Proceedings of the 1998 Winter Simulation Conference

D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

A SPECULATION-BASED APPROACH FOR PERFORMANCE AND DEPENDABILITY
ANALYSIS: A CASE STUDY

Yiging Huang
Zbigniew T. Kalbarczyk
Ravishankar K. lyer

Center for Reliable and High Performance Computing
Coordinated Science Laboratory
University of lllinois at Urbana-Champaign
1308 W. Main Urbana, IL 61801, U.S.A.

ABSTRACT

application-specific measures from the detailed simulation.
An example of such an application is the reliable, high-

In this paper, we propose two speculation-based methods performance cluster system studied in this paper with a
for fast and accurate simulation-based performance and detailed simulation of the cache subsystem on the I/O

dependability analysis of complex systems, incorporating node of the cluster.

detailed simulation of system components. The first The targeted cluster consists of compute nodes and an
approach applies to performance analysis and the second|/0 node connected via ServerNet (Horst et al. 1995), a
to dependability analysis. ~ Our target example is a system area network developed by Tandem Computers. The
networked cluster with compute nodes and one /O node. |/O node supports a cache-based RAID storage architecture
Detailed simulation of the cache subsystem of the 1/O that is critical to the performance and dependability of

node is conducted, and more abstract simulation of the the cluster. The RAID system is controlled and managed
compute nodes and the switching network is performed. py an array controller that includes a cache subsystem.
Performance measures obtained include cache miss ratioTo analyze the impact of the storage subsystem on the

and cache subsystem access time. Dependability measuregluster's performance and dependability, we developed
obtained include error coverage of EDAC code and error detailed models for the data transfer inside the RAID
detection latency distribution of errors introduced to the cache subsystem and for the error detection and recovery
cache components. The two methods are implemented onmechanisms in the cache subsystem. The detailed models

a network of workstations.

1 INTRODUCTION

In simulating complex systems, a detailed simulation
of a subsystem is often needed to characterize the
overall system/network performance and dependability.
The detailed simulation allows to capture the system
dynamics resulting from variability in the workload or

the effect of different failure scenarios. However, detailed
simulation is time-consuming. In this paper, we propose
new speculation-based, distributed simulation methods to
accelerate both performance and dependability simulation.
Our approach uses optimistic simulation as the underlying
mechanism. However, detailed component simulations
slow down the overall execution. Using speculation,
we can accelerate the overall simulation while obtaining

475

are incorporated into the cluster model as part of the
overall simulation.

Speculation for performanceis used to simulate the
data transfer inside the cache subsystem in detail. For
each 1/O request arriving at the 1/0 node, the request type,
i.e., read or write, and whether it is a cache hit or a cache
miss are speculated. An execution path can be constructed
by speculating the request to be a read hit, a read miss, a
write hit, or a write miss. Speculative simulation of the
request can follow any of the four paths. The simulation
for each path is completed except for those segments
that require the unspeculated information from incoming
events such as the request arrival time. Upon receiving
the incoming request, its request type and cache hit/miss
information are used to select the matched path from
the four speculated paths. Then, the simulation segments
that are not completed during speculative simulation are

Huang, Kalbarczyk and lyer

Compute Node Control Bus Data Bus

/O Request _ [Host [Channel
Compute Node % Interfacel Disk Disk

. g

_ Coshe Subsysem________ inerace | Aray

i t |
Compute Node - - : Cache Controller Interface|<i—
port i |with Channel/Disk
Switch Lo 1
EOTI
Compute Node :

1/0O Node : ache Controller Interface
port port — i ith Cache Memory
HOST :
Compute Node _ Bus2 I

RAID [Cache Memory

Array Controller

Figure 1: System Architecture
Figure 2: Array Controller Architecture and External

- _ _ _ _ ~Interfaces
finished using the unspeculated information from incoming

events. If the request traffic to the 1/O node is infrequent,

the speculation can be conducted whenever the /O node data from its local disk and remote data stored on the 1/0O
is idle waiting for the next incoming request. node. The I/O node operates as a data server for files

