
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

A SPECULATION-BASED APPROACH FOR PERFORMANCE AND DEPENDABILITY
ANALYSIS: A CASE STUDY

Yiqing Huang
Zbigniew T. Kalbarczyk

Ravishankar K. Iyer

Center for Reliable and High Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1308 W. Main Urbana, IL 61801, U.S.A.

hod
an

ting
rst
con

a
de
I/O
the
ed
rat
sur
rror
the
d o

ion
the

ility.
em
or
iled
ose
s to
tion
ing
ons
on,
ing

ion.
h-

h a
I/O

d an
), a
The
ture
of

ged
tem.

the
ped
ID
very
dels
the

e
For

ype,
che
cted

ss, a
he
ion
ents
ing
ving

iss
om
ents
are
ABSTRACT

In this paper, we propose two speculation-based met
for fast and accurate simulation-based performance
dependability analysis of complex systems, incorpora
detailed simulation of system components. The fi
approach applies to performance analysis and the se
to dependability analysis. Our target example is
networked cluster with compute nodes and one I/O no
Detailed simulation of the cache subsystem of the
node is conducted, and more abstract simulation of
compute nodes and the switching network is perform
Performance measures obtained include cache miss
and cache subsystem access time. Dependability mea
obtained include error coverage of EDAC code and e
detection latency distribution of errors introduced to
cache components. The two methods are implemente
a network of workstations.

1 INTRODUCTION

In simulating complex systems, a detailed simulat
of a subsystem is often needed to characterize
overall system/network performance and dependab
The detailed simulation allows to capture the syst
dynamics resulting from variability in the workload
the effect of different failure scenarios. However, deta
simulation is time-consuming. In this paper, we prop
new speculation-based, distributed simulation method
accelerate both performance and dependability simula
Our approach uses optimistic simulation as the underly
mechanism. However, detailed component simulati
slow down the overall execution. Using speculati
we can accelerate the overall simulation while obtain
475
s
d

d

.

.
io
es

n

.

application-specific measures from the detailed simulat
An example of such an application is the reliable, hig
performance cluster system studied in this paper wit
detailed simulation of the cache subsystem on the
node of the cluster.

The targeted cluster consists of compute nodes an
I/O node connected via ServerNet (Horst et al. 1995
system area network developed by Tandem Computers.
I/O node supports a cache-based RAID storage architec
that is critical to the performance and dependability
the cluster. The RAID system is controlled and mana
by an array controller that includes a cache subsys
To analyze the impact of the storage subsystem on
cluster’s performance and dependability, we develo
detailed models for the data transfer inside the RA
cache subsystem and for the error detection and reco
mechanisms in the cache subsystem. The detailed mo
are incorporated into the cluster model as part of
overall simulation.

Speculation for performance is used to simulate th
data transfer inside the cache subsystem in detail.
each I/O request arriving at the I/O node, the request t
i.e., read or write, and whether it is a cache hit or a ca
miss are speculated. An execution path can be constru
by speculating the request to be a read hit, a read mi
write hit, or a write miss. Speculative simulation of t
request can follow any of the four paths. The simulat
for each path is completed except for those segm
that require the unspeculated information from incom
events such as the request arrival time. Upon recei
the incoming request, its request type and cache hit/m
information are used to select the matched path fr
the four speculated paths. Then, the simulation segm
that are not completed during speculative simulation

Huang, Kalbarczyk and Iyer

g
t
d

a

n

r
le

te

e
la
6

e
e
9

r

I
in
d

c
h

h
m
te
s

O
es
he
te
e
a
e
d
e
a

),
k
e
ct
s

by
on
he
he
-
)

m-
k
sk

m
t-

es
to
l.
It
y
it

ed
U

Compute Node

Compute Node

Compute Node

Compute Node

port

port

port

port

port

port

HOST

RAID

I/O Node

Compute Node

HOST

Local Disk

Switch

Figure 1: System Architecture

finished using the unspeculated information from incomin
events. If the request traffic to the I/O node is infrequen
the speculation can be conducted whenever the I/O no
is idle waiting for the next incoming request.

