
Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EXPERIMENTS IN LOAD MIGRATION AND
DYNAMIC LOAD BALANCING IN SPEEDES

Linda F. Wilson and Wei Shen

Thayer School of Engineering
Dartmouth College

Hanover, NH 03755–8000 U.S.A.

-
he
e
e
ad
ad
l

e
e.
na
or
ge
ss
d
k.

n
nt
up
s

e.
-
y

or.
er
at

ng
Ps

flic
r
g
is

g

er
gh
ust
ly

cing
92,

In
for

tal
e

on
ad
ttle

e
ted

ion
ith
on
on
ors

ic
S.
ses
4

ped
lts
GI
ns
e
be
ABSTRACT

It is well known that the performance of a parallel discrete
event simulation (PDES) depends on the allocation of t
workload to processors. In particular, poor performanc
may be the result of an imbalance of the workload on th
processors. In earlier work, we examined automated lo
balancing techniques that statically allocated the worklo
based on prior run-time data. However, a good initia
distribution of the workload may result in a load imbalanc
if the characteristics of the simulation change over tim
Furthermore, some of the processors may gain exter
workloads at some point in time. Thus, there is a need f
dynamic load balancing methods that can adapt to chan
in the simulation or the system. In this paper, we discu
our experiments in dynamic load (object) migration an
load balancing using the SPEEDES simulation framewor

1 INTRODUCTION

The primary goal of parallel discrete-event simulatio
(PDES) is the fast execution of large discrete-eve
simulations. In particular, PDES attempts to gain speed
by distributing the simulation on multiple processor
executing in parallel. However, the distribution of the
workload has a significant impact on PDES performanc
If one processor is heavily-loaded while others are lightly
loaded or idle, the performance may be improved b
shifting some of the workload to a less-loaded process

In a typical PDES, components of the system und
examination are mapped into logical processes (LPs) th
can execute in parallel. The LPs are distributed amo
the physical processors, and communication between L
is accomplished by passing messages. There is a con
between distribution for load balance and distribution fo
low communication overhead. If LPs are distributed amon
the processors such that interprocessor communication
minimized, some processors may sit waiting for somethin
483
l

s

t

to do while others are overloaded with work. At the oth
extreme, a “perfectly-balanced” workload may induce hi
communication costs. Thus, load-balancing strategies m
find a compromise between distributing the work even
and minimizing communication costs.

Researchers have examined various load-balan
approaches for PDES (e.g. Nandy and Loucks 19
Reiher and Jefferson 1990, Schlagenhaft, et al 1995).
many cases, load-balancing algorithms are designed
a particular class of simulation problems (e.g. digi
circuit simulation). In other cases, application of th
load-balancing algorithm requires significant modificati
of the user’s simulation code. Our work focuses on lo
balancing for general-purpose simulations such that li
modification of the user’s code is required.

In earlier work (Wilson and Nicol 1995, 1996), w
described our experiences in developing an automa
load balancing strategy for the SPEEDES simulat
environment. In addition, we discussed experiments w
three different mapping algorithms used in conjuncti
with our automated scheme. That work concentrated
static methods for allocating the workload to the process
at the beginning of the execution.

In this paper, we discuss our initial work in dynam
load balancing using object (load) migration in SPEEDE
Section 2 introduces SPEEDES while Section 3 discus
dynamic load balancing and object migration. Section
presents three dynamic load balancing algorithms develo
for this work. Section 5 presents experimental resu
from executing the three algorithms on a network of S
workstations. Finally, Section 6 presents our conclusio
and directions for future work. Complete details of th
experiments and results summarized in this paper may
found in Shen (1998).

Wilson and Shen

ula
ted
Je
for
yn-
ing
be
ES

the
tion

for
ors

a
oes
cts
lem
are

ers
the
lting
tics

at a
hus
cing

tem
om
ach

istic
me
che
tem
cin

ad
g is
nly
wit
ctiv

ase
ns

tha
the
loa
to

ing

ad
as
(L)

on
lify
d

ng

use

le.

r-
d.

ss
hes.
ion

for

be
ad-
hile
he
sed
PU

kes
. If
ion,
ing
e of
ated
osts
tor.
the

all
and

ad
tart
e of
ing
eps
and
2 SPEEDES

SPEEDES (Synchronous Parallel Environment for Em
tion and Discrete-Event Simulation) is an object-orien
simulation environment that was developed at the
Propulsion Laboratory (Steinman 1992). Designed
distributed simulation, SPEEDES supports multiple s
chronization strategies (including Time Warp, Breath
Time Buckets, and Breathing Time Warp) that can
selected by the user at runtime. In addition, SPEED
provides a sequential simulation mode (with most of
parallel overhead removed) so that a particular simula
model can be executed serially or in parallel.