Speculation for dependability is used to simulate shared among the compute nodes in the cluster. As the

the cache subsystem error recovery mechanisms in detail. dat@ on the 1/0 node is shared among all the compute
The speculation can most often successfully predict the nodes, it is crucial to the over_all cluster p_erformar!ce. The
outcome of the error recovery detailed simulation based /© node supports RAID architecture, which consists of a
on the observation that errors are most likely detected and Collection of disk drives storing data, parity, and adequate
corrected in the 1/O subsystem. In other words, we can coding information for use in reconstructing the corrupted

most often assume that the system recovers from errors, data. The RAID system is controlled and managed by the
Hence, the detailed simulation is postponed until an idle @@y controller (see Fig. 2), which is responsible for data
time slot is found during which the detailed simulation ansfer between hosts and disks. _

can be scheduled. In case the detailed simulation indicates AS Shown in Fig. 2, the array controller is composed

a failure, a rollback is necessary. of a cache subsystem (see the dotted-line box in Fig. 2),

In recent years, distributed simulation has been used 2 cr}annel '”r;‘en:fci (CI) to the '0%‘"’" host, and a d'Srll‘

widely for simulating complex systems (Ferscha and Chiola 'Ntérface to the disk array. Among these components, the
1995, Fujimoto and Nicol 1992, Hamnes and Tripathi 1996, cache .subsystem is of particular importance to the correct
and Jefferson 1985). Studies concerning cache system inoperation of RAID, because <_';1II data transfer operations
an 1/0 subsystem have focused on cache replacementbemeen channels and the disk array are performed by

policies and cache performance varying cache parametersth® cache subsystem. Our study, therefore, focuses on
such as cache size, cache block size (Karedla et al. 1994 the detailed analysis of the cache subsystem. The cache

Menon and Hartung 1988, and Smith 1985). In this paper, "subsystem is composed of two separate parts: the cache

we propose speculation-based methods for simulating a MeMory (CM) and the cache controller. The cache con-

cached RAID system, which have not been reported before troller provides interfaces to the cache memory (CCICM)
in the literature and to the channel/disk (CCICI). The communication link

The rest of the paper is organized as follows. Section 2 between the cache controller interface and the cache mem-

describes the architecture of the cluster system. In ory is a multidirectional bus depicted as Bus 2, and the link
Section 3, speculation for performance is explainéd in between the cache controller interface and the channel/disk

detail, and speculation for dependability is summarized is a multidirectional bus depicted as Bus 1.

in the context of the simulated architecture. Performance Two repla.cement algorithms for the. cache subsystem
results are shown in Section 4. Section 5 concludes the '€ evaluated: random replacement policy (RR) and least-
paper recently-used replacement (LRU). Replacement strategies

are adopted to discard tracks in the cache memory to
make room for the new incoming tracks from the channel.
2 SYSTEM ARCHITECTURE RR randomly selects a track in the cache to discard. It

does not take into account spatial and temporal locality
The architecture analyzed in this paper is a reliable, high- in the data trace. Therefore, as the results show later, it
performance cluster system, shown in Fig. 1. The system behaves poorly. LRU selects the track in the cache used
consists of five compute nodes and one 1/0 node connectedleast in the recent past to be replaced. Implementing LRU
via a 6-port ServerNet switch. A compute node can access requires recording track usage.

476

A Speculation-Based Approach for Performance and Dependability Analysis: A Case Study

The cache subsystem employs a combination of parity Now let us take a look at how the approach works.
code, Error Detection and Correction(EDAC) Code, and First, the process speculates information of the next arriving
Cyclic Redundancy Checking (CRC) code to detect and/or external event that allows the detailed simulation to proceed.
correct data errors that occur during a cache operation. To simplify the discussion, for the external evérin Fig. 3,
Parity is used to cover data transfer, over Bus 1, between we have only two instances with different speculative
the cache controller interfaces. Parity bits are appended information, p;(€) andp2(€). Notationp(€) represents a
for each data word transmitted over the bus. When a speculated instance of incoming evéntp (&) andp,(&)
parity error is detected, automatic retries are attempted by determines two execution paths.
the cache controller to recover from the error. EDAC is Second, if the processor is idle waiting for the next
used to protect data transmitted from the cache controller incoming event, based on the speculated instances of the
interface to the cache memory and data stored in the next event, execution triggered by the next incoming event
cache memory. The EDAC is appended to each data takes place for detailed simulation. In this case, the
word transfer over Bus 2 and then stored in the cache. execution following the paths determined by (&) and
Two kinds of CRC are used by the cache subsystem: the p,(&) are both executed. The simulation for each path
frontend CRC and the physical sector CRC. The frontend is completed except for those segments that require the
CRC is used to protect the data transfer to the cache unspeculated information of the incoming event.
subsystem during the write operation. The physical sector Finally, after the arrival of&, it can be decided
CRC protects the data stored on the disk. whether any of the two speculative execution matches the
execution determined by the real event. If there exists a
matched execution, it is selected as the correct execution.
Then, incomplete simulation segments are finished using
the unspeculated information from incoming evént

