Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

EXPERIMENTS IN LOAD MIGRATION AND
DYNAMIC LOAD BALANCING IN SPEEDES

Linda F. Wilson and Wei Shen

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755-8000 U.S.A.

ABSTRACT to do while others are overloaded with work. At the other
extreme, a “perfectly-balanced” workload may induce high
It is well known that the performance of a parallel discrete- communication costs. Thus, load-balancing strategies must
event simulation (PDES) depends on the allocation of the find a compromise between distributing the work evenly
workload to processors. In particular, poor performance and minimizing communication costs.
may be the result of an imbalance of the workload on the
processors. In earlier work, we examined automated load
balancing techniques that statically allocated the workload
based on prior run-time data. However, a good initial
distribution of the workload may result in a load imbalance
if the characteristics of the simulation change over time.
Furthermore, some of the processors may gain external
workloads at some point in time. Thus, there is a need for
dynamic load balancing methods that can adapt to changes
in the simulation or the system. In this paper, we discuss
our experiments in dynamic load (object) migration and
load balancing using the SPEEDES simulation framework.

Researchers have examined various load-balancing
approaches for PDES (e.g. Nandy and Loucks 1992,
Reiher and Jefferson 1990, Schlagenhaft, et al 1995). In
many cases, load-balancing algorithms are designed for
a particular class of simulation problems (e.g. digital
circuit simulation). In other cases, application of the
load-balancing algorithm requires significant modification
of the user’'s simulation code. Our work focuses on load
balancing for general-purpose simulations such that little
modification of the user’s code is required.

In earlier work (Wilson and Nicol 1995, 1996), we
described our experiences in developing an automated
load balancing strategy for the SPEEDES simulation
environment. In addition, we discussed experiments with
three different mapping algorithms used in conjunction
with our automated scheme. That work concentrated on
static methods for allocating the workload to the processors
at the beginning of the execution.

1 INTRODUCTION

The primary goal of parallel discrete-event simulation
(PDES) is the fast execution of large discrete-event
simulations. In particular, PDES attempts to gain speedup
by distributing the simulation on multiple processors
executing in parallel. However, the distribution of the
workload has a significant impact on PDES performance.
If one processor is heavily-loaded while others are lightly-
loaded or idle, the performance may be improved by In this paper, we discuss our initial work in dynamic
shifting some of the workload to a less-loaded processor. load balancing using object (load) migration in SPEEDES.

In a typical PDES, components of the system under Section 2 introduces SPEEDES while Section 3 discusses
examination are mapped into logical processes (LPs) that dynamic load balancing and object migration. Section 4
can execute in parallel. The LPs are distributed among presents three dynamic load balancing algorithms developed
the physical processors, and communication between LPsfor this work. Section 5 presents experimental results
is accomplished by passing messages. There is a conflictfrom executing the three algorithms on a network of SGI
between distribution for load balance and distribution for workstations. Finally, Section 6 presents our conclusions
low communication overhead. If LPs are distributed among and directions for future work. Complete details of the
the processors such that interprocessor communication is experiments and results summarized in this paper may be
minimized, some processors may sit waiting for something found in Shen (1998).

483

Wilson and Shen

2 SPEEDES

SPEEDES (Synchronous Parallel Environment for Emula-
tion and Discrete-Event Simulation) is an object-oriented
simulation environment that was developed at the Jet
Propulsion Laboratory (Steinman 1992). Designed for
distributed simulation, SPEEDES supports multiple syn-
chronization strategies (including Time Warp, Breathing
Time Buckets, and Breathing Time Warp) that can be
selected by the user at runtime. In addition, SPEEDES
provides a sequential simulation mode (with most of the
parallel overhead removed) so that a particular simulation
model can be executed serially or in parallel.

In SPEEDES, the user is completely responsible for
the mapping of the simulation objects to the processors.
While SPEEDES gives the user freedom to choose an
appropriate mapping, it is quite likely that the user does
not knowa priori how to choose a good allocation of objects
to processors. Most variations of the mapping problem
are computationally intractable, so optimal mappings are
extremely difficult to obtain. Furthermore, many users
and potential users of PDES would prefer to let “the
system” make such decisions, especially if the resulting
performance is “good enough”. Finally, the characteristics
of the simulation may change through time such that a
static allocation does not yield good performance. Thus,
this work examines automated dynamic load balancing
through object migration in SPEEDES.