In SPEEDES, the user is completely responsible
the mapping of the simulation objects to the process
While SPEEDES gives the user freedom to choose
appropriate mapping, it is quite likely that the user d
not knowa priori how to choose a good allocation of obje
to processors. Most variations of the mapping prob
are computationally intractable, so optimal mappings
extremely difficult to obtain. Furthermore, many us
and potential users of PDES would prefer to let “
system” make such decisions, especially if the resu
performance is “good enough”. Finally, the characteris
of the simulation may change through time such th
static allocation does not yield good performance. T
this work examines automated dynamic load balan
through object migration in SPEEDES.

3 LOAD BALANCING AND LOAD MIGRATION

Dynamic load balancing policies use run-time sys
state information to make decisions to move work fr
one host to another during execution. This appro
can react to changing simulation or system character
and rebalance the workload if it fluctuates through ti
However, tradeoffs are involved since dynamic approa
can create additional overhead from collecting sys
state data, analyzing the data, and making load balan
decisions.

Load migration, sometimes calledprocess migrationor
object migration, is the mechanism used to move worklo
from one processor to another. While load balancin
concerned primarily with balancing the workload eve
among the processors, load migration is concerned
transferring load, and load balancing can be an obje
of load migration.

Load balancing and load migration attempt to incre
the performance of parallel and distributed simulatio
However, due to variations in systems, algorithms
work well in one distributed system may not obtain
same performance in another system. The dynamic
migration algorithms developed in this work attempt
484
-

t

.
n

,

s
.
s

g

h
e

.
t

d

improve the performance of SPEEDES simulations runn
on a network of workstations.

4 RCL DYNAMIC LOAD MIGRATION POLICIES

In this work, we developed three policies for dynamic lo
migration in SPEEDES. The algorithms are referred to
random (R), communication-based (C), and load-based
policies, or simply RCL policies.

Complexity is an important aspect of a load migrati
policy, and making reasonable assumptions can simp
the complexity of algorithms. The RCL dynamic loa
migration policies were designed using the followi
assumptions.

• The distributed system is heterogeneous.

• The hosts are non-dedicated; interactive users can
the machines at any time.

• The number of hosts is limited (e.g. 4 to 8).

• The fluctuation of the network bandwith is negligib

• Communication delays are constant.

• The migration cost of a piece of workload is propo
tional to the physical size of the migrating workloa

RCL policies use a two-level decision-making proce
that combines centralized and decentralized approac
A central coordinator (processor) makes global migrat
decisions and each sending processor is responsible
selecting the load to be migrated.

At Level I, a central coordinator is chosen to
the decision maker among all the hosts. During a lo
migration step, every host stops processing work w
the central coordinator collects load information. T
coordinator then analyzes the overall system load ba
on a pre-migration procedure which computes the C
utilization and load distribution in the system, and ma
a decision on whether a load migration is necessary
the system load status meets the criteria for migrat
the central coordinator starts redistributing the remain
load among the hosts based on the processing rat
each processor. The origin and destination of the migr
loads are determined and the corresponding sending h
and receiving hosts are notified by the central coordina
On the other hand, if load migration is not necessary,
central coordinator will broadcast this information to
other hosts. In this case, Level II actions are ignored
every host resumes processing its local events.

At Level II, once the sending hosts receive lo
migration notices from the central coordinator, they s
selecting the local load to be transferred based on on
the RCL algorithms. After loads are selected on all send
hosts, load migration takes place. Load migration st
between a pair of hosts include handshaking, packaging

Experiments in Load Migration and Dynamic Load Balancing in SPEEDES

gi
ion
the
an
in

ion

top
tio
tus

.,
DE

inc

ion
ad
tes
un
on
ess

o
r o

e
PU
er
p-

is
es

ing
all,
ai
the

os
ng

da
w

ur
ar

tal
e.
n
ce
ge
ad
g

g
n
is
t
s

or
g.
h

lly
g
al
d.
he
ll
nt
ve
ng
te

al

ts
.

o
g
r
be

y
n
f
es

e
d,
,

a
ts

ing
rk
sending data by the sender, and receiving and unpacka
data by the receiver. At the end of each load migrat
step, the receiving hosts broadcast and inform all o
hosts about the new locations of the migrated loads,
normal processing resumes on each host. The follow
subsections provide some of the details on the act
taken at each level.