Speculation for dependability is used to simulate
the cache subsystem error recovery mechanisms in det
The speculation can most often successfully predict th
outcome of the error recovery detailed simulation base
on the observation that errors are most likely detected a
corrected in the I/O subsystem. In other words, we ca
most often assume that the system recovers from erro
Hence, the detailed simulation is postponed until an id
time slot is found during which the detailed simulation
can be scheduled. In case the detailed simulation indica
a failure, a rollback is necessary.

In recent years, distributed simulation has been us
widely for simulating complex systems (Ferscha and Chio
1995, Fujimoto and Nicol 1992, Hamnes and Tripathi 199
and Jefferson 1985). Studies concerning cache system
an I/O subsystem have focused on cache replacem
policies and cache performance varying cache paramet
such as cache size, cache block size (Karedla et al. 19
Menon and Hartung 1988, and Smith 1985). In this pape
we propose speculation-based methods for simulating
cached RAID system, which have not been reported befo
in the literature.

The rest of the paper is organized as follows. Section
describes the architecture of the cluster system.
Section 3, speculation for performance is explained
detail, and speculation for dependability is summarize
in the context of the simulated architecture. Performan
results are shown in Section 4. Section 5 concludes t
paper.

2 SYSTEM ARCHITECTURE

The architecture analyzed in this paper is a reliable, hig
performance cluster system, shown in Fig. 1. The syste
consists of five compute nodes and one I/O node connec
via a 6-port ServerNet switch. A compute node can acce
476
,
e

il.
e
d
d

n
s.

s

d

,
in
nt
rs
4,
r,
a
e

2
n

e
e

-

d
s

Interface
Channel

Interface

I/O Request Host

Cache Controller Interface
with Channel/Disk

Cache Controller Interface
with Cache Memory

Cache Memory

Disk
Interface

Disk
Array

Array Controller

Bus 1

Bus 2

Cache Subsystem

Control Bus Data Bus

Figure 2: Array Controller Architecture and External
Interfaces

data from its local disk and remote data stored on the I/
node. The I/O node operates as a data server for fil
shared among the compute nodes in the cluster. As t
data on the I/O node is shared among all the compu
nodes, it is crucial to the overall cluster performance. Th
I/O node supports RAID architecture, which consists of
collection of disk drives storing data, parity, and adequat
coding information for use in reconstructing the corrupte
data. The RAID system is controlled and managed by th
array controller (see Fig. 2), which is responsible for dat
transfer between hosts and disks.

As shown in Fig. 2, the array controller is composed
of a cache subsystem (see the dotted-line box in Fig. 2
a channel interface (CI) to the local host, and a dis
interface to the disk array. Among these components, th
cache subsystem is of particular importance to the corre
operation of RAID, because all data transfer operation
between channels and the disk array are performed
the cache subsystem. Our study, therefore, focuses
the detailed analysis of the cache subsystem. The cac
subsystem is composed of two separate parts: the cac
memory (CM) and the cache controller. The cache con
troller provides interfaces to the cache memory (CCICM
and to the channel/disk (CCICI). The communication link
between the cache controller interface and the cache me
ory is a multidirectional bus depicted as Bus 2, and the lin
between the cache controller interface and the channel/di
is a multidirectional bus depicted as Bus 1.

Two replacement algorithms for the cache subsyste
are evaluated: random replacement policy (RR) and leas
recently-used replacement (LRU). Replacement strategi
are adopted to discard tracks in the cache memory
make room for the new incoming tracks from the channe
RR randomly selects a track in the cache to discard.
does not take into account spatial and temporal localit
in the data trace. Therefore, as the results show later,
behaves poorly. LRU selects the track in the cache us
least in the recent past to be replaced. Implementing LR
requires recording track usage.

