PARALLEL SIMULATIONS

Kalyan S. Perumalla
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology
801 Atlantic Drive
Atlanta, Georgia 30332-0280, U.S.A.

ABSTRACT In recent modeling and simulation efforts, there is
a clear demand for the capability to support very large
Process oriented views are widely recognized as very use- scale simulation. The need fparallel simulation is clear
ful for modeling, but difficult to implement efficiently in in these application domains. In addition, the models
a simulation system, as compared to event oriented views. tend to be too complex to express using the low-level
In particular, the complexity and run-time overheads of the primitives of the event-oriented view, thus making process-
implementation have prevented the widespread use of pro- oriented view a natural choice for developing such large
cess oriented views in optimistic parallel simulations. Here, and complex systems. This makes it important to find
we review the conventional approaches to implementing ways to efficiently support very large number of processes
process-oriented views, and outline some of the sources in a process-oriented modeling and simulation system.
of problems in those approaches. We also identify an Specifically, our experiences with modeling large and
approach that we calitack reconstructionwhich is most complex telecommunication networks using théeD
suited for portably and efficiently supporting optimistic language (Perumalla et al. 1998, SIGMETRICS PER
process-oriented views. Benchmark simulations using our 1998) served as our initial motivation to find efficient
preliminary implementation, which is incorporated in the implementation alternatives for process-orientation. For
TED modeling and simulation system, confirms the low example, in many interesting configurations (such as global
overheads of this approach, and demonstrates its capability Internet) of network models inTeD, the number of
to simulate over one million processes in a process-oriented processes easily exceeds one million, warranting efficient
model. support for large-scale process orientation. Also, modelers
demand support for full process orientation, such as the
ability to invoke wait statements over nested procedure
1 INTRODUCTION calls, at almost arbitrary points in a procedure body.
Since TED permits the direct embedding of '@ code
Three widely recognized world views for simulation are: in the models (see Perumalla et al. 1998), we are
event-oriented view, process-oriented view and activity- further constrained from exploring alternatives that trade-
scanning view (Mitrani 1982). The first two views are the off modeling power for efficiency.
more widely used among the three views. All the three The interaction of parallel simulation techniques with
views are equivalent in the sense that process-oriented andthe implementation of large-scale process-oriented views
activity-scanning views can be translated into semantically (supporting millions of processes per simulation) generates
equivalent event-oriented views. An advantage of using the challenges, such as minimizing the memory size and
process-oriented view is that models tend to be smaller, memory copy requirements of the implementation. Process-
and easier to develop and understand, making it more oriented views are generally perceived to be expensive in
appealing to the modelers. On the other hand, it is the context of optimistic parallel simulations. This is
generally perceived that event-oriented views can be more mainly due to the fact that processes entail state-saving
efficiently implemented than the other two views, especially overheads for the maintenance of additional control flow
in the context of optimistic parallel simulations. information and transient data. These overheads can

459

Perumalla and Fujimoto

be quite large in naive implementations, unless they are
carefully reduced to the minimum necessary.

1.1 Related Work

A number of implementations of process-oriented views
(which are mostly language or preprocessor-based) have
been reported in the recent years. The Maisie language
(Bagrodia and Liao 1994) supports the concept of process in
the form of an entity description, along with support for the
optimistic parallel simulation of Maisie entities. However,
Maisie does not include direct support for the suspension
of a stack of nested procedure calls (wait statements
cannot be used inside functions invoked by entities). The
macros-based approach of IMPORT/SPEEDES (Whitehurst
and Brutocao 1998) also seems to limit simulation time
advances to the main process body. Apostle (Booth and
Bruce 1996) is a new language that implements process-
orientation using continuations, with support for optimistic
parallel simulations. Apostle, however, has specialized
semantics, which do not carry forward well to our domain
of interest, which is €. Other languages and packages,
such as MODSIM and Parasol support process-orientation
views, but without great success in optimistic simulations.
More recent work includes the Nops system (Poplawski
1998) which reports low overhead implementation of
processes. Nops, however, only suppottmservative
parallel simulation, and it has no direct support for
advancing simulation time over a stack of nested procedure
calls.