3 LOAD BALANCING AND LOAD MIGRATION

Dynamic load balancing policies use run-time system
state information to make decisions to move work from
one host to another during execution. This approach
can react to changing simulation or system characteristics
and rebalance the workload if it fluctuates through time.
However, tradeoffs are involved since dynamic approaches
can create additional overhead from collecting system

improve the performance of SPEEDES simulations running
on a network of workstations.

4 RCL DYNAMIC LOAD MIGRATION POLICIES

In this work, we developed three policies for dynamic load
migration in SPEEDES. The algorithms are referred to as
random (R), communication-based (C), and load-based (L)
policies, or simply RCL policies.

Complexity is an important aspect of a load migration
policy, and making reasonable assumptions can simplify
the complexity of algorithms. The RCL dynamic load
migration policies were designed using the following
assumptions.

e The distributed system is heterogeneous.

The hosts are non-dedicated; interactive users can use
the machines at any time.

The number of hosts is limited (e.g. 4 to 8).
The fluctuation of the network bandwith is negligible.
Communication delays are constant.

The migration cost of a piece of workload is propor-
tional to the physical size of the migrating workload.

RCL policies use a two-level decision-making process
that combines centralized and decentralized approaches.
A central coordinator (processor) makes global migration
decisions and each sending processor is responsible for
selecting the load to be migrated.

At Level I, a central coordinator is chosen to be
the decision maker among all the hosts. During a load-
migration step, every host stops processing work while
the central coordinator collects load information. The
coordinator then analyzes the overall system load based
on a pre-migration procedure which computes the CPU
utilization and load distribution in the system, and makes
a decision on whether a load migration is necessary. If
the system load status meets the criteria for migration,

state data, analyzing the data, and making load balancing the central coordinator starts redistributing the remaining

decisions.

Load migration, sometimes callgdocess migratioror
object migration is the mechanism used to move workload
from one processor to another. While load balancing is
concerned primarily with balancing the workload evenly
among the processors, load migration is concerned with
transferring load, and load balancing can be an objective
of load migration.

Load balancing and load migration attempt to increase
the performance of parallel and distributed simulations.
However, due to variations in systems, algorithms that
work well in one distributed system may not obtain the
same performance in another system. The dynamic load
migration algorithms developed in this work attempt to

484

load among the hosts based on the processing rate of
each processor. The origin and destination of the migrated
loads are determined and the corresponding sending hosts
and receiving hosts are notified by the central coordinator.
On the other hand, if load migration is not necessary, the
central coordinator will broadcast this information to all
other hosts. In this case, Level Il actions are ignored and
every host resumes processing its local events.

At Level Il, once the sending hosts receive load
migration notices from the central coordinator, they start
selecting the local load to be transferred based on one of
the RCL algorithms. After loads are selected on all sending
hosts, load migration takes place. Load migration steps
between a pair of hosts include handshaking, packaging and

Experiments in Load Migration and Dynamic Load Balancing in SPEEDES

sending data by the sender, and receiving and unpackagingThe first step involves the comparison between the total
data by the receiver. At the end of each load migration amount of pending load and its specified threshold value.
step, the receiving hosts broadcast and inform all other If the value is less than its threshold value, load migration
hosts about the new locations of the migrated loads, and is disabled for this step. If the value is greater, the variance
normal processing resumes on each host. The following of CPU usage is calculated. If the variance of CPU usage
subsections provide some of the details on the actions variance is greater than its corresponding threshold, load

taken at each level.

4.1 Level | Actions

At the beginning of a load migration step, all hosts stop
processing their local loads and each host gets information
regarding the local load situation. The local load status
information includes the following factors:

e Pending load: the total amount of pending load.

e CPU utilization: local processor CPU utilization, i.e.,

how much time does the processor spend on SPEEDES (i.e.

applications.

the last load migration.