A Speculation-Based Approach for Performance and Dependability Analysis: A Case Study

it
d
o
n
e
e
a
b
s
le
h
t
e
h
d

h
o

m
d
d

n

.
g
d.

t
he
nt
e

h
he

e
a
n.
g

te
m
s

e
g
ed
r
e
al
ir

, a

e
is
re
it:

.
ta

e
ry.

r,
d.

of
The cache subsystem employs a combination of par
code, Error Detection and Correction(EDAC) Code, an
Cyclic Redundancy Checking (CRC) code to detect and/
correct data errors that occur during a cache operatio
Parity is used to cover data transfer, over Bus 1, betwe
the cache controller interfaces. Parity bits are append
for each data word transmitted over the bus. When
parity error is detected, automatic retries are attempted
the cache controller to recover from the error. EDAC i
used to protect data transmitted from the cache control
interface to the cache memory and data stored in t
cache memory. The EDAC is appended to each da
word transfer over Bus 2 and then stored in the cach
Two kinds of CRC are used by the cache subsystem: t
frontend CRC and the physical sector CRC. The fronten
CRC is used to protect the data transfer to the cac
subsystem during the write operation. The physical sect
CRC protects the data stored on the disk.

3 METHODOLOGY

In this section, we describe the speculation-based si
ulation methodologies: speculation for performance an
speculation for dependability. The methods are illustrate
using examples based on the cluster system presented
Section 2.

3.1 Speculation for Performance

Speculation for performance consists of three major step
which are explained in the following. A simulation
snapshot of a process from wall-clock timeti to tj is
shown in Fig. 3. Evente1 is scheduled to execute at time

~et j

t i

t k

e1

e2

~ep2()~e

e2 e2

e1 e1

p1()

~e
~ep2()~ep1()

~e()P

IncomingWall-Clock

Events Time

Speculated Paths

Speculated Instances for

Scheduled Event

Execution

Figure 3: A Simulation Period on an LP Using Speculatio
for Performance

ti. Event e1 schedules an internal evente2 to execute at
time tk. No events are scheduled aftere2. The process
waits until tj when an incoming event̃e arrives. Event̃e
is scheduled to execute at timetj .
477
y

r
.
n
d

y

r
e
a
.
e

e
r

-

in

s,

Now let us take a look at how the approach works
First, the process speculates information of the next arrivin
external event that allows the detailed simulation to procee
To simplify the discussion, for the external eventẽ in Fig. 3,
we have only two instances with different speculative
information, p1(ẽ) andp2(ẽ). Notationp(ẽ) represents a
speculated instance of incoming eventẽ. p1(ẽ) andp2(ẽ)
determines two execution paths.

Second, if the processor is idle waiting for the nex
incoming event, based on the speculated instances of t
next event, execution triggered by the next incoming eve
takes place for detailed simulation. In this case, th
execution following the paths determined byp1(ẽ) and
p2(ẽ) are both executed. The simulation for each pat
is completed except for those segments that require t
unspeculated information of the incoming event.

Finally, after the arrival of ẽ, it can be decided
whether any of the two speculative execution matches th
execution determined by the real event. If there exists
matched execution, it is selected as the correct executio
Then, incomplete simulation segments are finished usin
the unspeculated information from incoming eventẽ.

3.1.1 An Example

In this section, a sequence of event routines that simula
service of a speculated read request in the cluster syste
is adopted to illustrate the idea presented in the previou
section. We follow the three steps given above. First th
next incoming event is speculated, i.e., the next incomin
I/O request. The request includes arrival time, the request
track id, the type read/write, and the information whethe
it is a cache hit/miss. The request type and whether th
request is a cache hit/miss are speculated. The arriv
time and the track id are not speculated because the
speculation set would become too large.

Second, the speculated request can be a read hit
read miss, a write hit, or a write miss. In the following,
we assume for the purpose of the discussion that th
speculated request is a read request. If the request
speculated to be a cache hit, three event routines a
designed to simulate the steps involved in the cache h
(a) the transmission of a disk track from CM to CCICM,
(b) the transmission of a disk track from CCICM to CCICI,
and (c) the transmission of a disk track from CCICI to CI
During step (a), the track is decomposed into a set of da
blocks that are transferred to CCICM. In the execution
without speculation, updating the simulated access tim
of the referenced track in the cache memory is necessa
However, without speculation of the track id, speculative
execution is not able to perform the update. Thus, late
when the real request arrives, the update will be conducte
During steps (b), the track is decomposed into a set