3 METHODOLOGY

In this section, we describe the speculation-based sim-
ulation methodologies: speculation for performance and
speculation for dependability. The methods are illustrated 377 An Example
using examples based on the cluster system presented in
Section 2. In this section, a sequence of event routines that simulate
service of a speculated read request in the cluster system
is adopted to illustrate the idea presented in the previous
3.1 Speculation for Performance section. We follow the three steps given above. First the
next incoming event is speculated, i.e., the next incoming
I/O request. The request includes arrival time, the requested
track id, the type read/write, and the information whether
it is a cache hit/miss. The request type and whether the
request is a cache hit/miss are speculated. The arrival
R time and the track id are not speculated because their
ook moomin Seheduied Even - oted Pt b3 Ped) speculation set would become too large.
WT"nfel ‘ IEvemsg S';dlldE Lo S Second, the speculated request can be a read hit, a
t el el el read miss, a write hit, or a write miss. In the following,
l l l we assume for the purpose of the discussion that the
speculated request is a read request. If the request is
speculated to be a cache hit, three event routines are
l l designed to simulate the steps involved in the cache hit:
P(8) P (a) the transmission of a disk track from CM to CCICM,
(b) the transmission of a disk track from CCICM to CCICI,
and (c) the transmission of a disk track from CCICI to ClI.
During step (a), the track is decomposed into a set of data
Figure 3: A Simulation Period on an LP Using Speculation blocks that are transferred to CCICM. In the execution
for Performance without speculation, updating the simulated access time
of the referenced track in the cache memory is necessary.
t;. Evente; schedules an internal eveeg to execute at However, without speculation of the track id, speculative
time ¢;. No events are scheduled aftey. The process execution is not able to perform the update. Thus, later,
waits until t; when an incoming ever# arrives. Evené when the real request arrives, the update will be conducted.
is scheduled to execute at timie. During steps (b), the track is decomposed into a set of

Speculation for performance consists of three major steps,
which are explained in the following. A simulation
snapshot of a process from wall-clock timig to ¢; is
shown in Fig. 3. Eveng; is scheduled to execute at time

ty e2 e2 e2

Ko
o™

a77

Huang, Kalbarczyk and lyer

data blocks that are transferred to CCICI. During the data 4) IM(Q (Input Message Queue) is a queue which stores

transmission, transfer using controller interface buffers are the received incoming events at timié/T. Events are

simulated and simulation time is advanced. During step sorted in the increasing order of event timestamps.

(c), simulation time is advanced. 5) OM@ (Output Message Queue) stores the events on
If the request is speculated to be a cache miss, the logical process to be sent out to other processes at

an additional event routine is necessary to simulate the time LVT. Events are sorted in the increasing order of

transmission of a disk track from the disk array to the event timestamps.

cache memory before simulating (a), (b), and (c) above. 6) SQ (State Queue) stores the states at tihiéT".

For the cache miss, step (a) as presented above involves:7) EV L (Event List) maintains unprocessed event routines.

i) selecting the evicted track used least, e.g., with the Events are sorted in the nondecreasing order of timestamps.

earliest reference time, ii) updating the data structure for 7'S(e) denotes the timestamp of event

sorting the reference time of tracks, and iii) setting the Simulation Function S F' defines how the simulation is
current time for the replacing track. Step (b) and (c) are performed for each process. Under conventional distributed
the same as in the cache hit case. simulation algorithms, events are processed sequentially

Note that the speculation takes place whenever the based on their timestamps on each logical process. With
I/0 node waits for the next incoming I/O request. The speculation for performance, events can be speculatively
speculative execution does not need the knowledge of the executed.
timestamp and the track id if the speculated request does The speculative execution of incoming events takes
not occur in parallel with other requests. If request traffic place whenever event ligV L is empty, i.e., the processor
to the I/O node is infrequent, this can be usually satisfied. finishs the processing of existing events and waits for the
Third, after the arrival of the request, the request is incoming event. Steps 1 and 2 (see Section 3.1) of the
used to select the matched execution among the speculativeapproach is implemented from line 6 to 12. Step 3 is
execution paths. In this example, after the arrival, it can implemented from line 22 to 25.
be decided whether it is a read request, whether it is
a cache hit or miss, and whether the request occurs in . .
parallel with other requests. Timestamp and track id of 3-2 Speculation for Dependability
the request is used to complete the detailed simulation.