Once the central coordinator collects load information
from all the hosts, it starts analyzing the overall load
condition for the whole system. Specifically, it computes
the following metrics: variance of CPU usage, total amount
of pending load, and variance of pending load distribution.
These metrics will be used in the decision-making process.
The load in SPEEDES is defined to be the amount of
processing time required to process a certain humber of
events.

Variance of CPU usageThe variance of CPU usage
can be used as an indication of how the system CPUs
are used. For example, if some hosts have several
applications running in addition to the SPEEDES ap-
plication while others are idle or lightly-loaded, this
value can be large. The larger the value, the less
efficient the use of system resources.

Total amount of pending loadThe total amount of
pending load in the system is the sum of the pending
loads on each host. If the amount is too small,
load migration may not increase the performance gain
since the migration overhead may easily outweigh the
benefit of balancing a small load.

Variance of pending load The variance of pending
load is computed from the pending loads of each host.
A large variance indicates a load imbalance among

migration is enabled; otherwise, the variance of pending
load distribution is calculated. If the variance of pending
load distribution is greater than its threshold, load migration
is enabled, otherwise, load migration is disabled for this
step. At the end of this phase, if load migration is not
enabled, the central coordinator will inform all other hosts
to continue processing their local loads.

Once load migration is enabled, the central coordinator
informs the other hosts that a load migration is pending.
It then decides which hosts will be senders and which
ones will be receivers. Based on thtep processing rate
the amount of load a host has processed locally
divided by the total amount of load processed among

Processed load: the amount of load processed since all processors since the last load migration), the central

coordinator redistributes the total amount of pending load.
For example, if a host has processed 10 percent of the
total amount of load since the last migration step, it will
get 10 percent of the total pending load after the current
migration step. Consequently, those hosts which have
processed more load will get a bigger share of the pending
load. If no extra load is created and the processing rate
of each host stays constant, all hosts will finish their local
loads at roughly the same time.

The central coordinator notifies each host what its
pending action is: sending, receiving, or no-action.
Sending hosts will be informed of the amount of load to
be migrated and the IDs of their corresponding receiving
hosts, while receiving hosts will be notified about their
corresponding sending hosts and the amount of load to be
received.

Finally, the central coordinator completes its duty
and each host prepares for load migration if migration
is enabled. That is, Level Il actions will be required if
load migration is enabled. Otherwise, each host resumes
processing its local load.

4.2 Level Il Actions

Level Il actions involve every host in the distributed
system. A certain amount of load is passed from one
host to another. Main actions involve selecting the load,

the hosts in the system. This is used as a secondary Packaging the load, initiating migration, migrating the load,

criterion when the variance of CPU utilization is below
a threshold value.

unpackaging the load, and updating global information.
Each logical process (LP) in SPEEDES consists of a
number of simulation objects and an event queue. Events

These metrics are used in the pre-migration procedure are inserted into an object’s event queue in non-decreasing
to help determine whether a load migration is necessary. timestamp order. The load is defined as the total work

485

Wilson and Shen

for processing the pending events in the event queue.
Since SPEEDES is modified for this work to enable
load migration, each type of event is associated with a
complexity factor which ranges from 1 to 10. The user
must define the complexity factor for each user-defined
event. The closer the complexity factor is to 10, the more
time is required to process that event. The pending load
of an object is computed based on the number of pending
events of each type and the complexity factor for each
event. For example, suppose a simulation object has two
Type | events and three Type Il events in its event queue.
If the complexity factor is 4 for the Type | event and 8 for
the Type Il event, the total pending load for this object is
(2*4) + (3*8), which equals 32.

Load migration is achieved by moving simulation
objects from one host to another. Three policies are used
to select local objects (loads). They are the random,
communication-based, and load-based algorithms.

the objects to be migrated.

Random This approach is simple and easy to im-

plement. Given an amount of load to be migrated,
the sending host selects local objects randomly until
the combined load of the objects fulfills the requested
amount. Advantages include easy implementation, low
overhead, and short selection times. However, this
approach may create extra residual dependency since
large number of objects may be selected and migrated.