Here, we identify an approach that we callack
reconstructionas most suited for portably and efficiently
implementing optimistic parallel simulations of “true” pro-
cess oriented views in an expressive language suchas C
First, we define what constitutes true process orientation,
in section 2. Next, we briefly review some conventional
implementation approaches in section 3, identifying their
problems in the context of optimistic parallel simulations.
We then describe the stack reconstruction approach with
details of implementation, followed by some salient per-
formance results which indicate the low overheads of the
approach.

2 PROCESS ORIENTATION

A process is a distinct flow of control, containing a
combination of computation and synchronization opera-
tions. Processes typically synchronize with each other

Table 1: Features of an Ideal Process-oriented System

F1 Procedures can declare and use lgcal
variables

F2 Procedure calls can be nested

F3 Procedures can be recursive and re-entrant

(a) Programming style

F4 Primitives to advance simulation time can
be invoked in any procedure

F5 Primitives to advance simulation time can
be invoked wherever a conditional, looping
or other statements can appear.

(b) Time control

to method calls.) The main body of a process can invoke
procedures which in turn can invoke other procedures.

2.1 Functionality

The ideal modeling capabilities of a process are listed in
tables 2.1 (a) and (b). Note that the features are generally
orthogonal to each other (i.e. it is possible to pick and
choose a subset of the features that will be adopted by a
process-oriented system). pure process-oriented view is
one in which all the featureB1 throughF5 are supported.
The first three features are those that are expected of any
modern languages supporting the procedural programming
style, and expected by most modern programmers. The
last two features are specific to the simulation domain —
time advancing primitives are those that serve to advance
simulation time, such await , or hold statements and
other such variants. It is the interaction of the programming
style with the simulation time advances that gives rise to
interesting challenges in implementing process-oriented
views efficiently.

2.2 Process Type Continuum

Although pure process-oriented views are useful in some
complex models, more restrictive definitions of processes
can be made for use in some models which do not warrant
the full power of pure process-orientation.

By varying the combination of features that are
supported, we can achieve variation in the efficiency
of implementation. For example, if the featufe$ andF5
are unused by a process-oriented model (i.e., simulation
time is advanced only at the top-level statements in the

by exchanging events. Process orientation is an elegantmain process body, as opposed to unifiestatements or

way of capturing context information under the conven-
tional procedural programming paradigm. (Process or
event orientation is orthogonal to object orientation. In
an object-oriented setting, procedures in fact correspond

460

inside a procedure), then such a model can be implemented
in a way that incurs no more overheads than if that model
was re-written using event-oriented view. In fact, such
processes are nothing but event-oriented models expressed

Efficient Large-Scale Process-Oriented Parallel Simulations

in a way that better exposes context information. Such on and off the stack. Since the memory size of local
models with lower demands on the expressive power do variables and argument lists varies across procedures, the
appear in real-life modeling, such as cited in Perumalla et native stack serves to optimize the memory allocation

al. (1997). and deallocation operations, by exploiting the contiguous
Similarly, if we relax the feature=1, and enforce memory feature of the native stack.
the rule that all local variables aienmutable(i.e., never The preceding way in which native stacks are used

change after initialization), or if local variables are not is tightly coupled to the operation of executable code

supported at all by the modeling language, then, issues that most compilers generate, and tightly integrated into

such as re-entrancy and recursion become easier to handlehe way many operating system services (such as signals)
in the implementation. operate.

Other simplifications (such as in Maisie, IMPORT Since the procedure stack is precisely what is necessary
and Nops) preclude the featuFg, but do support feature to support process-oriented views, it is natural to attempt to
F5. In other words, although simulation time cannot utilize native stacks to implement the simulation processes.
be advanced in procedures, it can be advanced at anyThis is the approach taken in implementations based on
point in the process body (say, under conditional and threads
looping statements). In such implementations, a stack of
suspended procedures must be indireetlyulatedusing a
chain of stack-less processes. The issues of local variables3.2 Threads
and recursion are also simpler to handle, especially in
optimistic simulations, due to the reduction in the amount
of information to state-save, and, the issues of local
variables and re-entrancy can be effectively delegated to
the host language, such as€

