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ABSTRACT addition it has a lower cost and the potential to scale the
system to handle larger problem sizes. Problem size limited
We have taken a NIST molecular dynamics simulation by memory size is increasingly a computational bottleneck.
program (nd3, which was configured as a single sequential The current trend in parallel computing is towards clusters
process running on a CRAY C90 vector supercomputer, ancbf computer nodes that are either Symmetric
parallelized it to run in a distributed memory message Multiprocessors (SMPSs) or single processors. These clusters
passing environment. Since portability was a major concernare capable of supporting both shared memory (SM) and
during parallelization, we used the Message Passingdistributed memory (DM) programming paradigms,
Interface (MPI) standard. The features of MPI provide a although shared memory variants cost more or run more
basic set of interprocess communication primitives on manyslowly. Current clusters implement parallelism by using
architectures. The parallehd3 program has two basic commodity microprocessors interconnected with either
algorithms resulting in a MPMD (Multiple Program commodity or proprietary networks. Clusters are more
Multiple Data) structure, versus the more common SPMD scalable than SMPs alone, because networks scale bettel
(Single Program Multiple Data) structure, and has thethan buses in terms of aggregate bandwidth and number of
potential to exploit heterogeneous processing. For any givemodes.
number of nodes we have devised an equation to determine Integrated clusters are commercially available (e.g.,
the initial node allocation among these multiple programs SGI/Cray Origin 2000 and HP/CONVEX Exemplar). These
which  yields near optimal load balance. We also clusters have built a significant infrastructure between the
dynamically manage the load balance between processes tmicroprocessor and the memory hierarchy, as well as a
correct for run time variations and to achieve better superior interconnect, to enhance performance. Clusters
performance. We compare the performance of this MPMD built using commaodity PCs or workstations and commodity
parallel code run on a range of distributed memory LANs are emerging as an attractive and possibly low cost
machines (an IBM SP2, a cluster of Pentium Pros, and aalternative to traditional high performance distributed
cluster of SGI Indigo2s with the R10000 processor) againstprocessing on integrated clusters. The distributed memory
the original code performance on the Cray. In addition to paradigm for parallel computing is widely used and
better performance, the code on distributed memorystandardized interfaces such as MPI, see Pacheco (1997),
machines offers an ability to scale the problem size basechave enabled portability between clusters from different

upon the combined memory size of the host systems. manufacturers. An advantage of the MPI standard is that
different platforms can have their own optimized
1 INTRODUCTION implementations.

Using MPI enables the paralleld3 program to run, for
The NIST Cray C90 is a six processor vector example, on an SGI cluster, a Pentium cluster, the IBM
supercomputer, although operationally each processoriSP2, SGI Origin 2000, etc. The implementation of MPI
normally runs independent processing streams. Because it issed on the clusters was Ohio Supercomputer Center’s
an expensive resource it must be shared among a largeAM 6.1, see Burns et al. (1994). The shared memory
number of researchers, thus creating a critical resource wittparadigm will similarly benefit from the newly proposed
heavy demand. Distributed processing offers similar highOpen MP interface standard. Commodity clusters, as
performance computing through parallel processing; indescribed by Becker et al. (1995), are commonly based on
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the newer Intel Pentium processors which are capable offhe molecular state consists of the position, velocity and
significant computing power, although floating point orientation of the particles. Thed3 program computes the
performance is not strong. However, a main factor limiting interaction among all of the particles to obtain the resultant
performance often is the overhead of the message passinfprces on each particle. Based on this force, each patrticle is
communications network. Newer network technologies moved a distance corresponding to a time duration 9? 10
such as ATM and Fast Ethernet address this bottleneck.  seconds and given a new state. This cycle, called a step, is
NIST is investigating the benefits of both commercially repeated until the simulated time is reached. For example, if
integrated clusters and do-it-yourself commodity clusters.the simulated time is 2 sec, then 2XlIteps of the program
NIST has an IBM SP2 and an SGI Origin 2000. NIST has must be executed.
constructed a commodity cluster using an ATM (OC-3) Obtaining simulation results of relatively complex
LAN for the interconnect. This cluster consists of a number systems within a reasonable period of time requires (i)
of heterogeneous machines, among which is a subcluster ofufficient computer memory to hold the data describing the
8 SGI workstations, each powered by the R10000 processofsimulation and (i) sufficient computation cycles to
and a subcluster of 16 identical 200 MHz Pentium Pro complete the task in the time allocated. Sequential programs