Huang, Kalbarczyk and Iyer

ta
re
p

s,
he
e
e.
e
e

or
e
re

he
e
the
e
c
d.
is
tiv
n
is
in

of
n

r
n
n

as

es

on
at
f

s.
ps.

ed
lly
ith
ly

s

e
he
is

-
e
e
are

e
nts

d-
2)

ip-
le,
ry.

ent

ame

be

ing
g

data blocks that are transferred to CCICI. During the da
transmission, transfer using controller interface buffers a
simulated and simulation time is advanced. During ste
(c), simulation time is advanced.

If the request is speculated to be a cache mis
an additional event routine is necessary to simulate t
transmission of a disk track from the disk array to th
cache memory before simulating (a), (b), and (c) abov
For the cache miss, step (a) as presented above involv
i) selecting the evicted track used least, e.g., with th
earliest reference time, ii) updating the data structure f
sorting the reference time of tracks, and iii) setting th
current time for the replacing track. Step (b) and (c) a
the same as in the cache hit case.

Note that the speculation takes place whenever t
I/O node waits for the next incoming I/O request. Th
speculative execution does not need the knowledge of
timestamp and the track id if the speculated request do
not occur in parallel with other requests. If request traffi
to the I/O node is infrequent, this can be usually satisfie

Third, after the arrival of the request, the request
used to select the matched execution among the specula
execution paths. In this example, after the arrival, it ca
be decided whether it is a read request, whether it
a cache hit or miss, and whether the request occurs
parallel with other requests. Timestamp and track id
the request is used to complete the detailed simulatio
An I/O response is sent out.

3.1.2 Implementation

The pseudocode of the algorithm of speculation fo
performance is listed in Fig. 4. The implementatio
is based on Time Warp (Jefferson 1985). First, definitio
and notation are introduced.

A simulation model SM is defined asSM = (C, LP ,
SF). Each element is defined in the following:

Channel Set C: C = { c(i, j): c(i, j) is a channel
from logical processi to logical processj }. If process
i schedules events to processj via message passing, a
channel exists between processesi and j. This channel is
an input channel for processi and an output channel for
processj. C contains all the channels in the model.

Logical Process SetLP : LP consists of all the logical
processes. Logical processi (LPi) is a set represented by
LPi = (LV T , IC, OC, IMQ, OMQ, SQ, EV L) where:
1) LV T (Local Virtual Time) is the local simulation clock
that indicates how far the simulation of a process h
progressed. TheLV T of process i is denoted asLV Ti.
2) IC (Input Channel) ={ c(i, j): input channel from
process i to process j}
3) OC (Output Channel) ={ c(i, j) : output channel from
process i to process j}
478
s:

s

e

.

4) IMQ (Input Message Queue) is a queue which stor
the received incoming events at timeLV T . Events are
sorted in the increasing order of event timestamps.
5) OMQ (Output Message Queue) stores the events
the logical process to be sent out to other processes
time LV T . Events are sorted in the increasing order o
event timestamps.
6) SQ (State Queue) stores the states at timeLV T .
7) EV L (Event List) maintains unprocessed event routine
Events are sorted in the nondecreasing order of timestam
TS(e) denotes the timestamp of evente.

Simulation Function SF defines how the simulation is
performed for each process. Under conventional distribut
simulation algorithms, events are processed sequentia
based on their timestamps on each logical process. W
speculation for performance, events can be speculative
executed.

The speculative execution of incoming events take
place whenever event listEV L is empty, i.e., the processor
finishs the processing of existing events and waits for th
incoming event. Steps 1 and 2 (see Section 3.1) of t
approach is implemented from line 6 to 12. Step 3
implemented from line 22 to 25.

3.2 Speculation for Dependability

Speculation for dependability is implemented using dy
namic rescheduling of event routines at run-time on th
LPs performing detailed simulation, e.g., the I/O nod
cache subsystem detailed simulation. The techniques
explained in the following.