. Speculation for dependability is implemented using dy-
An 1/O response is sent out.

namic rescheduling of event routines at run-time on the
LPs performing detailed simulation, e.g., the 1/O node

3.1.2 Implementation cache subsystem detailed simulation. The techniques are
explained in the following.
The pseudocode of the algorithm of speculation for Event Routine Design To facilitate run-time reschedul-

performance is listed in Fig. 4. The implementation ing of event routines via speculation, each event routine
is based on Time Warp (Jefferson 1985). First, definition includes three sub-event routines: 1) Schedule new events

and notation are introduced. or manage resource contentiomutinel): This sub-event
A simulation model SM is defined asM = (C, LP, routine schedules future event routines, simulates the ad-
SF). Each element is defined in the following: vancement of LVT, or simulates the resource sharing. 2)
Channel SetC: C = { ¢(i,5): ¢(i,j) is a channel Computation or manipulation of simulation datautinell):

from logical process to logical procesg }. If process This sub-event routine conducts computation and manip-
i schedules events to procegsvia message passing, a ulates data associated with the computation, for example,
channel exists between processesnd j. This channel is data concerning what tracks are in the cache memory.
an input channel for procegsand an output channel for 3) Schedule an outgoing messageu(inelll): This sub-
processj. C contains all the channels in the model. event routine sends out an outgoing message. Each event
Logical Process Sef.P: L P consists of all the logical routine is composed afutinel, routinell, and routinelll;
processes. Logical proces$LP;) is a set represented by and consequently these sub-event routines share the same
LP,=(LVT, IC, OC, IMQ, OMQ, SQ, EV L) where: timestamp.

1) LVT (Local Virtual Time) is the local simulation clock Dynamic Rescheduling of Events For detailed sim-
that indicates how far the simulation of a process has ulation of complex systemgputinell is usually compu-
progressed. Th&. VT of process i is denoted asV'7T;. tationally intensive. If the data manipulated byutinell

2) IC (Input Channel) ={ ¢(i,4): input channel from does not influence event scheduling, the routine can be
process i to process }j rescheduled to execute afteutinel or routinelll of sub-

3) OC (Output Channel) H ¢(¢,) : output channel from sequent event routines. It is expected that the rescheduling
process i to process }j of sub-event routines can avoid the delay of generating

478

A Speculation-Based Approach for Performance and Dependability Analysis: A Case Study

simulate.LP;() {

simulation errors occur. The state of the simulation is rolled
back to right before the request with tmeutinells that

1 Schedule initial events t&'V L; i .
2 while (1) { don’t match the speculation. These are implemented based
3 if (next event available) on the rollback mechanism of the optimistic protocol.
4 process next event fron/V’L; Because errors in the track are not corrected, the 1/O
5 else /* EVL is empty */ d b ied . d i
6 if (speculative execution of the next event does request needs to be retried to retrieve correct data after
not exist) { the rollback.
7 generateP(8)
8 for (eachp(®) € P(&)) {
9 generate a new event ligV L’
containing p(&) 3.2.1 An Example
10 executep(é) and associated events
E ¥ A sequence of event routines that simulate service of a
13 if (& is received){ cache hit read_ request is adopted to il[ustrate the speculation
14 if (& is an anti-message) of'6(8) < LVT;) { for dependability. Three event routines are designed to
15 tf)e?tOVETtg(}f)‘e immediate checkpoint simulate the steps involved in servicing the cache hit read
efore) . .
16 it (& is an anti-message) request: 1) the tra(_:k _transm|SS|on from CM to CCICM,
17 cancel the messages I/ Q 2) the track transmission from CCICM to CCICI, and 3)
associated withe the track transmission from CCICI to CI.
18 else if (& is an 1/O request) . A . .
19 schedule events associated with this Basgd on the design crlt.ena for resphedu!mg via
/O request speculation, each event routine above is designed to
20 yoo) include three sub-event routines: ZIputinel releases
21 else if (TS(€) >= LVT;) { the data path to possible operations existing in parallel
22 it (match p(€), &) is true) { that are waiting for resources like CCICM, schedules the
23 finish execution triggered bg g_ . " !
not in the speculative execution next event routine associated with the same request, and
24 adopt the matche®V L’ advances the simulation time for the transmission, fault
;2 | injection, and error correction. 2putinell performs fault
> eise gche dulee injection for this transmission, error detection/correction
28 cancel speculative execution &f for data bytes in the track, and updating of the error
29 } statistics for the track. 3)outinelll sends out an 1/O
2(1) } response if there is one.
32 Send out an 1/O response or an[i.messages if any In F|g 5, the SCheduling of event routines for a read
cache hit request with no occurrence of other requests in
} between the start and end of this request is shown. Each