Communication-based In a SPEEDES simulation,
objects on each LP can communicate with objects on
other LPs to exchange data or schedule new events.
The communication-based algorithm attempts to move
those objects which communicate frequently with the
receiving host. During a simulation, each LP keeps
track of the number of communications between each
of its local objects and any of the other LPs. When
migration is enabled, the sending host chooses the
local objects that communicate most frequently with
the receiving hosts. This approach can potentially
reduce the communication between two LPs. How-
ever, the policy creates extra overhead during the load
migration process. First of all, each host must keep

Each
sending host can use any of these three policies to select

on their pending loads (computed based on the number
of each type of event and the complexity factor for
the event). The object with the largest pending load
is selected first. The implementation is similar to
the random approach with the addition of a sorting
routine. Because fewer objects are selected compared
to the other two approaches, this approach can reduce
the amount of selection time and the synchronization
overhead.

Before a simulation starts, the user chooses which object
selection policy will be used. At the end of the object
selection step, each sending host has a list of objects to be
migrated. Details of the migration process can be found
in Shen (1998).

4.3 Implementation

The RCL dynamic load migration policies were imple-
mented in the SPEEDES distributed simulation framework
in an attempt to improve simulation performance. As dis-
cussed in Section 5, several experiments were conducted
to determine whether certain parameter values, such as
the migration interval, can potentially affect the execution
time of a SPEEDES simulation.

While SPEEDES supports several synchronization
strategies, our work uses the Breathing Time Warp (BTW)
protocol (Steinman 1993), which combines features of the

ime Warp and Breathing Time Buckets protocols. Each

cycle in the Breathing Time Warp algorithm starts out
using aggressive message-sending methods (Time Warp)
but then makes a transition to risk-free message-sending
methods (Breathing Time Buckets). After the Breathing
Time Buckets stage, BTW computes the new global virtual
time (GVT). At this point, the memory allocated for state-
saving and rollback mechanisms is returned to the operating
system.

In terms of object migration, there are two significant
advantages to performing migration at the end of a GVT
cycle. First of all, messages are flushed out of the system
during the GVT calculation, so there is no danger that
a rollback that affects a just-migrated object will occur.
Secondly, only the variables and events associated with a
simulation object need to be migrated; the data associated

a communication lookup table to keep track of the with rollbacks does not have to be migrated since the

frequency of communication between each local object
and all other hosts, and the table must be updated
constantly. Secondly, in order to select the most
appropriate objects, a sorting or searching algorithm
must be implemented and will create overhead if the
number of local objects is large.

Load-based The load-based policy attempts to mini-
mize the number of selected migrating objects. During
a migration step, simulation objects are sorted based

486

rollback queue is cleared at the end of a GVT cycle.

5 EXPERIMENTAL RESULTS

Several experiments were conducted using a queuing
network application called Qnet. The purpose of the
experiments was to determine whether the RCL load
migration policies can reduce the total execution time
of a SPEEDES application under different computing

Experiments in Load Migration and Dynamic Load Balancing in SPEEDES

environments, and if so, which policy or policies will
produce the best performance. In addition, load migration
statistics were recorded to give insight as to migration
behavior in SPEEDES and provide some groundwork for
future improvement.

The Qnet application was selected for the experiments
because it is a simple application that is commonly used as
a PDES benchmark. The Qnet simulation model consists
of a certain number of server objects which provide some
user-defined service to the customers arriving in a queue
associated with each server.

The experiments were conducted in three different
computing environments, where the external loads on the
machines vary. In the first case (Experiment Set 1), each
host involved in SPEEDES is either idle or lightly-loaded.
That is, the contention for the CPU is low. In the second
case (Experiment Set Il), one of the hosts is intentionally
overloaded while the other hosts are lightly-loaded or idle.
In the last case (Experiment Set Ill), each host is loaded to
a different degree. For example, Host 1 has twice as much
load as Host 0, while Host 2 has three times as much load
as Host 0. The reason for choosing these environments is

that these scenarios can represent the loads in the system

at different times of day.

Within each computing environment, three separate
groups of experiments were conducted. A particular
parameter value was varied for each group of experiments.
The first group of experiments investigated the relationship
between the migration interval and the total execution time.
The second group of experiments investigated the impact of
the CPU utilization threshold values on the total execution
time. The last group of experiments was needed to
determine whether varying the load selection tolerance can
change the total execution time.