4.1 Level I Actions

At the beginning of a load migration step, all hosts s
processing their local loads and each host gets informa
regarding the local load situation. The local load sta
information includes the following factors:

• Pending load: the total amount of pending load.

• CPU utilization: local processor CPU utilization, i.e
how much time does the processor spend on SPEE
applications.

• Processed load: the amount of load processed s
the last load migration.

Once the central coordinator collects load informat
from all the hosts, it starts analyzing the overall lo
condition for the whole system. Specifically, it compu
the following metrics: variance of CPU usage, total amo
of pending load, and variance of pending load distributi
These metrics will be used in the decision-making proc
The load in SPEEDES is defined to be the amount
processing time required to process a certain numbe
events.

• Variance of CPU usage: The variance of CPU usag
can be used as an indication of how the system C
are used. For example, if some hosts have sev
applications running in addition to the SPEEDES a
plication while others are idle or lightly-loaded, th
value can be large. The larger the value, the l
efficient the use of system resources.

• Total amount of pending load: The total amount of
pending load in the system is the sum of the pend
loads on each host. If the amount is too sm
load migration may not increase the performance g
since the migration overhead may easily outweigh
benefit of balancing a small load.

• Variance of pending load: The variance of pending
load is computed from the pending loads of each h
A large variance indicates a load imbalance amo
the hosts in the system. This is used as a secon
criterion when the variance of CPU utilization is belo
a threshold value.

These metrics are used in the pre-migration proced
to help determine whether a load migration is necess
485
ng

r
d
g
s

n

S

e

t
.
.

f
f

s
al

s

n

t.

ry

e
y.

The first step involves the comparison between the to
amount of pending load and its specified threshold valu
If the value is less than its threshold value, load migratio
is disabled for this step. If the value is greater, the varian
of CPU usage is calculated. If the variance of CPU usa
variance is greater than its corresponding threshold, lo
migration is enabled; otherwise, the variance of pendin
load distribution is calculated. If the variance of pendin
load distribution is greater than its threshold, load migratio
is enabled, otherwise, load migration is disabled for th
step. At the end of this phase, if load migration is no
enabled, the central coordinator will inform all other host
to continue processing their local loads.

Once load migration is enabled, the central coordinat
informs the other hosts that a load migration is pendin
It then decides which hosts will be senders and whic
ones will be receivers. Based on thestep processing rate
(i.e., the amount of load a host has processed loca
divided by the total amount of load processed amon
all processors since the last load migration), the centr
coordinator redistributes the total amount of pending loa
For example, if a host has processed 10 percent of t
total amount of load since the last migration step, it wi
get 10 percent of the total pending load after the curre
migration step. Consequently, those hosts which ha
processed more load will get a bigger share of the pendi
load. If no extra load is created and the processing ra
of each host stays constant, all hosts will finish their loc
loads at roughly the same time.

The central coordinator notifies each host what i
pending action is: sending, receiving, or no-action
Sending hosts will be informed of the amount of load t
be migrated and the IDs of their corresponding receivin
hosts, while receiving hosts will be notified about thei
corresponding sending hosts and the amount of load to
received.

Finally, the central coordinator completes its dut
and each host prepares for load migration if migratio
is enabled. That is, Level II actions will be required i
load migration is enabled. Otherwise, each host resum
processing its local load.

4.2 Level II Actions

Level II actions involve every host in the distributed
system. A certain amount of load is passed from on
host to another. Main actions involve selecting the loa
packaging the load, initiating migration, migrating the load
unpackaging the load, and updating global information.

Each logical process (LP) in SPEEDES consists of
number of simulation objects and an event queue. Even
are inserted into an object’s event queue in non-decreas
timestamp order. The load is defined as the total wo

Wilson and Shen

e.

a
r
d
e
d
g

h
o

e.

d
,

ch
c

,
il
d

is

d.

n
ts
e

s
h

e

y
-
d
p

t
d
t

e

g
d

r

d

t

e

d
s

)

for processing the pending events in the event queu
Since SPEEDES is modified for this work to enable
load migration, each type of event is associated with
complexity factor which ranges from 1 to 10. The use
must define the complexity factor for each user-define
event. The closer the complexity factor is to 10, the mor
time is required to process that event. The pending loa
of an object is computed based on the number of pendin
events of each type and the complexity factor for eac
event. For example, suppose a simulation object has tw
Type I events and three Type II events in its event queu
If the complexity factor is 4 for the Type I event and 8 for
the Type II event, the total pending load for this object is
(2*4) + (3*8), which equals 32.