Threads are light-weight computation abstractions widely
used in many domains such as high performance comput-
ing and multi-media servers. Threads provide support for
multiple process stacks which can communicate and syn-
chronize with each other. Several multi-threading packages
exist that provide operating system-level threads and/or
3 IMPLEMENTATION ALTERNATIVES user process-level threads (Tanenbaum 1995). Portable
implementations of threads are available, which typically
There exist several techniques for implementing process- make use of standard facilities such as the POSIX calls
oriented views, of which we outline the important ones. setjimp() andlongjmp() . Threads can be scheduled,
One approach is to view the control and data information suspended and resumed. Each thread typically contains
of a process as a black box, and preserve its contentsa stack of procedure activation frames, although some
across suspension and resumption points — this is the optimized packages use special thread synchronization se-
threadsbased approach, such as in Mascarenhas and Regomantics to avoid using physically distinct stacks for each
1996. Another approach is to define the modeling language thread.
semantics in such a way as to effectively remove the need One way to implement simulation processes is to use a
for a stack — thecontinuationsbased approach of Booth single thread for each process. The thread suspension and
and Bruce 1996 is an example. Yet another approach is to resumption primitives can be used to achieve the simulation
transparently maintain auxiliary information that is barely time advances in the simulation process code. Thus, for
sufficient to restore the native stack of a suspended processexample, avait statement in the simulation process will be
— which is thestack reconstructiorapproach described mapped to suspending the thread of the simulation process,
here. We describe each of these approaches next. and handing control over to the simulator's scheduler. At
the instant the waiting condition is satisfied, the process
is resumed just after the wait statement, by resuming the
thread of the simulation process.
Many modern languages (compilers, to be precise) use an The advantage of using a threads to implement
optimization, calledphysical or native stack for the very simulation processes is that little additional implementation
frequent type of operation: procedure call. A native stack work is necessary to save and restore the stacks of the
is an encoding of program counter, return addresses, local simulation processes. The simulator only acts as the
variables and argument lists (Koopman). Although the thread scheduler. There are, however, several drawbacks
logical stack can be implemented in other ways (say, using of threads-based implementation. Either thread stacks
linked lists), it is very often represented in contiguous bump into each other (thread stacks typically do not
memory locations for performance reasons. The native grow), or the memory requirements can be high to
stack is used to efficiently implement the procedure call support very large number of processes. Thread migration
semantics by pushing and popping invocation information is either unsupported or expensive. More importantly,

3.1 Process Stack

461

Perumalla and Fujimoto

conventional threads are difficult to optimize for optimistic ~which is essential for state-saving operations in optimistic
parallel simulation (as discussed in more detail in the next parallel simulation.
section). The design of off-the-shelf thread systems may We use a compiler-based solution for supporting this
not be well suited to scale to millions of active threads. approach transparently, leaving the models uncluttered
Special large-scale multi-threading systems exist, which with the implementation details. We assume the models
could potentially be useful in sequential and conservative are translated into some general purpose programming
parallel simulations; but they have not been tested for use language code, such ast€ which is then compiled to
in optimistic parallel simulation. result in executable models. We use Cas the target
Fundamentally, conventional threads are general-pur- language in our examples.
pose computation abstractions, with potentially complex
inter-thread synchronization, and scheduling disciplines. [I
Simulation processes, however, have simple and well | 2.
defined suspension and resumption semantics (based on 3
simulation time advances), and a simple scheduling dis- 4.
cipline (usually, least timestamp first). Whereas support 2
for preemptive threads incurs overheads such as saving 7'
register state, simulation processes on the other hand need 8:
9
10
11
12

procedure one()
{
wait(c2)