based machines; see Figure 1. running on monolithic supercomputers (e.g., the C90) are
_ running out of both. Parallel computing can better
Connections 64 Port accommodate these requirements.
toOther | A1m The sequentiahd3program uses two input files:
Switches .
y Switch
ocs/ocl2 « md35: which defines the features of the problem, such
Ethernet as the number of molecules, the geometry of the

volume, the number of steps to compute, etc., and

ocs e md38: which provides the initial position and state of
each molecule.
19 Other 8 Node 16 Node Network
Heterogenous SGl Pentium Access The sequential program, whose flow chart is shown in
Nodes SubCluster | Subclustef | Node figure 2, begins by reading the md35 file to obtain the
problem description and the md38 file to obtain the initial
Figure 1: Block Diagram of the NIST ATM Cluster particle positions and energies. Then the main loop

executes two functionsgwald computes the long range
As part of this evaluation we selected a sequentialforces andvf2 computes the short range forces. These
molecular dynamics simulation code, calledi3 that was  forces are combined and a new position and energy is
running on the Cray. We redesigned it as a parallel codecomputed for each particle over the duration of the time
using MPI to allow portability among our cluster step. This main loop repeats until the simulated time is
architectures: the IBM SP2, the SGI subcluster and thereached. When the main loop completes, the position and
Pentium subcluster. The purpose here is to describe thenergy for each particle is written to an output file and the
parallel redesign and to compare the performance of theprogram terminates.
parallel code on our clusters against the sequential code on Theewald and vf2 functions are both based on a
N N
the Cray. double summation computatiorz z [ where N is
2 SEQUENTIAL md3 . o . .
the number of particles and; ps the interaction potential

Molecular dynamics simulation has become an importantbem’een particle i and j. By using the direetvald
summation method, the double sum efvald can be

tool for the study of the liquid state at the molecular level. ) ; . .
rearranged into a single sum, yielding a linear

Possible applications include the study of molecular films onal lexity f d Th ional
and the study of chromatographic separation mechanism computational complexity foewa e computationa

The md3 program, written in Fortran 77, computes the complexity forvf2 remains of order il We have verified

motion of molecules from Sangster and Dixon (1976) in a tN€S€ conjputatlor}{all corlnplﬁxmes dIU””g phrograr_n
cubic volume by calculating their interaction potential. This ]?xecutéon via a profiler tool whose results are shown in
calculation consists of: gure s.

» short range forces, including repulsion and Van Der

Waals terms, and
* long range coulombic forces.
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md3 Initialisation
Read md35 and md38 file

A
Find interacting
pairs of molecules

Repeat steps
as specified

Vf2 called 6 times

Figure 2: Flowchart of Sequentiad3Program

200

Table 1: Memory requirements as a function of Particles.

Particles (N)] Memory (MBytes)
216 2.8

1000 59.9

2000 239.9

3000 539.8

4000 959.8

5000 1499.7

This shows that the code is mostly vectorized and is running
at 170 MFLOPS. Nonethelegsd3is not taking significant
advantage of vertorization because of its low vector length
and low MIPS rating. A good vector code for the CRAY
C90 can achieve 600 MFLOPS. In comparison the
execution of sequential md3 on a 200 MHz Pentium PRO,
on one processor of the IBM SP2, and on an SGI R10000
based workstation, is slower than on the CRAY C90. See

figure 4, below.
180
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Figure 3: Measured Execution Timesvii2 andewald
5 i E—
Not only doesvf2 require the bulk of the computation,
it also uses the most memory. The memory requirements fon 0

vf2 are 120*N*(N-1)/2 bytes for N particles. Table 1 shows

how quickly the memory requirement increases.

To determine if the sequentiadd3 program is a true

high performance vector code, we used the Cray C90
Hardware Performance Monitor (hpm) tool, see Morreale

SP2 Pentium SGI Cray

Figure 4: Comparison of Sequentiati3Execution Times
on Different Computers for 10 Time Steps

(1994), available with the UNICOS operating system. Its 3 PARALLEL md3

execution statistics are:

e 948% of floating point operations are vector

operations,
e average vector length is 74 bytes, and
e average instruction rate is 67.5 MIPS.
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The most common approach to parallelism is data
parallelism, also referred to as Single Program Multiple
Data (SPMD) parallelism, in which multiple copies of the
same program cooperate in parallel on disjoint subsets of a
common data set. A less common approach to parallelism is
control parallelism, also referred to as Multiple Program
Multiple Data (MPMD) parallelism, in which distinct
programs cooperate in parallel.