Speedups calculated at the end of each experiment were
used to determine how well each policy performed under
various circumstances. For the first set of experiments,
two speedups were computed. One of them was the
speedup based on the sequential execution time on an
idle host while the other one was the speedup compared
to the regular (non-migrating) distributed execution. For
the second and third sets of experiments, one additional
speedup value was calculated by dividing the execution
time of the sequential execution on an overloaded host by
the parallel execution time with load migration.

The experiments were conducted on a network of SGI
workstations connected by Ethernet. Specifically, we used
4 SGI 02 machines containing MIPS R5000 processors
running at a clock rate of 180 MHz. Half of the machines
had 128 MB of RAM while the other half had 64 MB of
RAM.

As discussed in Shen (1998), the three experiment
sets provided similar results. Due to space constraints,

487

only the results from Experiment Set Il will be presented
here. Experiment Set Ill investigated how well the RCL
dynamic load migration policies perform in a computing
environment in which each host in the distributed system
is loaded with a different amount of external workload.

5.1 Effect of the Migration Interval

First, we examined the effect of the migration interval on the
execution time and corresponding speedup obtained by each
of the RCL policies. Figure 1 shows that the execution times
increase as the migration interval increases. Thus, frequent
migrations yield better performance. Notice that the load-
based policy yields the fastest execution times while the
communication-based policy has the longest execution
times. Table 1 shows the corresponding speedups. Notice
that load migration makes a significant impact compared
to the parallel simulation without load migration. Despite
the initial load imbalance, the distributed execution with
load migration is faster than the serial execution on the
lightly-loaded processor as long as the migration interval

is small.
250

200

150

100

+ Comm
o Random
* Load

Total Execution Time (seconds)

a1
o

20 25 30 35 40 45

Migration Interval

10 15

5

0 50

Figure 1. Execution Time vs. Migration Interval

This group of experiments showed that the migration
interval has a great influence on the execution times. The
larger the migration interval, the longer the execution time
and the smaller the speedup. Among the three policies, the
best performance is achieved using the load-based policy.
The highest speedups are obtained when the migration
interval is less than 5, especially when compared to
the execution time of the parallel version without load
migration.

5.2 Effect of the CPU Variance Threshold

The second group of experiments examined whether varying
the threshold value of CPU variance had any influence on

Wilson and Shen

Table 1: Speedup vs. Migration Interval

Lightly Heavily Parallel Without
Loaded Node Loaded Node Load Migration
interval | R | C [L R [Cc | L R | ¢ | L
1 1.75| 1.63 | 1.99 | 12.88| 11.94 | 1459 || 125.25| 116.09| 141.95
3 148 | 1.05| 1.54| 10.87| 7.70 | 11.30 || 105.68| 74.89 | 109.84
5 1.08| 1.04 | 1.48| 7.92 | 7.66 | 10.88| 77.04 | 74.47 | 105.83

10 0.88| 0.78 | 1.05| 6.44 | 572 | 7.69 62.59 | 55.60 | 74.75
15 0.70| 052 | 0.83 || 5.16 | 3.82 | 6.09 50.20 | 37.13 | 59.28
20 0.65| 045| 0.61 | 481 | 3.30 | 4.45 46.79 | 32.10 | 43.26
30 0.42| 040 | 054 | 3.09 | 297 | 3.98 30.05 | 28.90 | 38.65
40 0.33| 0.31| 040 | 2.40 | 2.28 | 2.92 23.33 | 22.18 | 28.39
50 0.29| 0.27| 035 2.11 | 1.99 | 257 20.55 | 19.42 | 24.99

the execution times or corresponding speedups. As shown results in Figure 3 and Table 3 confirm that the load-based
in Figure 2, changes in the CPU variance threshold had no policy yields faster execution times.

significant impact on the execution time. Table 2 confirms
that the initial load imbalance has a significant affect on
the speedup. Notice that the execution times are usually
smallest when the load-based policy is used.

