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ABSTRACT

We have taken a NIST molecular dynamics simulatio
program (md3), which was configured as a single sequenti
process running on a CRAY C90 vector supercomputer, a
parallelized it to run in a distributed memory messag
passing environment. Since portability was a major conce
during parallelization, we used the Message Passi
Interface (MPI) standard. The features of MPI provide 
basic set of interprocess communication primitives on ma
architectures. The parallel md3 program has two basic
algorithms resulting in a MPMD (Multiple Program
Multiple Data) structure, versus the more common SPM
(Single Program Multiple Data) structure, and has th
potential to exploit heterogeneous processing. For any giv
number of nodes we have devised an equation to determ
the initial node allocation among these multiple program
which  yields near optimal load balance. We als
dynamically manage the load balance between processe
correct for run time variations and to achieve bett
performance. We compare the performance of this MPM
parallel code run on a range of distributed memo
machines (an IBM SP2, a cluster of Pentium Pros, and
cluster of SGI Indigo2s with the R10000 processor) again
the original code performance on the Cray. In addition 
better performance, the code on distributed memo
machines offers an ability to scale the problem size bas
upon the combined memory size of the host systems.

1 INTRODUCTION

The NIST Cray C90 is a six processor vecto
supercomputer, although operationally each process
normally runs independent processing streams. Because 
an expensive resource it must be shared among a la
number of researchers, thus creating a critical resource w
heavy demand.  Distributed processing offers similar hig
performance computing through parallel processing; 
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addition it has a lower cost and the potential to scale the
system to handle larger problem sizes. Problem size limited
by memory size is increasingly a computational bottleneck.
The current trend in parallel computing is towards clusters
of computer nodes that are either Symmetric
Multiprocessors (SMPs) or single processors. These clusters
are capable of supporting both shared memory (SM) and
distributed memory (DM) programming paradigms,
although shared memory variants cost more or run more
slowly. Current clusters implement parallelism by using
commodity microprocessors interconnected with either
commodity or proprietary networks. Clusters are more
scalable than SMPs alone, because networks scale bette
than buses in terms of aggregate bandwidth and number o
nodes.

Integrated clusters are commercially available (e.g.,
SGI/Cray Origin 2000 and HP/CONVEX Exemplar). These
clusters have built a significant infrastructure between the
microprocessor and the memory hierarchy, as well as a
superior interconnect, to enhance performance. Clusters
built using commodity PCs or workstations and commodity
LANs are emerging as an attractive and possibly low cost
alternative to traditional high performance distributed
processing on integrated clusters. The distributed memory
paradigm for parallel computing is widely used and
standardized interfaces such as MPI, see Pacheco (1997)
have enabled portability between clusters from different
manufacturers. An advantage of the MPI standard is that
different platforms can have their own optimized
implementations.

Using MPI enables the parallel md3 program to run, for
example, on an SGI cluster, a Pentium cluster, the IBM
SP2, SGI Origin 2000, etc. The implementation of MPI
used on the clusters was Ohio Supercomputer Center’s
LAM 6.1, see Burns et al. (1994). The shared memory
paradigm will similarly benefit from the newly proposed
Open MP interface standard. Commodity clusters, as
described by Becker et al. (1995), are commonly based on
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the newer Intel Pentium processors which are capable
significant computing power, although floating poin
performance is not strong.  However, a main factor limiti
performance often is the overhead of the message pas
communications network.  Newer network technologi
such as ATM and Fast Ethernet address this bottleneck.

NIST is investigating the benefits of both commercial
integrated clusters and do-it-yourself commodity cluste
NIST has an IBM SP2 and an SGI Origin 2000. NIST h
constructed a commodity cluster using an ATM (OC-
LAN for the interconnect. This cluster consists of a numb
of heterogeneous machines, among which is a subcluste
8 SGI workstations, each powered by the R10000 proces
and a subcluster of 16 identical 200 MHz Pentium P
based machines; see Figure 1.

64 Port
ATM

Switch

Connections
to Other
Switches
OC3/OC12

19 Other
Heterogenous

Nodes

8 Node
SGI

SubCluster

16 Node
Pentium

Subcluster

Network
Access
Node

Ethernet

OC3

Figure 1: Block Diagram of the NIST ATM Cluster

As part of this evaluation we selected a sequen
molecular dynamics simulation code, called md3, that was
running on the Cray. We redesigned it as a parallel co
using MPI to allow portability among our cluste
architectures: the IBM SP2, the SGI subcluster and 
Pentium subcluster. The purpose here is to describe 
parallel redesign and to compare the performance of 
parallel code on our clusters against the sequential code
the Cray.