}
procedure two()
{

never incur such overheads, due to their simpler scheduling

. . . Sl
discipline. if(...) {

s2

. . . it(cl

3.3 Continuations 13 \év:,?lt(c)
Continuations (Appel 1992) constitute another efficient 1‘5" i
mechanism for implementing processes. Suppose we 16' or(.;zl{
define the modeling language in a way that allows 17' call one()
the compiler to cast all language constructs (such as 18: S5
conditional or looping statements) into separate blocks of | 19 }

non-interruptible operations. In such a case, the process| 20. }
can be implemented as a special form of a finite state | 21. process p()
machine, in which each state dynamically designates its | 22. {

successor, called eontinuation If we ignore the issue of 23.
local variables for simplicity, it is clear that the process | 24. call two()

context is fully represented just by the identity of the current | 2°-
continuation (pointer to a function) of the process. Further 26. }
optimizations are possible whereby explicit storage of the Figure 1: Model Code of a Procegs which Invokes

per-process continuation information can be avoided, and tyo() | which in turn Waits on a Condition, and Invokes
implicitly recorded on the run-time stack of the simulator one()

(Booth and Bruce 1996).

To effectively implement this technique, either special
language constructs have to be defined, or compilers of
existing languages have to be modified (Appel 1992).

To understand how the stack reconstruction approach
works, consider the pseudocode fragment in figure 1 of a
process-oriented model containing two procedures()
and two() . For simplicity, we postpone the treatment

4 STACK RECONSTRUCTION of local variables and procedure arguments to later in the
discussion. The procedut@o() contains some (arbitrary
Another approach to implementing process-oriented views computation) statements]1, s2, ---, s5. In addition, it

is what we callstack reconstructionThe underlying idea ~ contains a simulation advance/dit) statement inside a

is that, instead of saving and restoring the contents of conditional (f) statement, and a procedure callcioe()

the native stack, we separately maintain information at inside a looping for) statement.

runtime such that the native stack can be reconstructed Consider the execution of procepswhen it invokes

to the same state in which it was when the process was the proceduréwo() . If and when the procedure execution
suspended. This not only allows us to throw away the reaches line 12, it must be suspended atihi statement,
unnecessary contents of the native stack, but also permitsand when the wait condition is satisfied, it must be resumed
us to easily capture modifications to the process state, at line 13 with the statemerd3. Similarly, when the

462

Efficient Large-Scale Process-Oriented Parallel Simulations

execution reaches line 17, the procedurnee() must

The unrolling of native stack occurs when the process

be invoked; again, process execution may have to be is suspended — all the procedures actually perform a

suspended if the procedune() invokes some other
wait statement, and resumed at the correct position in
procedureone() when the process is resumed.

1. int two()

2. {

3 switch(J1) {

4, case 0: goto start;

5 case 1: goto Ibl_1;
6 case 2: goto Ibl_2;
7 }

8. start: /*continue*/;

9. sl

10. if(...){

11. s2

12. wakeup = cl;

13. JI = 1;

14. return SUSPENDED,;
15. Ibl_1: /*continue*/;
16. s3

17. }

18. for(...) {

19. s4

20. Ibl_2: flag = one();
21. if(flag == SUSPENDED)
22. {

23. JI = 2;

24. return SUSPENDED;
25. }

26. s5

27. }

28. JI = 0;

29. return DONE;

30. }

Figure 2: Extracts of Code Generated taro()

In the stack reconstruction approach, the compiler
identifies and marks all the positions in a procedure at

which a process suspension can occur. Lines 12 and line

17 qualify as suspension points of procedtwe() . The
compiler then assigns ordinal numbers 1 and 2 to the

return , returning control to the simulation system. The

reconstruction of native stack occurs when the process
is resumed — the procedure call chain is correctly
reconstructed using function re-invocation, with the help
of the saved ordinal numbers.

If each procedure can have at most 256 suspension
points in its body (which is a reasonable limit for human-
written models), a single byte is sufficient to record the
jump index for each procedure. An array of jump indices
can be used for each suspended process to record the
jump indices of its active procedures. (The jump indices
represenforward addresses albeit, more memory efficient,
as opposed to theeturn addresses of conventional native
stacks.)