Load migration is achieved by moving simulation
objects from one host to another. Three policies are use
to select local objects (loads). They are the random
communication-based, and load-based algorithms. Ea
sending host can use any of these three policies to sele
the objects to be migrated.

• Random: This approach is simple and easy to im-
plement. Given an amount of load to be migrated
the sending host selects local objects randomly unt
the combined load of the objects fulfills the requeste
amount. Advantages include easy implementation, low
overhead, and short selection times. However, th
approach may create extra residual dependency since
large number of objects may be selected and migrate

• Communication-based: In a SPEEDES simulation,
objects on each LP can communicate with objects o
other LPs to exchange data or schedule new even
The communication-based algorithm attempts to mov
those objects which communicate frequently with the
receiving host. During a simulation, each LP keep
track of the number of communications between eac
of its local objects and any of the other LPs. When
migration is enabled, the sending host chooses th
local objects that communicate most frequently with
the receiving hosts. This approach can potentiall
reduce the communication between two LPs. How
ever, the policy creates extra overhead during the loa
migration process. First of all, each host must kee
a communication lookup table to keep track of the
frequency of communication between each local objec
and all other hosts, and the table must be update
constantly. Secondly, in order to select the mos
appropriate objects, a sorting or searching algorithm
must be implemented and will create overhead if th
number of local objects is large.

• Load-based: The load-based policy attempts to mini-
mize the number of selected migrating objects. Durin
a migration step, simulation objects are sorted base
486
t

a

.

on their pending loads (computed based on the numbe
of each type of event and the complexity factor for
the event). The object with the largest pending load
is selected first. The implementation is similar to
the random approach with the addition of a sorting
routine. Because fewer objects are selected compare
to the other two approaches, this approach can reduce
the amount of selection time and the synchronization
overhead.

Before a simulation starts, the user chooses which objec
selection policy will be used. At the end of the object
selection step, each sending host has a list of objects to b
migrated. Details of the migration process can be found
in Shen (1998).

4.3 Implementation

The RCL dynamic load migration policies were imple-
mented in the SPEEDES distributed simulation framework
in an attempt to improve simulation performance. As dis-
cussed in Section 5, several experiments were conducte
to determine whether certain parameter values, such a
the migration interval, can potentially affect the execution
time of a SPEEDES simulation.

While SPEEDES supports several synchronization
strategies, our work uses the Breathing Time Warp (BTW)
protocol (Steinman 1993), which combines features of the
Time Warp and Breathing Time Buckets protocols. Each
cycle in the Breathing Time Warp algorithm starts out
using aggressive message-sending methods (Time Warp
but then makes a transition to risk-free message-sending
methods (Breathing Time Buckets). After the Breathing
Time Buckets stage, BTW computes the new global virtual
time (GVT). At this point, the memory allocated for state-
saving and rollback mechanisms is returned to the operating
system.

In terms of object migration, there are two significant
advantages to performing migration at the end of a GVT
cycle. First of all, messages are flushed out of the system
during the GVT calculation, so there is no danger that
a rollback that affects a just-migrated object will occur.
Secondly, only the variables and events associated with a
simulation object need to be migrated; the data associated
with rollbacks does not have to be migrated since the
rollback queue is cleared at the end of a GVT cycle.

5 EXPERIMENTAL RESULTS

Several experiments were conducted using a queuing
network application called Qnet. The purpose of the
experiments was to determine whether the RCL load
migration policies can reduce the total execution time
of a SPEEDES application under different computing

Experiments in Load Migration and Dynamic Load Balancing in SPEEDES

n
n
r

ts
as
ts
e
ue

t
e
h

.
d
ly
.

to
ch
ad

i
te

te
r
ts
ip
e.
o
n
to
an

r
r

s
e
a
ed
r
a
n
y

I
d

rs

nt
ts

d
L
g
m

e
ach
es
ent
d-
he
on
tice
ed
e
h
he
al

n
he
e
the
icy.
ion
to
d

ing
on
environments, and if so, which policy or policies will
produce the best performance. In addition, load migratio
statistics were recorded to give insight as to migratio
behavior in SPEEDES and provide some groundwork fo
future improvement.