Figure 4: Speculation for Performance Algorithm

rectangular box on the axis indicates an event routine, and
the shaded block inside indicates the sub-event routines.
The axis indicates LVT. The length of the box indicates
the duration of event routine execution time.

messages to other LPs due to time-consunrimginell.
The execution of rescheduled sub-event routioetinell
can take place while the LP waits on incoming mes-
sages. Therefore, it is generally beneficial if dynamic I L liiit =
rescheduling is chosen for LPs with infrequent incoming

messages. Speculation facilitates the rescheduling, since ® winseecuaion

(a) Without Speculation:

transfer from CM to CCICM checking EDAC
transfer from CCICM to CCICI checking parity
transfer from CCICI to Cl checking FE_CRC

send out the I/O response

event scheduling may depend on the data. The speculation \"“*”s’e{rg’:gze??fo‘;:S%‘.Em\zhéék.‘g.%ii’?k?ng,,amy
for our dependability analysis is based on the observation || I™grereeaeamemece

il
that errors are most likely to be detected and corrected in S © © T
a reliable system.
[release data path, advance simulation time (routinel)

Correction Of Simulation Errors Introduced by [faultinjection, error detection/correction (routinell)
Speculation The simulation errors need to be corrected if g
the actual execution abutinell provides results different
than the speculation. In the simulation on the I/O node, Figure 5: A Read Cache Hit with No Other Parallel
if it turns out that errors in the track are not corrected, Requests

send out the I/O response

send out I/O responses (routinelll)

479

Huang, Kalbarczyk and lyer

Without speculation, the sub-event routines are not can see that the access time decreases as the cache size
rescheduled, as shown in Fig. 5(a). In Fig. 5(b), the increases. This is due to the fact that cache miss ratio
event routines are rescheduled based on the speculationdecreases as the cache size increases. The access time
that errors are correctedroutinel of each event routine using LRU strategy is always lower than RR strategy due
is rescheduled as early as possible ahead of all the otherto the same reason.
sub-event routines for this request. As the event routine at
t3 schedules a message sent out to the requested node, the
rescheduling makes it possible to send out the response RR -+
much earlier. 08T i

1 T T T T T T T

4 EXPERIMENTAL RESULTS

In this section, we present experimental results obtained
from the distributed speculation-based simulation of the
reliable cluster system described in Section 2. The cluster 0.2 n
system is characterized by performance and dependability
measures. Run-time performance of the speculation-based

0
2000 3000 4000 5000 6000 7000 8000 9000 10000

simulation employed to assess the cluster system perfor- Cache size (number of tracks)
mance is evaluated by comparing with sequential simulation
and Time Warp. Simulation experiments are conducted on Figure 6: Cache Miss Ratio

Sun Ultral-170 workstations interconnected by 100 Mb/sec
fast Ethernet. Message Passing Interface (MPI) is used
as the communication layer for supporting communication

1000 T
LRU —-—

between workstations running the simulation. - RR -+
800 [T i

4.1 Experiment Set-up

The input I/O request stream generated from the compute
node to the 1/O node is based on a real trace under a
real workload. Each I/O request in the trace specifies the
track accessed, the type of request, and the interarrival
time. Two types of requests are simulated, read and write
though; and the distribution is 85% reads, 15% write

through operations. For a write through operation, if it 000 30 7050 Soo0 e T s 9o 10000
is a cache hit, the data is written to the CM and disk Cache size (number of tracks)

array at the same time. After the data is written to the

disk, the channel interface is signaled of the completion Figure 7: Cache Subsystem Access Time
of the operation. The accessible tracks are 200,000 and

the cache memory size is 10,000 tracks.