4.1 Local Variables

Now let us consider the implementation of local variables.
We maintain a pointer to a memory buffdrame along
with each jump index. References to the local variables
in the procedure body are translated to indirect (pointer)
references to the frame. In optimistic parallel simulations,
the frame remains allocated until the global simulation
time (GVT) sufficiently advances to guarantee that the
frame deallocation will not be rolled back.

Procedure arguments can be viewed as special type
of local variables, which are initialized automatically by
the compiler based on the procedure invocation. Hence,
the compiler can treat them as such, and follow the same
techniques as for local variables to save modifications to
the arguments. A value of O for the jump index can be
used by the compiler to distinguish between invocation
and reconstruction, to enable it to initialize the arguments
upon invocation of a procedure, and skip the initialization
if the procedure is re-invoked during stack reconstruction.

4.2 Optimistic Simulation

two suspension points. When the execution of procedure The important feature of stack reconstruction that helps

two() is suspended, it is sufficient to remember the
ordinal number (or, jump index, JI) of the point where it
was suspended. Using this number, we can directly jump
(using a combination ofwitch() andgoto statements

at the beginning of the procedure) to the point where the
execution was left off. This is demonstrated in figure 2
which lists the code generated from the model of figure 1.
Note that the resumption point forveait statement is just
beyond thewait statement, whereas the resumption point
for a procedurecall statement is exactly at the same
procedurecall statement, which results in a re-invocation
of the procedures.

463

in optimistic simulations is that it allows to easily and
transparently trap modifications to the logical stack. The
logical stack consists of jump indices and local variables.
Jump indices are incrementally state saved by the compiler,
since the compiler manages them itself. Local variables
can also be incrementally state saved using transparent
incremental state saving techniques, such as those using
overloaded assignment operators (Ronngren et al. 1996),
by trapping modifications to local variables in the procedure
body. The stack reconstruction approach is also appealing
for optimistic parallel simulation due to its reduction in
the amount of state-saved information.

Perumalla and Fujimoto

In native stacks, it is the case that not only more 1998). To test its capabilities and run-time performance,
extensive information is stored on the stack, but also it is we have used three different scenarios: (1) to measure its
hard to gain precise access to any and all modifications process context switching costs in pure process-oriented
to that information. These factors together preclude models (2) to compare its performance against event-
efficient state-saving of modified information in optimistic oriented models (3) to stress-test the approach with respect
simulations. Thus, if native stacks are used to implement to size, using models containing over a million processes.
process-oriented views in optimistic simulations, it is
becomes unavoidable to perform a brute-force blind copy
of the whole native stack for state-saving, resulting in o
large and expensive state-saving costs for every process®-l Context Switching Cost
context-switch. This has been the fundamental reason
for the perception that process-orientation is expensive to
support under optimistic parallel simulations. It is now
clear that with a minimal intermediate translator, which
maintains jump indices and local variables, the state-saving
costs can be reduced to the minimum required.

This approach also allows for lazy and tight memory
allocation, which is important when simulating very large
number of processes. In our implementation, we perform
lazy allocation of memory — memory for the frame is not
allocated until the moment the frame is actually required,
thus resulting in tight memory utilization, as opposed to
preset stack limits of native stacks.

Another advantage of the stack reconstruction approach
is its ability to support efficient run-time migration of active
processes across heterogeneous platforms. Since machine-
independent formats are used to represent the logical stack
of procedure calls, it is both easy and efficient to pack a
process stack, and move and restore it on the destination st
machine, even if the source and the destination machines
use incompatible native stack representations. A further 0 5
advantage is that the stack reconstruction implementation is
completely portable, independent of the operating system Figure 3: Variation of Process Context-switching Cost
or the native language compiler formats. It also has the with Active Depth of Stack
desirable feature of not interfering with other compiler
optimizations (such as tail recursion and register allocation).