Event Routine Design: To facilitate run-time reschedul-
ing of event routines via speculation, each event routin
includes three sub-event routines: 1) Schedule new eve
or manage resource contention (routineI): This sub-event
routine schedules future event routines, simulates the a
vancement of LVT, or simulates the resource sharing.
Computation or manipulation of simulation data (routineII):
This sub-event routine conducts computation and man
ulates data associated with the computation, for examp
data concerning what tracks are in the cache memo
3) Schedule an outgoing message (routineIII): This sub-
event routine sends out an outgoing message. Each ev
routine is composed ofroutineI, routineII, and routineIII;
and consequently these sub-event routines share the s
timestamp.

Dynamic Rescheduling of Events: For detailed sim-
ulation of complex systems,routineII is usually compu-
tationally intensive. If the data manipulated byroutineII
does not influence event scheduling, the routine can
rescheduled to execute afterroutineI or routineIII of sub-
sequent event routines. It is expected that the reschedul
of sub-event routines can avoid the delay of generatin

A Speculation-Based Approach for Performance and Dependability Analysis: A Case Study

s
ic

ng
in
ti

tio
d

i
t
de
d

d

r

n

d

.

simulate LPi() {
1 Schedule initial events toEV Li

2 while (1) {
3 if (next event available)
4 process next event fromEV Li

5 else /* EVL is empty */
6 if (speculative execution of the next event does

not exist) {
7 generateP (ẽ)
8 for (each p(ẽ) ∈ P (ẽ)) {
9 generate a new event listEV L

′

containing p(ẽ)
10 executep(ẽ) and associated events
11 }
12 }
13 if (ẽ is received){
14 if (ẽ is an anti-message) or (TS(ẽ) < LV Ti) {
15 restore to the immediate checkpoint

before TS(ẽ)
16 if (ẽ is an anti-message)
17 cancel the messages inIMQ

associated with̃e
18 else if (ẽ is an I/O request)
19 schedule events associated with this

I/O request
20 }
21 else if (TS(ẽ) >= LV Ti) {
22 if (match (p(ẽ), ẽ) is true) {
23 finish execution triggered bỹe

not in the speculative execution
24 adopt the matchedEV L

′

25 }
26 else {
27 scheduleẽ
28 cancel speculative execution ofẽ
29 }
30 }
31 }
32 Send out an I/O response or anti-messages if any

}
}

Figure 4: Speculation for Performance Algorithm

messages to other LPs due to time-consumingroutineII.
The execution of rescheduled sub-event routineroutineII
can take place while the LP waits on incoming me
sages. Therefore, it is generally beneficial if dynam
rescheduling is chosen for LPs with infrequent incomi
messages. Speculation facilitates the rescheduling, s
event scheduling may depend on the data. The specula
for our dependability analysis is based on the observa
that errors are most likely to be detected and correcte
a reliable system.

Correction of Simulation Errors Introduced by
Speculation: The simulation errors need to be corrected
the actual execution ofroutineII provides results differen
than the speculation. In the simulation on the I/O no
if it turns out that errors in the track are not correcte
479
-

ce
on
n
in

f

,
,

simulation errors occur. The state of the simulation is rolled
back to right before the request with theroutineIIs that
don’t match the speculation. These are implemented base
on the rollback mechanism of the optimistic protocol.
Because errors in the track are not corrected, the I/O
request needs to be retried to retrieve correct data afte
the rollback.

3.2.1 An Example

A sequence of event routines that simulate service of a
cache hit read request is adopted to illustrate the speculatio
for dependability. Three event routines are designed to
simulate the steps involved in servicing the cache hit read
request: 1) the track transmission from CM to CCICM,
2) the track transmission from CCICM to CCICI, and 3)
the track transmission from CCICI to CI.

Based on the design criteria for rescheduling via
speculation, each event routine above is designed to
include three sub-event routines: 1)routineI releases
the data path to possible operations existing in parallel
that are waiting for resources like CCICM, schedules the
next event routine associated with the same request, an
advances the simulation time for the transmission, fault
injection, and error correction. 2)routineII performs fault
injection for this transmission, error detection/correction
for data bytes in the track, and updating of the error
statistics for the track. 3)routineIII sends out an I/O
response if there is one.