Access Time (unit time: 0.1ms)

4.3 Run-time Performance of the Speculation-based
4.2 Performance Measures of Cache Subsystem Simulation

Performance measures are obtained using speculation forin this subsection, we evaluate the speculation for per-
performance. They include cache miss ratio and cache formance approach using the cluster system model, and
subsystem access time. Cache miss ratio is important for compare its run-time performance with sequential simula-
measuring cache performance. Two cache replacementtion and a traditional optimistic protocol, Time Warp of
algorithms are studied using our simulation, random distributed simulation. We obtain the sequential simulation
replacement (RR) and least recently used replacement performance numbers from our distributed simulator via
(LRU). The miss ratio is shown in Fig. 6. LRU performs mapping all the LPs onto the same workstation. For dis-
better than RR for the cache size simulated. The reason tributed simulation, speculation for performance and Time
is that it exploited locality of the data in the trace better Warp, the cluster system model with 6 nodes is partitioned
than RR. and mapped to 2, 4 and 6 workstations.

Cache subsystem access time is another performance Run-time performance numbers of the speculation
measure obtained from the simulation. From Fig. 7, we for performance approach, Time Warp and sequential

480

A Speculation-Based Approach for Performance and Dependability Analysis: A Case Study

Table 1: Performance of Sequential, Speculation for Performance, and Time Warp

Sequential| Speculation for Performance Time Warp
Number of Workstationg 1 2 [4] 6 2 | 4 | 6
Simulation Time (sec) 24,271 | 17,688 | 10,284 5,891 | 19,573| 14,710 8,956
Speedup 1 1.37 2.36 4.12 1.24 1.65| 271

simulation are recorded in Table 1. The table presents: As a result, these latency depends on the distribution of
1) Simulation time: the real execution time to complete 1/O requests to the 1/0 node. If a track is not frequently
the simulation of the simulated system, and 2) Speedup: accessed, then errors preserved in the track might remain
the ratio between the sequential simulation time and the latent for a long period of time.

simulation time obtained from a distributed simulation.

The results from Table 1 demonstrate significant 1 T Detecmn' Coverane o
speedup of speculation for performance over sequential 0.995 | Correction Coverage |
simulation. Our method yields as much as 69%(4.12/6) of ' A *
ideal speedup (If a model is distributed onto n workstations, 099 | 4
the ideal speedup is n) for the 6 workstation case. From
Table 1, we observe that, compared with the speculation for 0.985 |- .
performance approach, Time Warp offers less performance e
gain over sequential simulation. On 6 workstations, 0.98 |- Wﬁwwﬂ**” 7
45%(2.71/6) ideal speedup is observed compared with
sequential simulation. The reason that limits Time Warp’s 0-975 i
performance is that the computation intensive events due 0.97))

to detailed simulation of cache subsystem on the 1/0O node 1e+06 1e+07 1e+08 1e+09
. Global Virtual Time (unit time: 0.1 msec)
needs to execute after the arrival of I/O requests, thus,

leads to poor overlap of computation and communication. Figure 8: EDAC Coverage

4.4 Dependability Measures of Cache Subsystem

Dependability measures are obtained using speculative for E; .
dependability. They include: 1) error coverage of the 0.8 | %ﬂ T
EDAC code, reported in Fig. 8 and 2) error detection

latency of errors injected into various cache components, 06 L B1 i

reported in Fig. 9. The measures are used to assess
the error detection/correction mechanisms of the cache
subsystem.