601 N

@
2
Q
&
- 60 2 40 g
o) £
= =
o c
g 50 2 30t 1
© 3
£ <
= 40 B w
'_
5 IS 20¢ + Comm 1
% 30+ J = o Random
% 10t x Load 1
x
L
s 20+ + Comm 1
o I I I I I | I | I
= o Random 06 —0.056 01 015 02 025 03 035 04 045 05
10 - * Load 1 Load Selection Tolerance
0 I I I I I I I
0 005 01 015 02 025 03 035 04 Figure 3: Execution Time vs. Load Selection Tolerance
CPU Variance Threshold
Figure 2: Execution Time vs. CPU Variance Threshold This section described the three sets of experiments

that were used to test the effectiveness of the RCL
This group of experiments showed that the threshold dynamic load migration policies under various system
values of CPU variance do not change the execution time load conditions. The experimental results have shown that
significantly. Though the execution times among the three the migration frequency can affect the execution time of
policies are close, the performance of the load-based policy a simulation significantly; the larger the frequency, the
is sometimes better than the other two. better the speedup. On the other hand, the threshold value
of CPU utilization variance and the threshold value of the
5.3 Effect of the Load Selection Tolerance Threshold load se[ect_ion tolerance play a less-important role. The
results indicate that the performance of SPEEDES can
The third group of experiments investigated whether the be greatly improved with load migration, especially in
threshold values of load selection tolerance have any a computing environment in which some hosts are more
influence on the execution time in a computing environment loaded than the others. Among the three policies, the
in which hosts are loaded by different amounts of workload. load-based policy consistently yields the shortest execution
Figure 3 shows that the load selection tolerance has no time. Overall, the benefit of load migration far exceeds
significant effect on the execution time. However, the the migration overhead.

488

Experiments in Load Migration and Dynamic Load Balancing in SPEEDES

Table 2: Speedup vs. CPU Variance Threshold

Lightly Heavily Parallel Without
Loaded Node Loaded Node Load Migration
CPU R C L R C L R C L

Var.

0.0001 1.25| 1.04| 1.14| 9.21 | 7.66 | 8.40 || 89.51 | 74.48| 81.71
0.0005| 1.08| 0.95| 1.26|| 7.89 | 7.01| 9.26 | 76.81 | 67.98 | 90.04
0.001 || 096 | 1.15| 1.24 || 7.01| 8.46 | 9.13 | 68.18 | 82.27 | 88.89
0.005 || 1.10| 1.01| 1.35|| 8.09| 7.44 | 9.91 || 78.68 | 72.29 | 96.37
0.01 119|111 122 876 | 8.13| 897 || 85.17| 79.01| 87.18
0.025 || 1.12| 1.16 | 1.21 || 8.24 | 8.53 | 8.88 | 80.11| 82.95| 86.37
0.05 121|106 | 1.11| 892 | 7.76 | 8.14 || 86.69 | 75.51| 79.01
0.1 099|111 122 7.32| 8.13| 899 | 71.20| 79.08 | 87.45
0.2 1.04| 098 | 1.20| 8.81| 7.17 | 8.83 || 82.79 | 69.68 | 85.87
0.3 1.04| 1.05| 1.16| 7.61| 7.69| 850 || 73.85| 74.74 | 82.60
0.4 1.28| 098 | 1.25| 9.44| 7.18| 9.16 || 91.79| 69.84 | 89.09

Table 3: Speedup vs. Load Selection Tolerance

Lightly Heavily Parallel Without
Loaded Node Loaded Node Load Migration
Load R C L R C L R C L

Tol.

0.01 || 1.48| 1.28 | 1.39 || 10.85| 9.40 | 10.18 | 105.45| 91.38 | 98.95
0.025| 1.29| 1.39| 1.57| 9.46 | 10.23| 11.50 || 91.97 | 99.48 | 111.79
0.05 || 1.26 | 1.46| 1.57 || 9.23 | 10.73| 11.56 || 89.74 | 104.29| 112.38
0.1 131 1.25| 1.44| 9.64 | 9.20 | 10.59 || 93.72 | 89.49 | 102.99
0.2 123|117 | 1.65| 9.06 | 859 | 12.14| 88.11 | 83.48 | 117.94
0.3 133 | 121|148 9.76 | 8.89 | 10.84 || 94.93 | 86.45 | 105.40
0.4 131|121 1.42| 9.62 | 886 | 10.45| 104.01| 86.14 | 101.61
0.5 138| 1.31| 1.68 | 10.11| 9.58 | 12.34 || 98.39 | 93.18 | 119.93

6 CONCLUSIONS

Compared to parallel execution without load migration,

significant speedups are achieved with load migration.
e The load-based policy consistently gives the shortest

execution time.
The data and observations indicate that the benefits from
load migration far exceed the communication overhead and
migration cost incurred by the load migration process. The
results confirm that load migration can indeed improve the
performance of SPEEDES.