The Qnet application was selected for the experimen
because it is a simple application that is commonly used
a PDES benchmark. The Qnet simulation model consis
of a certain number of server objects which provide som
user-defined service to the customers arriving in a que
associated with each server.

The experiments were conducted in three differen
computing environments, where the external loads on th
machines vary. In the first case (Experiment Set I), eac
host involved in SPEEDES is either idle or lightly-loaded
That is, the contention for the CPU is low. In the secon
case (Experiment Set II), one of the hosts is intentional
overloaded while the other hosts are lightly-loaded or idle
In the last case (Experiment Set III), each host is loaded
a different degree. For example, Host 1 has twice as mu
load as Host 0, while Host 2 has three times as much lo
as Host 0. The reason for choosing these environments
that these scenarios can represent the loads in the sys
at different times of day.

Within each computing environment, three separa
groups of experiments were conducted. A particula
parameter value was varied for each group of experimen
The first group of experiments investigated the relationsh
between the migration interval and the total execution tim
The second group of experiments investigated the impact
the CPU utilization threshold values on the total executio
time. The last group of experiments was needed
determine whether varying the load selection tolerance c
change the total execution time.

Speedups calculated at the end of each experiment we
used to determine how well each policy performed unde
various circumstances. For the first set of experiment
two speedups were computed. One of them was th
speedup based on the sequential execution time on
idle host while the other one was the speedup compar
to the regular (non-migrating) distributed execution. Fo
the second and third sets of experiments, one addition
speedup value was calculated by dividing the executio
time of the sequential execution on an overloaded host b
the parallel execution time with load migration.

The experiments were conducted on a network of SG
workstations connected by Ethernet. Specifically, we use
4 SGI O2 machines containing MIPS R5000 processo
running at a clock rate of 180 MHz. Half of the machines
had 128 MB of RAM while the other half had 64 MB of
RAM.

As discussed in Shen (1998), the three experime
sets provided similar results. Due to space constrain
487
s
m

.

f

e

,

n

l

,

only the results from Experiment Set III will be presente
here. Experiment Set III investigated how well the RC
dynamic load migration policies perform in a computin
environment in which each host in the distributed syste
is loaded with a different amount of external workload.

5.1 Effect of the Migration Interval

First, we examined the effect of the migration interval on th
execution time and corresponding speedup obtained by e
of the RCL policies. Figure 1 shows that the execution tim
increase as the migration interval increases. Thus, frequ
migrations yield better performance. Notice that the loa
based policy yields the fastest execution times while t
communication-based policy has the longest executi
times. Table 1 shows the corresponding speedups. No
that load migration makes a significant impact compar
to the parallel simulation without load migration. Despit
the initial load imbalance, the distributed execution wit
load migration is faster than the serial execution on t
lightly-loaded processor as long as the migration interv
is small.

Comm
Random
Load

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Migration Interval

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Figure 1: Execution Time vs. Migration Interval

This group of experiments showed that the migratio
interval has a great influence on the execution times. T
larger the migration interval, the longer the execution tim
and the smaller the speedup. Among the three policies,
best performance is achieved using the load-based pol
The highest speedups are obtained when the migrat
interval is less than 5, especially when compared
the execution time of the parallel version without loa
migration.

5.2 Effect of the CPU Variance Threshold

The second group of experiments examined whether vary
the threshold value of CPU variance had any influence

Wilson and Shen
Table 1: Speedup vs. Migration Interval

Lightly Heavily Parallel Without
Loaded Node Loaded Node Load Migration

Interval R C L R C L R C L

1 1.75 1.63 1.99 12.88 11.94 14.59 125.25 116.09 141.95
3 1.48 1.05 1.54 10.87 7.70 11.30 105.68 74.89 109.84
5 1.08 1.04 1.48 7.92 7.66 10.88 77.04 74.47 105.83
10 0.88 0.78 1.05 6.44 5.72 7.69 62.59 55.60 74.75
15 0.70 0.52 0.83 5.16 3.82 6.09 50.20 37.13 59.28
20 0.65 0.45 0.61 4.81 3.30 4.45 46.79 32.10 43.26
30 0.42 0.40 0.54 3.09 2.97 3.98 30.05 28.90 38.65
40 0.33 0.31 0.40 2.40 2.28 2.92 23.33 22.18 28.39
50 0.29 0.27 0.35 2.11 1.99 2.57 20.55 19.42 24.99
o
s
n
ll