Fig. 9 shows the error detection latency probability
density function for errors injected into bus 1 (B1), errors
into bus 2 (B2), errors into cache controller interface to

CM

B2 7
//\'\,‘ CClI

0.2 |

cache memory/disk (CCIl), and errors into cache memory 86+0 Tor2 1era 1016 1er8 1e+10
(CM) Error detectlon Iatency |S deflned to be the tlme B1, B2, CCl and CM Error Detection Latency (unit time: 0.1ms)
between when an error is first injected to a track and the) _) o

time when the error is detected, corrected or overwritten. Figure 9: Error Detection Latency Distribution

Results shown in Fig. 9 indicate several points. Type

B1 errors are mostly covered by parity. This latency is

very short due to the immediate parity checking for the 5 CONCLUSIONS

tracks transferred over bus 1. Those that escape parity

tend to be latent for a long time. Type B2, CCl, and CM We proposed new speculation-based, distributed simulation
errors have much longer latency. The reason is that their approaches for detailed evaluation of system behavior. The
detection/correction by EDAC or CRC are triggered by simulation methods are demonstrated and validated in the
read/write operations to the tracks containing these errors. case study that analyzes the performance and dependability

481

Huang, Kalbarczyk and lyer

of a cached RAID cluster system. Our experimental results ZBIGNIEW T. KALBARCZYK is currently Visiting
demonstrate that using speculation-based simulation, valid Research Assistant Professor at the Center for Reliable
and accurate performance and dependability measures carand High-Performance Computing in the University of
be obtained efficiently. Furthermore, run-time performance lllinois at Urbana-Champaign. He holds an MS in
results show that the speculation for performance approach Mechanical Engineering from the Technical University
contributes to a significant reduction in the simulation of Warsaw, an MS in Electronic Engineering and Ph.D.
time. in Computer Science from the Technical University of
Sofia, Bulgaria. His research interests include design,
implementation, and validation of dependable computing
ACKNOWLEDGMENTS systems including embedded systems and software-based,
fault-tolerant distributed systems.
This research was supported in part by the U.S. Defense
Advanced Research Projects Agency (DARPA) under RAVISHANKAR K. IYER holds a joint appointment
contract DABT63-94-C-0045. The content of this paper as Professor in the Departments of Electrical and Com-
does not necessarily reflect the position or policy of the puter Engineering, Computer Science, and the Coordinated
US government, and no official endorsement should be Science Laboratory at the University of Illinois at Urbana-
inferred. Champaign. He is also Co-Director of the Center for
Reliable and High-Performance Computing. Professor
lyer's research interests are in the area of reliable comput-
REFERENCES ing, measurement and evaluation, and automated design.
)] . Prof. lyer is an IEEE Computer Society Distinguished
Ferscha, A., and G. Chiola. 1995. Self-adaptive logical \jsjtor, an Associate Fellow of the American Institute for
processes: the probabilis_tic dis_tributed sim_ulation Pro- Aeronautics and Astronautics (AIAA), and a Fellow of the
_tocol. The 27th Annual Simulation Symposiur8—88. |EEE. In 1991, he received the Senior Humboldt Foundation
Fujimoto, R., and D. Nicol. 1992. State of the art in award for excellence in research and teaching. In 1993, he
parallel simulation.Proceedings of the 1992 Winter received the AIAA Information Systems Award and Medal
Simulation Conference246-254. for “fundamental and pioneering contributions towards the

Hamnes, D. O., and Anand Tripathi. 1996. A comparative design, evaluation, and validation of dependable aerospace
study of adaptive risk vs. adaptive aggressiveness con- computing systems.”

trol in parallel and distributed simulatioRroceedings

of the 29th Annual Simulation Symposjua0—96.
Horst, Robert W. 1995. Tnet: A reliable system area

network. |[EEE MICRQ 37-45.

Jefferson, D. R. 1985. Virtual timéACM Transaction on
Programming Language and Systew{3):404-425.
Karedla, P.,, J. S. Love, and B. G. Wherry. 1994. Caching
strategies to improve disk systetEEE Computer

38-46.

Menon, J., and M. Hartung. 1988. The IBM 3990 disk
cache.COMPCON'88 146-151.

Smith, A. J. 1985. Disk cache miss ratio analysis and
design consideration&CM Transactions on Computer
Systems\ol. 3, 161-203.

AUTHOR BIOGRAPHIES

YIQING HUANG is a Ph.D candidate in the Computer
Science Department and conducts research at the Center
for Reliable and High Performance Computing at the
University of Illinois at Urbana-Champaign. She received a
B.S. degree in Computer Science from Tsinghua University,
China and an M.S. degree in Computer Science from State
University of New York at Stony Brook.

482

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