Future work is needed to further improve the robustness
of dynamic load migration policies in SPEEDES. In
particular, additional modifications need to be made to
‘'SPEEDES to allow the dynamic migration of complex
objects. SPEEDES does not currently allow the dynamic
creation and destruction of simulation objects, so we had
to create “dummy” objects (with no initial workload) in
which to migrate active simulation objects.

e The migration frequency can affect the execution times The RCL load migration policies should be tested
significantly. on applications with more-complicated objects and events.

The goals of this project were to enable load migration
in SPEEDES and determine whether load migration can
improve the performance of SPEEDES. The RCL dynamic
load migration policies were designed for the SPEEDES
distributed simulation environment. Extensive experiments
using the Qnet simulation were conducted to investigate
the effectiveness of these three policies. The policies
were tested in three sets of experiments in which each
experiment had a different distribution of external loads
in the system.

The simulation results have shown that all the policies
can achieve speedups under various system load conditions
The results are summarized as follows:

e For all three policies, the execution time is shortest
when the migration interval is small and close to 1.

489

Wilson and Shen

Preliminary testing indicates that the communication over- WEI SHEN is an I/T Specialist at IBM in Waltham,
head incurred by moving larger objects between processors Massachusetts. He received his BS degree from the
is outweighed by the advantages of load balancing. How- University of Massachusetts at Amherst and his MS degree
ever, we would like to confirm this using larger “real-world” from Dartmouth College.
simulations.

Finally, the algorithms should be tested on a larger,
heterogeneous network of workstations. As stated earlier,
these algorithms were designed for small numbers of
hosts, but we plan to test them on a network of up to 20
workstations to determine their scalability.

REFERENCES

Nandy, B., and W. Loucks. 1992. An Algorithm for Parti-
tioning and Mapping Conservative Parallel Simulation
onto MulticomputersProceedings of the 6th Workshop
on Parallel and Distributed Simulation (PADS ’'92)
pp. 139-146.

Reiher, P. L., and D. Jefferson. 1990. Dynamic Load
Management in the Time Warp Operating System.
Transactions of the Society for Computer Simulation
7(2):91-120.

Schlagenhaft, R., M. Ruhwandl, C. Sporrer, and H. Bauer.
1995. Dynamic Load Balancing of a Multi-Cluster
Simulator on a Network of WorkstationBroceedings
of the 9th Workshop on Parallel and Distributed
Simulation (PADS ‘95)pp. 175-180.

Shen, W. 1998. Load Migration Policies in Distributed
Simulation Using SPEEDES, MS Thesis, Dartmouth
College, Hanover, New Hampshire.

Steinman, J. 1992. SPEEDES: A Multiple-Synchronization
Environment for Parallel Discrete-Event Simulation.
International Journal in Computer Simulatipr2(3):
251-286.

Steinman, J. 1993. Breathing Time WarProceedings
of the 1993 Workshop on Parallel and Distributed
Simulation PADS’'93pp. 109-118.

Wilson, L. F., and D. M. Nicol. 1995. Automated Load
Balancing in SPEEDESProceedings of the 1995
Winter Simulation Conferenc@p 590-596.

Wilson, L. F, and D. M. Nicol. 1996. Experiments
in Automated Load BalancingProceedings of the
10th Workshop on Parallel and Distributed Simulation
(PADS'96) pp 4-11.

AUTHOR BIBLIOGRAPHIES

LINDA F. WILSON is the Clare Boothe Luce Assistant
Professor of Engineering in the Thayer School of Engi-
neering at Dartmouth College. She received her BS degree
from Duke University and MSE and PhD degrees from
the University of Texas at Austin.

490

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