In Fig. 5, the scheduling of event routines for a read
cache hit request with no occurrence of other requests in
between the start and end of this request is shown. Each
rectangular box on the axis indicates an event routine, and
the shaded block inside indicates the sub-event routines
The axis indicates LVT. The length of the box indicates
the duration of event routine execution time.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

(a) Without Speculation:

t1 t2 t3

transfer from CM to CCICM checking EDAC
transfer from CCICM to CCICI checking parity

transfer from CCICI to CI checking FE_CRC

(b) With Speculation:

transfer from CM to CCICM, checking EDAC
transfer from CCICM to CCICI checking parity

transfer from CCICI to CI checking FE_CRC

t1 t2 t3 t1 t2 t3 LVT

LVT

send out I/O responses

fault injection, error detection/correction

release data path, advance simulation time (routineI)

(routineII)

(routineIII)

send out the I/O response

send out the I/O response

Figure 5: A Read Cache Hit with No Other Parallel
Requests

Huang, Kalbarczyk and Iyer

no
h
t

th

,
n

ne
h
st
il
s
fo
io
o
e

se
io

u
r
th
iv
ri
ite
i

sk
h
io
a

ch
f
e
m
e
s
s
e

n
w

e size
atio

time
ue

er-
and
la-
f

ion
via
is-
e

ed

ion
tial
Without speculation, the sub-event routines are
rescheduled, as shown in Fig. 5(a). In Fig. 5(b), t
event routines are rescheduled based on the specula
that errors are corrected.routineI of each event routine
is rescheduled as early as possible ahead of all the o
sub-event routines for this request. As the event routine
t3 schedules a message sent out to the requested node
rescheduling makes it possible to send out the respo
much earlier.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results obtai
from the distributed speculation-based simulation of t
reliable cluster system described in Section 2. The clu
system is characterized by performance and dependab
measures. Run-time performance of the speculation-ba
simulation employed to assess the cluster system per
mance is evaluated by comparing with sequential simulat
and Time Warp. Simulation experiments are conducted
Sun Ultra1-170 workstations interconnected by 100 Mb/s
fast Ethernet. Message Passing Interface (MPI) is u
as the communication layer for supporting communicat
between workstations running the simulation.

4.1 Experiment Set-up

The input I/O request stream generated from the comp
node to the I/O node is based on a real trace unde
real workload. Each I/O request in the trace specifies
track accessed, the type of request, and the interarr
time. Two types of requests are simulated, read and w
though; and the distribution is 85% reads, 15% wr
through operations. For a write through operation, if
is a cache hit, the data is written to the CM and di
array at the same time. After the data is written to t
disk, the channel interface is signaled of the complet
of the operation. The accessible tracks are 200,000
the cache memory size is 10,000 tracks.

4.2 Performance Measures of Cache Subsystem

Performance measures are obtained using speculation
performance. They include cache miss ratio and ca
subsystem access time. Cache miss ratio is important
measuring cache performance. Two cache replacem
algorithms are studied using our simulation, rando
replacement (RR) and least recently used replacem
(LRU). The miss ratio is shown in Fig. 6. LRU perform
better than RR for the cache size simulated. The rea
is that it exploited locality of the data in the trace bett
than RR.

Cache subsystem access time is another performa
measure obtained from the simulation. From Fig. 7,
480
t
e
ion

er
at
the
se

d
e
er
ity
ed
r-
n
n
c
d

n

te
a
e
al
te

t

e
n
nd

for
e

or
nt

nt

on
r

ce
e

can see that the access time decreases as the cach
increases. This is due to the fact that cache miss r
decreases as the cache size increases. The access
using LRU strategy is always lower than RR strategy d
to the same reason.