The md3 program can exploit both approaches to
parallelism. Since theeswald and vf2 functions calculate
different independent components of the interaction forces
they can be redesigned into separate, distinct cooperating
MPMD parallel programs. In addition, each of these two
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programs could further benefit from SPMD parallelism. The case, the minimum number of communication steps needed

flow chart of the redesigned parallel versiomaf3is shown to gather the results islog, PL) where P is the number of

in figure 5. All communication and synchronization between processes.

processes are done using the MPI standard, which facilitates Table 2 lists the input and output data requirements, in

portability between different platforms. The IBM bytes, of theewald andvf2 processes.As the problem size,

implementation of MPI was used on the SP2, while the LAM N, increases, the granularity afd3 also increases, since

implementation was used on the SGI and Pentium clusters. communication time, O(N), grows slower than computation
time, O(N). This large grain characteristic makes3 an

Parallel excellent candidate for parallel processing. An additional
md3 benefit to the parallel version aid3is that larger problem
Spawning sizes_can be run, since the distributed_ data can use the
prodesses combined total memory of all the processing nodes.
ewald vf2
main Table 2: 1/0 Data Requirements.
ik B v2 ewald
Reot ) e input parameters 48N 48N
ol 17@*_/ — ﬁ;_{ output parameters 12052+80N 44+72N
compute 4 LOAD BALANCING
compute —‘
ceducm | Reduce=] To obtain optimum performance from a parallel code it is
: necessary to balance the execution time of the individual
Recv _l S“D processes involved, since the slowest process dictates the
performance achieved. For SPMD codes it is usually
<_\__> sufficient to distribute the data uniformly and spawn as
End many processes as there are nodes available. The nature o
Figure 5: Flowchart of Parallehd3Program the problem or data can introduce further restrictions, such

as only use an even number of nodes or a power of 2.
The main process, written in Fortran 77 but converted Individually, for ewald and vf2, this is true on a set of
automatically to C via th&c utility, reads the md35 file to homogeneous nodes, but because of the difference in
obtain the problem description and then spawns ancomputational complexity between the two it is necessary to
appropriate number of processes for bethald and vf2, determine an allocation of nodes that will achieve equal
both written in C. The main process then reads the md3gexecution times for both. Because this is an MPMD code
file to obtain the initial position and energies of all the there is an opportunity to utilize heterogeneous processors,
particles. The main loop of the program now consists of making the load balancing even more difficult.
broadcasting the current particle parameters to the processes
of both ewald and vf2, waiting for the interaction results 4.1 Static Load Balancing
from all the processes, and calculating the new particle
positions and energies. It then repeats the loop. TheOur objective is to determine the allocation of P nodes
interaction results from each process can arrive and bémongewald and vf2 processes so that the computation
processed in any order. Each MPI message is tagged téme of each process is approximately equal. For the general
distinguish betweeawaldandvf2 data. case of a heterogeneous environment, we can represent the
The individual processes of battwvald andvf2 wait for computation times of thewaldandvf2 processes, based on
the new particle parameters to arrive, compute thetheir computational complexities, as:
interaction force on their subset of the data, send their

results back to the main process, and then repeat the loop. _ N CPUI (N )
Since the results of trevaldprocesses are not independent, Te=Te(N")ix— “U/N 1)
they must first be integrated together before being sent back CPU;j

to the main process. We use the MPI collective function
MPI_REDUCE to accomplish this. Similar dependencies

exist for the vf2 processes and the application of and Tv=Ty(N")ix CPUI %N |2
MPI_REDUCE is also employed. An optimal Pv , ’
implementation for the MPI_REDUCE function is a binary ZCPUJ

tree which optimizes the overlapping summations. In this 1=
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respectively, such that P = Pe +Pv, where: For the parallelmd3 program, we can run all the
combinations of possible node allocations on a 16 node

* Nis the problem size in number of particles, Pentium cluster for a few problem sizes and measure the