d
e
e
c

e
y
t
.
o

ed

e

ts
L

m
at

of
e
lue
e

he
an

re
he
on
s

the execution times or corresponding speedups. As show
in Figure 2, changes in the CPU variance threshold had n
significant impact on the execution time. Table 2 confirm
that the initial load imbalance has a significant affect o
the speedup. Notice that the execution times are usua
smallest when the load-based policy is used.

Comm
Random
Load

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

CPU Variance Threshold

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Figure 2: Execution Time vs. CPU Variance Threshold

This group of experiments showed that the threshol
values of CPU variance do not change the execution tim
significantly. Though the execution times among the thre
policies are close, the performance of the load-based poli
is sometimes better than the other two.

5.3 Effect of the Load Selection Tolerance Threshold

The third group of experiments investigated whether th
threshold values of load selection tolerance have an
influence on the execution time in a computing environmen
in which hosts are loaded by different amounts of workload
Figure 3 shows that the load selection tolerance has n
significant effect on the execution time. However, the
488
n

y

y

results in Figure 3 and Table 3 confirm that the load-bas
policy yields faster execution times.

Comm
Random
Load

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

Load Selection Tolerance

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
on

ds
)

Figure 3: Execution Time vs. Load Selection Toleranc

This section described the three sets of experimen
that were used to test the effectiveness of the RC
dynamic load migration policies under various syste
load conditions. The experimental results have shown th
the migration frequency can affect the execution time
a simulation significantly; the larger the frequency, th
better the speedup. On the other hand, the threshold va
of CPU utilization variance and the threshold value of th
load selection tolerance play a less-important role. T
results indicate that the performance of SPEEDES c
be greatly improved with load migration, especially in
a computing environment in which some hosts are mo
loaded than the others. Among the three policies, t
load-based policy consistently yields the shortest executi
time. Overall, the benefit of load migration far exceed
the migration overhead.

Experiments in Load Migration and Dynamic Load Balancing in SPEEDES
Table 2: Speedup vs. CPU Variance Threshold

Lightly Heavily Parallel Without
Loaded Node Loaded Node Load Migration

CPU R C L R C L R C L
Var.

0.0001 1.25 1.04 1.14 9.21 7.66 8.40 89.51 74.48 81.71
0.0005 1.08 0.95 1.26 7.89 7.01 9.26 76.81 67.98 90.04
0.001 0.96 1.15 1.24 7.01 8.46 9.13 68.18 82.27 88.89
0.005 1.10 1.01 1.35 8.09 7.44 9.91 78.68 72.29 96.37
0.01 1.19 1.11 1.22 8.76 8.13 8.97 85.17 79.01 87.18
0.025 1.12 1.16 1.21 8.24 8.53 8.88 80.11 82.95 86.37
0.05 1.21 1.06 1.11 8.92 7.76 8.14 86.69 75.51 79.01
0.1 0.99 1.11 1.22 7.32 8.13 8.99 71.20 79.08 87.45
0.2 1.04 0.98 1.20 8.81 7.17 8.83 82.79 69.68 85.87
0.3 1.04 1.05 1.16 7.61 7.69 8.50 73.85 74.74 82.60
0.4 1.28 0.98 1.25 9.44 7.18 9.16 91.79 69.84 89.09

Table 3: Speedup vs. Load Selection Tolerance

Lightly Heavily Parallel Without
Loaded Node Loaded Node Load Migration

Load R C L R C L R C L
Tol.

0.01 1.48 1.28 1.39 10.85 9.40 10.18 105.45 91.38 98.95
0.025 1.29 1.39 1.57 9.46 10.23 11.50 91.97 99.48 111.79
0.05 1.26 1.46 1.57 9.23 10.73 11.56 89.74 104.29 112.38
0.1 1.31 1.25 1.44 9.64 9.20 10.59 93.72 89.49 102.99
0.2 1.23 1.17 1.65 9.06 8.59 12.14 88.11 83.48 117.94
0.3 1.33 1.21 1.48 9.76 8.89 10.84 94.93 86.45 105.40
0.4 1.31 1.21 1.42 9.62 8.86 10.45 104.01 86.14 101.61
0.5 1.38 1.31 1.68 10.11 9.58 12.34 98.39 93.18 119.93
n
n

ic
S
ts
te

c
s

s
n

t

s

.
t

d

s

d

.