0

0.2

0.4

0.6

0.8

1

2000 3000 4000 5000 6000 7000 8000 9000 10000
Cache size (number of tracks)

LRU
RR

Figure 6: Cache Miss Ratio

0

200

400

600

800

1000

2000 3000 4000 5000 6000 7000 8000 9000 10000

A
cc

es
s

T
im

e
(u

ni
t t

im
e:

 0
.1

m
s)

Cache size (number of tracks)

LRU
RR

Figure 7: Cache Subsystem Access Time

4.3 Run-time Performance of the Speculation-based
Simulation

In this subsection, we evaluate the speculation for p
formance approach using the cluster system model,
compare its run-time performance with sequential simu
tion and a traditional optimistic protocol, Time Warp o
distributed simulation. We obtain the sequential simulat
performance numbers from our distributed simulator
mapping all the LPs onto the same workstation. For d
tributed simulation, speculation for performance and Tim
Warp, the cluster system model with 6 nodes is partition
and mapped to 2, 4 and 6 workstations.

Run-time performance numbers of the speculat
for performance approach, Time Warp and sequen

A Speculation-Based Approach for Performance and Dependability Analysis: A Case Study
Table 1: Performance of Sequential, Speculation for Performance, and Time Warp

Sequential Speculation for Performance Time Warp
Number of Workstations 1 2 4 6 2 4 6

Simulation Time (sec) 24,271 17,688 10,284 5,891 19,573 14,710 8,956
Speedup 1 1.37 2.36 4.12 1.24 1.65 2.71
n
t
u
th

n
t

)
n
o
f

n
s

p
d
o
u
o

h
o
n
s
c

it
r
t
o

th
e
p
i

h
a
M
h
b
o

simulation are recorded in Table 1. The table prese
1) Simulation time: the real execution time to comple
the simulation of the simulated system, and 2) Speed
the ratio between the sequential simulation time and
simulation time obtained from a distributed simulation.

The results from Table 1 demonstrate significa
speedup of speculation for performance over sequen
simulation. Our method yields as much as 69%(4.12/6
ideal speedup (If a model is distributed onto n workstatio
the ideal speedup is n) for the 6 workstation case. Fr
Table 1, we observe that, compared with the speculation
performance approach, Time Warp offers less performa
gain over sequential simulation. On 6 workstation
45%(2.71/6) ideal speedup is observed compared w
sequential simulation. The reason that limits Time War
performance is that the computation intensive events
to detailed simulation of cache subsystem on the I/O n
needs to execute after the arrival of I/O requests, th
leads to poor overlap of computation and communicati

4.4 Dependability Measures of Cache Subsystem

Dependability measures are obtained using speculative
dependability. They include: 1) error coverage of t
EDAC code, reported in Fig. 8 and 2) error detecti
latency of errors injected into various cache compone
reported in Fig. 9. The measures are used to as
the error detection/correction mechanisms of the ca
subsystem.

Fig. 9 shows the error detection latency probabil
density function for errors injected into bus 1 (B1), erro
into bus 2 (B2), errors into cache controller interface
cache memory/disk (CCI), and errors into cache mem
(CM). Error detection latency is defined to be the tim
between when an error is first injected to a track and
time when the error is detected, corrected or overwritt
Results shown in Fig. 9 indicate several points. Ty
B1 errors are mostly covered by parity. This latency
very short due to the immediate parity checking for t
tracks transferred over bus 1. Those that escape p
tend to be latent for a long time. Type B2, CCI, and C
errors have much longer latency. The reason is that t
detection/correction by EDAC or CRC are triggered
read/write operations to the tracks containing these err
48
ts:
e
p:
e

t
ial
of
s,
m
or
ce
,

ith
’s
ue
de
s,
n.

for
e
n
ts,
ess
he

y
s
o
ry
e
e

n.
e
s
e
rity

eir
y
rs.

As a result, these latency depends on the distribution of
I/O requests to the I/O node. If a track is not frequently
accessed, then errors preserved in the track might remain
latent for a long period of time.