« N'is a problem size with known computation times, execution times. Thus for each problem size, N, we can

. Pe is the number @'\Na|dcomputationa| nodes, determine the node aIIocation,op[k which ylelds the

«  Pvis the number off2 computational nodes, minimum execution time. Substituting the measured values

« CPU is the relative processing rate of the ith CPU of N and kg back into the equation above we can then

solve for the ratio Tv(N)/(N*Te(N")). For a given
problem size, the measured value fgy; kesults in a small
range of values, shown in figure 6, rather than a single
value because fractional nodes are not allocated and a
minimum of 2 nodes are allocated to both ewald and vf2.
Averaging these values yields:

e compared to CPY)

« Te(N)i theewaldcomputation time for N=N’ on

« CPU,

e Tv(N)i the vf2 computation time for N=N" on CRU

For example, on the NIST ATM cluster we could allocate
SGI nodes tewaldand Pentium nodes td2, or vice versa.
The drawback here is that balancing the workload may k = 1
result in a node allocation that doesn’t use all the processors opt N
available. 1+ %
For the case where all nodes are homogeneous, (1

reduces to: )I'he actual value of the constant is not critical, the general

\ form of the equation is much more critical since it relates
Te :Te(N') x (N IN ) the co_mputatior_1a| complexity of the two processes. Any
Pe value in the neighborhood would suffice for the constant,
N2 since it is subject to round off due to integer node allocation
") x (N/N") ' as well as normal execution time variations between
Pv processes.
Let k=Pe/P be the fraction of nodes allocateéwald and
(1-k)=Pv/P is the fraction of nodes allocated wé®. 4.2 Dynamic Load Balancing
Substituting k in the above equations yields:

and Tv=TV(N

This initial static node allocation provides a good

(N/N") approximation to balancing the load, but variations occur in
Te=Tg(N')x——= execution times between nodes even in homogeneous
kP environments. These variations can be due to background

(N/ N')2 workloads or even to a different configuration or version of
and Tv=Tv(N")x the same machine. Incorporating a dynamic load balance
1-k)P adaptive mechanism in the code could compensate for these

Load balance is achieved when Tv=Te. Substituting thevariations. Since each process exchanges data with the mair
above equations in this equality and solving for k yields: control program at the end of each step, the execution time

1 of this last step could be added to that data from each node.

kopt = N _ Tv(N) The main control program could then dynamically
1+ x determine the actual load balance achieved on this last step
N Te(N') and send out adjustment information for the next step along

lts clear that as the problem size increases a IargerWith the normal particle information. This adjustment would

proportion of nodes should be allocated towf&processes direct a process to increase or decrease its portion of the

which have a higher computational complexity. Thus, as Ndat@ it is processing, resulting in an uneven workload
increases, k decreases. As a first pass we can estimate t tribution where slower nodes could be directed to do less

ratio of Tv(N’) and Te(N’) empirically from the measured processing while faster nodes could be directed to do more.
execution times of the sequential version mé3 from
figure 3. Tv(N’) and Te(N’) are equal at approximately
N'=400, resulting in:
1
kopt = -
N
1+ —

400
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Figure 6: Kopt vs Allocatable Nodes for N=400 and 800

The adaptive algorithm we implemented is invoked at

Figure 7: Kopt vs Allocatable Nodes for N=400 and 800

Figure 7 shows the initial uniform data distribution and the

the end of each step and focuses on only one pair of nodespeasured and theoretical data distribution after ten steps.

the slowest and the fastest, @waldand one pair fovf2. If

Figure 8 shows the load balance achieved during those ten

the difference in execution time between these two nodes isteps. The load imbalance, initially 40%, is reduced to 10%
below a threshold value, then no correction is applied. If thein four steps and to less than 5% by ten steps.

difference is above this threshold value then a correction in

proportion to the difference between their execution times is5 PERFORMANCE
applied. The faster node is directed to process n additional
particles, while the slower node is directed to process nThe performance of the parallel and the sequential (1 node)

fewer particles. nis computed as follows:

n = Ns x (Tf — Ts)/(2*Ts) fawald
and n = Ns x (Tf — Ts)/(4*Ts) fof2

where:

¢ Nsis the number of particles processed by the
« slow node during the previous step,

e Tfis the execution time of the fastest node,

« Tsis the execution time of the slowest node.