Theactivedepth of a stack is the depth of the stack (number

of procedures on the stack) at the moment the process
is suspended. When the stack reconstruction approach is
used, it is clear that the cost of suspending or restoring a
process is a function of the active depth of the restored (or
suspended) stack, since the active functions are re-invoked
(or unrolled) to restore (or free up) the stack. Figure 3

30 |

Total context switching cost (micro seconds)

10 15 20
Active depth of suspendedirestored stack

shows the variation of the context switching cost with the
active depth of the stack, measured using a synthetic model
4.3 Related Schemes containing processes having exactly same active depth of

_) _ o stack. The switching cost includes the costs of suspending
Other parallel simulation systems do implement variations 5 process and resuming another process, and also the

on the scheme of usingoto s (Maisie’s code generator, cost of building and maintaining runtime information to
IMPORT's macros, Cilk's frame-allocator), but do not reconstruct the stack of process. The benchmarks were run
allow nested procedure calls. Recent work on fault- on an SGI Origin multiprocessor witR10000 processors.
tolerance systems (Ramkumar and Strumpen 1997) also From the figure, it is seen that the context switching

utilizes another” variant of this SChe“_"'e. to “walk up _and takes less thariOus for processes with relatively small
down the stack” for portably checkpointing the C-runtime active depths of stack. In our experience with modeling
stack. large and complex telecommunication network protocols,

the processes in our models never exceeded an active
5 PERFORMANCE stack depth of 5, giving a context switching time of less

than 4us. Figure 3 also serves as a means of locating
We have incorporated the stack reconstruction technique the tradeoff points when the stack reconstruction approach
into the implementation of true process-oriented views in performs better or worse than other alternative approaches,
the TED modeling and simulation system (Perumalla et al. such as using off-the-shelf thread packages.

464

Efficient Large-Scale Process-Oriented Parallel Simulations

5.2 Comparison with Event Orientation only at the outer-most level in the process body. Since
o) such processes can be easily translated into efficient event-

On certain simpler types of process-oriented models, the qjented models without any process-orientation overheads,
run-time performance of our implementation achieves the 56 can reasonably expect to simulate syaasiprocesses
superior performance of equivalent event-oriented models. fagter than pure processes. The performance results shown
This is demonstrated in figures 4 (a) and (b), which plot iy figure 4 demonstrate that indeed our process-oriented

view implementation achieves almost the same speed as the
Prgces anted PHOLD — equivalent event-oriented translation of these models. On

the multi-processor runs, the rollback behavior of the PNNI
models remained the same, thus making the results directly
comparable. On 5 and 6 processors, the PHOLD model
experienced 3% and 4% fewer rollbacks respectively on
the process-oriented translation as compared to the event-
oriented translation, making the process-oriented translation
in fact marginally better than the event-oriented translation.
This rollback behavior has been observed to be invariant
across repeated simulation runs.

5

Execution Time (seconds)

Nmer o procesor 5.3 Large Scale Process Orientation
(&) PHOLD

800

PP Using the stack reconstruction implementation, we are
Eventorented PN able to perform optimistic parallel simulations of models

| containing processes in excess of one million. We used a
simple model, written in th&'eD language, of a wireless
Personal Communication Services (PCS) network, in which
each sector in the PCS network is modeled as an entity,
while each mobile inside a sector is modeled as a process
that accesses the state of the sector entity. We used
sample network configurations of a square grid containing
225 sectors along each side of the grid, giving a total of
- 50,625 sectors. Each sector contains 20 mobile processes,
100 ‘ ‘ ‘ ‘ giving a total of more than a million processes. The
mobile behavior is expressed as a random walk over the
(b) PNNI sector grid, superimposed by a call initiation sequence
modeled using inter-call generation times and call holding
times. This demonstrates that large-scale optimistic parallel
simulation of process-oriented models is indeed feasible
to implement efficiently.

Execution Time (seconds)