0.97

0.975

0.98

0.985

0.99

0.995

1

1e+06 1e+07 1e+08 1e+09
Global Virtual Time (unit time: 0.1 msec)

Detection Coverage
Correction Coverage

Figure 8: EDAC Coverage

0

0.2

0.4

0.6

0.8

1

0e+0 1e+2 1e+4 1e+6 1e+8 1e+10
B1, B2, CCI and CM Error Detection Latency (unit time: 0.1ms)

B1

B2
CCI

CM

B1
B2

CCI
CM

Figure 9: Error Detection Latency Distribution

5 CONCLUSIONS

We proposed new speculation-based, distributed simulation
approaches for detailed evaluation of system behavior. The
simulation methods are demonstrated and validated in the
case study that analyzes the performance and dependability
1

Huang, Kalbarczyk and Iyer

s
id
a

h

e
r

e

l
-

-

ter

,
te

iable
of
in
ity
.D.
of
ign,
ting
ased,

t
om-
ated
a-
for
sor
put-
ign.
ed
for
he
tion
, he
al

the
pace
of a cached RAID cluster system. Our experimental result
demonstrate that using speculation-based simulation, val
and accurate performance and dependability measures c
be obtained efficiently. Furthermore, run-time performance
results show that the speculation for performance approac
contributes to a significant reduction in the simulation
time.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Defens
Advanced Research Projects Agency (DARPA) unde
contract DABT63-94-C-0045. The content of this paper
does not necessarily reflect the position or policy of the
US government, and no official endorsement should b
inferred.

REFERENCES

Ferscha, A., and G. Chiola. 1995. Self-adaptive logica
processes: the probabilistic distributed simulation pro
tocol. The 27th Annual Simulation Symposium, 78–88.

Fujimoto, R., and D. Nicol. 1992. State of the art in
parallel simulation.Proceedings of the 1992 Winter
Simulation Conference, 246–254.

Hamnes, D. O., and Anand Tripathi. 1996. A comparative
study of adaptive risk vs. adaptive aggressiveness con
trol in parallel and distributed simulation.Proceedings
of the 29th Annual Simulation Symposium, 90–96.

Horst, Robert W. 1995. Tnet: A reliable system area
network. IEEE MICRO, 37–45.

Jefferson, D. R. 1985. Virtual time.ACM Transaction on
Programming Language and System, 7(3):404–425.

Karedla, P., J. S. Love, and B. G. Wherry. 1994. Caching
strategies to improve disk system.IEEE Computer,
38–46.

Menon, J., and M. Hartung. 1988. The IBM 3990 disk
cache.COMPCON’88, 146-151.

Smith, A. J. 1985. Disk cache miss ratio analysis and
design considerations.ACM Transactions on Computer
Systems, Vol. 3, 161–203.

AUTHOR BIOGRAPHIES

YIQING HUANG is a Ph.D candidate in the Computer
Science Department and conducts research at the Cen
for Reliable and High Performance Computing at the
University of Illinois at Urbana-Champaign. She received a
B.S. degree in Computer Science from Tsinghua University
China and an M.S. degree in Computer Science from Sta
University of New York at Stony Brook.
482
n

ZBIGNIEW T. KALBARCZYK is currently Visiting
Research Assistant Professor at the Center for Rel
and High-Performance Computing in the University
Illinois at Urbana-Champaign. He holds an MS
Mechanical Engineering from the Technical Univers
of Warsaw, an MS in Electronic Engineering and Ph
in Computer Science from the Technical University
Sofia, Bulgaria. His research interests include des
implementation, and validation of dependable compu
systems including embedded systems and software-b
fault-tolerant distributed systems.

RAVISHANKAR K. IYER holds a joint appointmen
as Professor in the Departments of Electrical and C
puter Engineering, Computer Science, and the Coordin
Science Laboratory at the University of Illinois at Urban
Champaign. He is also Co-Director of the Center
Reliable and High-Performance Computing. Profes
Iyer’s research interests are in the area of reliable com
ing, measurement and evaluation, and automated des

Prof. Iyer is an IEEE Computer Society Distinguish
Visitor, an Associate Fellow of the American Institute
Aeronautics and Astronautics (AIAA), and a Fellow of t
IEEE. In 1991, he received the Senior Humboldt Founda
Award for excellence in research and teaching. In 1993
received the AIAA Information Systems Award and Med
for “fundamental and pioneering contributions towards
design, evaluation, and validation of dependable aeros
computing systems.”

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