To test the effectiveness of this dynamic adaptive

algorithm we simulated a simple case of uneven execution

times for a fewewaldprocesses. At the end of each step, we
added different delays (via a sleep function) to eashld
process as follows:

. Node 0 is the fastest, no delay added,
. Node 1 is 10% slower than node 0,
. Node 2 is 20% slower than node 0,
. Node 3 is 30% slower than node 0.
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implementations ofmd3 are compared in figure 9 for a
number of different machines. It is clear that the Cray C90
is fastest for the sequential implementation, but the SGI is
not far behind. With 8 nodes, using thg; lkallocation of
nodes, all three machines, both the Pentium and SGI
clusters and the IBM SP2, outperform the Cray; both
clusters outperform the SP2 and the SGIs outperforms the
Pentiums. Using 16 nodes the performance difference
between the SP2 and the Pentium cluster narrows, but the
Pentiums still outperforms the SP2.

0.45

0.40

)

o
w
(9]
| =

o
w
)

Load Imbalance
Time/Max_Time
o
N
(6]

o o
=N
o o

(1-Min

o o
[
o o

~u

1 2 3 4 5 6 7 8 9 10
Time Steps
Figure 8: Dynamic Load Balance Algorithm Performance




Parallel Implementation of a Molecular Dynamics Simulation Program

40 6 CONCLUSION
35 | mSP2 ' _ ' _
m Pentium The md3molecular dynamics simulation program benefited
30 A @Sl from its parallel implementation in both performance and
2 O Cray scalability. Execution time was diminished by 50% on a 16
= node Pentium cluster compared to the original sequential
E 204 code on a Cray C90. The parallel implementation included
s the ability to scale the problem size. This feature that could
= 151 . .
3 be added to the sequential code, but the collective memory
2 101 of the Pentium cluster supports a larger problem size than
5 | can fit on the Cray. These results indicate that other
D]_J:-— molecular dynamics simulation applications of this class
0 could also benefit from similar parallel implementations.
1 node 8 nodes 16 nodes The use of MPI provides ease of portability between
Figure 9: Comparison of Execution Time for 10 Processing machines that support a message passing environment. It
Steps on Different Machines allows us to run and compare the performance of this

parallel implementation on our Pentium cluster, a similar

The Gant charts shown in figure 10, produced using theSGI cluster, and an IBM SP2. The results of this
Upshot performance visualization tool (available on the webcomparison show that inexpensive commodity PC clusters
from ftp://info.mcs.anl.gov), provides an indication of the provide good performance when compared to more
load balance achieved through the use of thg dtatic expensive machines like the Cray C90 and the IBM SP2 for
allocation of nodes. In these charts Process 0 is the maithis class of molecular dynamics simulation applications.
control program, Processes 1-3 aredghaldprocesses, and The economy, however, applies only to the initial purchase
Processes 4-7 are thié& processes, see figure 5. The light cost of these commodity clusters, because they do require
areas for processes 1-7 indicate computation, while the darlsignificant and expensive support.
areas indicate communications. The reverse is true for
process 0. We can see that the load balance be®vesd ACKNOWLEDGMENTS
and vf2 processes is not perfect, sind@ processes finish
faster thanewald processes and must wait longer to Thanks to Ray Mountain from the NIST Chemical Science
complete the synchronization at the end of each stepand Technology Laboratory for providing the initial
Because of integer node allocation we can only approximatesequentiamd3code running on the Cray C90.

the allocation specified byyk which results in round off This NIST contribution is not subject to copyright in
errors for small numbers of nodes. As the number of nodegshe United States. Certain commercial items may be
increase this approximation gets better. identified but that does not imply recommendation or

These Gant charts verify that the computation is fastestendorsement by NIST, nor does it imply that those items are
on the SGI processors and slowest on the SP2 processorsecessarily the best available for the purpose.
They also show that the communication is superior on the
SP2 compared to the commodity ATM network supporting
the SGI and Pentium clusters. This is due to the higher
bandwidth interconnect of the SP2 as well as the optimized
implementation of MPI.
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Figure 10: Snapshot of Execution and Communication
Intervals of themd3Program on (a) an IBM SP2 Cluster,

(b) an SGI Cluster and (c) a Pentium Cluster
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