3 4
Number of processors

Figure 4: Performance of our Implementation on Process-
oriented Models as Compared to Equivalent Event-oriented
Models

the elapsed time of our process-oriented implementation 6 CONCLUSIONS

versus that of equivalent event-oriented expression of the

same models. We used one synthetic and one real-life Based on the results of our stack reconstruction approach,
model in this scenario. The figures correspond to the we observe that process-oriented views can be imple-
optimistic parallel simulation of the models, using Time mented in optimistic parallel simulations as efficiently as
Warp. The synthetic model is the well-known PHOLD in conservative parallel simulations. This is possible by
application containing processes that exchange events incarefully reducing the state-saving operations to the abso-
a way that conserves the total number of events in the lute minimum. The stack reconstruction approach allows
model. The second model is the PNNI telecommunication us to capture the modifications to the process-state in
network application (Perumalla et al. 1997) containing order to transparently support incremental state-saving. It
network models capturing the ATM Forum’s standard on also results in very efficient process context switches for
internetwork protocols called the PNNI (Private Network to processes with relatively smadictive stack depths. In
Network Interface). Both the models share the feature that addition, it brings with it the added benefits of reduced
the simulation advance primitivesvéit statements) appear memory overheads, portability, and process-migratability

465

Perumalla and Fujimoto

across heterogeneous platforms.

porated into existing simulation languages.

In models containing processes with large active stack

depths, we intend to explore the tradeoff points at which
other alternative implementations perform better than the
stack reconstruction approach.

ACKNOWLEDGMENTS

The authors thank Christopher Carothers for helpful
discussions. This work is partially supported by DARPA
Contract N66001-96-C-8530 and by NSF Grant NCR-
9527163.

REFERENCES

Appel A. W. 1992. Compiling with Continuations. Cam-
bridge University Press.

Bagrodia R. L., Liao W. 1994. Maisie: A Language for the
Design of Efficient Discrete-Event Simulations. IEEE
Transactions on Software Engineering, Vol. 20(4).

Booth C. J. M., Bruce D. I. 1996. Stack-free Process-
oriented Simulation. IfProceedings of 11th Workshop
on Parallel & Distributed Simulation

Frigo M., Leiserson C. E., Randall K. H. 1998. The Im-
plementation of the Cilk-5 Multithreaded Language.
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI'98), June
17-19, Montreal, Canada.

Koopman P. J. Stack Computers: The New Wave. On-line
book athttp://www.cs.cmu.edu/"/koopman
/stack_computers/

Mascarenhas E., Rego V. 1996. Ariadne: Architecture of a
Portable Threads System Supporting Thread Migration.
Software — Practice and Experiencéol. 26(3).

Mitrani |. 1982. Simulation Techniques for Discrete Event
SystemsCambridge University Press.

Nicol D. M., editor, Special Issue on th&rD. 1998.
SIGMETRICS Performance Evaluation Revievol
25, No 4.

Perumalla K. S., Andrews M., Bhatt S. 1997. A Virtual
PNNI Network Testbed. IrfProceedings of the 1997
Winter Simulation Conferenceed. C. Andradottir,
K. Healy, D. H. Withers, B. L. Nelson, 1057-1064.

Perumalla K. S., Fujimoto R. M., Ogielski A. T. 1998.
The TeD Language Manual. Available on-line via
http://www.cc.gatech.edu/computing
/pads/ted.html

Poplawski A., Nicol D. M. 1998. Nap— A Conservative
Parallel Simulation Engine fol'ED. In Proceedings
of the 12th Workshop on Parallel & Distributed
Simulation

466

This approach can beRamkumar B., Strumpen V. 1997. Portable Checkpointing
easily implemented using a preprocessor or can be incor-

for Heterogeneous Architectures. 2@th International
Symposium on Fault-Tolerant Computing (FTCS;27)
58-67.

Ronngren R., et al. 1996. Transparent Incremental State
Saving in Time Warp. IfProceedings of 10th Workshop
on Parallel & Distributed Simulation

Tanenbaum A. 199®istributed Operating System&hap-
ter 4, Prentice Hall.

Whitehurst R. A., Brutocao J. 1998. Parallel Execution of
Process-based Simulation Models. Pnoceedings of
SCS Multiconference

AUTHOR BIOGRAPHIES

KALYAN S. PERUMALLA is a Research Scientist at the

College of Computing at Georgia Institute of Technology,
working towards the Ph.D. degree in the area of parallel
simulation techniques for large-scale telecommunication
networks.

RICHARD M. FUJIMOTO is a professor at the College
of Computing at Georgia Institute of Technology. He has
been an active researcher in the parallel and distributed
simulation community since 1985.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