6 CONCLUSIONS

The goals of this project were to enable load migratio
in SPEEDES and determine whether load migration ca
improve the performance of SPEEDES. The RCL dynam
load migration policies were designed for the SPEEDE
distributed simulation environment. Extensive experimen
using the Qnet simulation were conducted to investiga
the effectiveness of these three policies. The policie
were tested in three sets of experiments in which ea
experiment had a different distribution of external load
in the system.

The simulation results have shown that all the policie
can achieve speedups under various system load conditio
The results are summarized as follows:

• For all three policies, the execution time is shortes
when the migration interval is small and close to 1.

• The migration frequency can affect the execution time
significantly.
489
s
h

s.

• Compared to parallel execution without load migration,
significant speedups are achieved with load migration

• The load-based policy consistently gives the shortes
execution time.

The data and observations indicate that the benefits from
load migration far exceed the communication overhead an
migration cost incurred by the load migration process. The
results confirm that load migration can indeed improve the
performance of SPEEDES.

Future work is needed to further improve the robustnes
of dynamic load migration policies in SPEEDES. In
particular, additional modifications need to be made to
SPEEDES to allow the dynamic migration of complex
objects. SPEEDES does not currently allow the dynamic
creation and destruction of simulation objects, so we ha
to create “dummy” objects (with no initial workload) in
which to migrate active simulation objects.

The RCL load migration policies should be tested
on applications with more-complicated objects and events

and Shen

r-
ors

-

r,
er,
of
0

n

d
.

r.

h

n
.

i-
ee
Wilson

Preliminary testing indicates that the communication ove
head incurred by moving larger objects between process
is outweighed by the advantages of load balancing. How
ever, we would like to confirm this using larger “real-world”
simulations.

Finally, the algorithms should be tested on a large
heterogeneous network of workstations. As stated earli
these algorithms were designed for small numbers
hosts, but we plan to test them on a network of up to 2
workstations to determine their scalability.

REFERENCES

Nandy, B., and W. Loucks. 1992. An Algorithm for Parti-
tioning and Mapping Conservative Parallel Simulatio
onto Multicomputers.Proceedings of the 6th Workshop
on Parallel and Distributed Simulation (PADS ’92),
pp. 139–146.

Reiher, P. L., and D. Jefferson. 1990. Dynamic Loa
Management in the Time Warp Operating System
Transactions of the Society for Computer Simulation,
7(2):91–120.

Schlagenhaft, R., M. Ruhwandl, C. Sporrer, and H. Baue
1995. Dynamic Load Balancing of a Multi-Cluster
Simulator on a Network of Workstations.Proceedings
of the 9th Workshop on Parallel and Distributed
Simulation (PADS ‘95), pp. 175–180.

Shen, W. 1998. Load Migration Policies in Distributed
Simulation Using SPEEDES, MS Thesis, Dartmout
College, Hanover, New Hampshire.

Steinman, J. 1992. SPEEDES: A Multiple-Synchronizatio
Environment for Parallel Discrete-Event Simulation
International Journal in Computer Simulation, 2(3):
251–286.

Steinman, J. 1993. Breathing Time Warp.Proceedings
of the 1993 Workshop on Parallel and Distributed
Simulation PADS’93, pp. 109-118.

Wilson, L. F., and D. M. Nicol. 1995. Automated Load
Balancing in SPEEDES.Proceedings of the 1995
Winter Simulation Conference, pp 590–596.

Wilson, L. F., and D. M. Nicol. 1996. Experiments
in Automated Load Balancing.Proceedings of the
10th Workshop on Parallel and Distributed Simulation
(PADS’96), pp 4-11.

AUTHOR BIBLIOGRAPHIES

LINDA F. WILSON is the Clare Boothe Luce Assistant
Professor of Engineering in the Thayer School of Eng
neering at Dartmouth College. She received her BS degr
from Duke University and MSE and PhD degrees from
the University of Texas at Austin.
490
WEI SHEN is an I/T Specialist at IBM in Waltham,
Massachusetts. He received his BS degree from the
University of Massachusetts at Amherst and his MS degree
from Dartmouth College.

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