2 SEQUENTIAL md3

Molecular dynamics simulation has become an importa
tool for the study of the liquid state at the molecular lev
Possible applications include the study of molecular film
and the study of chromatographic separation mechanis
The md3 program, written in Fortran 77, computes th
motion of molecules from Sangster and Dixon (1976) in
cubic volume by calculating their interaction potential. Th
calculation consists of:

• short range forces, including repulsion and Van De
Waals terms, and

• long range coulombic forces.
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The molecular state consists of the position, velocity a
orientation of the particles. The md3 program computes the
interaction among all of the particles to obtain the resulta
forces on each particle. Based on this force, each particle
moved a distance corresponding to a time duration of 10-15

seconds and given a new state. This cycle, called a step
repeated until the simulated time is reached. For example
the simulated time is 2 sec, then 2x1015 steps of the program
must be executed.

Obtaining simulation results of relatively complex
systems within a reasonable period of time requires 
sufficient computer memory to hold the data describing t
simulation and (ii) sufficient computation cycles to
complete the task in the time allocated. Sequential progra
running on monolithic supercomputers (e.g., the C90) a
running out of both. Parallel computing can bette
accommodate these requirements.

The sequential md3 program uses two input files:

• md35: which defines the features of the problem, suc
as the number of molecules, the geometry of th
volume, the number of steps to compute, etc., and

• md38: which provides the initial position and state o
each molecule.

The sequential program, whose flow chart is shown i
figure 2, begins by reading the md35 file to obtain the
problem description and the md38 file to obtain the initia
particle positions and energies. Then the main loo
executes two functions; ewald computes the long range
forces and vf2 computes the short range forces. Thes
forces are combined and a new position and energy 
computed for each particle over the duration of the tim
step. This main loop repeats until the simulated time 
reached. When the main loop completes, the position a
energy for each particle is written to an output file and th
program terminates.

The ewald  and  vf2  functions  are  both  based on a

double  summation  computation  ∑∑
= =

N

i

N

j
jip

1 1
,

, where N is

the number of particles and pi,j is the interaction potential
between particle i and j. By using the direct ewald
summation method, the double sum of ewald can be
rearranged into a single sum, yielding a linea
computational complexity for ewald. The computational
complexity for vf2  remains of order N2.  We have verified
these computational complexities during program
execution via a profiler tool whose results are shown i
figure 3.
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Figure 2: Flowchart of Sequential md3 Program
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Figure 3: Measured Execution Times of vf2 and ewald

Not only does vf2 require the bulk of the computation
it also uses the most memory. The memory requirements
vf2 are 120*N*(N-1)/2 bytes for N particles. Table 1 show
how quickly the memory requirement increases.

To determine if the sequential md3 program is a true
high performance vector code, we used the Cray C
Hardware Performance Monitor (hpm) tool, see Morrea
(1994), available with the UNICOS operating system. 
execution statistics are:

• 94.8% of floating point operations are vecto
operations,

• average vector length is 74 bytes, and
• average instruction rate is 67.5 MIPS.
s
g

493
or
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Table 1: Memory requirements as a function of Particles.

Particles (N) Memory (MBytes)
216 2.8

1000 59.9
2000 239.9
3000 539.8
4000 959.8
5000 1499.7

This shows that the code is mostly vectorized and is runnin
at 170 MFLOPS. Nonetheless, md3 is not taking significant
advantage of vertorization because of its low vector length
and low MIPS rating. A good vector code for the CRAY
C90 can achieve 600 MFLOPS. In comparison the
execution of sequential md3 on a 200 MHz Pentium PRO
on one processor of the IBM SP2, and on an SGI R1000
based workstation, is slower than on the CRAY C90. Se
figure 4, below.
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Figure 4: Comparison of Sequential md3 Execution Times
on Different Computers for 10 Time Steps

3 PARALLEL md3

The most common approach to parallelism is data
parallelism, also referred to as Single Program Multiple
Data (SPMD) parallelism, in which multiple copies of the
same program cooperate in parallel on disjoint subsets of 
common data set. A less common approach to parallelism 
control parallelism, also referred to as Multiple Program
Multiple Data (MPMD) parallelism, in which distinct
programs cooperate in parallel.

The md3 program can exploit both approaches to
parallelism. Since the ewald and vf2 functions calculate
different independent components of the interaction force
they can be redesigned into separate, distinct cooperatin
MPMD parallel programs. In addition, each of these two
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programs could further benefit from SPMD parallelism. Th
flow chart of the redesigned parallel version of md3 is shown
in figure 5. All communication and synchronization betwee
processes are done using the MPI standard, which facilit
portability between different platforms. The IBM
implementation of MPI was used on the SP2, while the LA
implementation was used on the SGI and Pentium clusters

main
computecomputeinit

computecomputecompute

Send in parameters

Send out parameters

Recv

Recv

End

Reduce

computeinit

computecompute

Send out parameters

Recv

Recv

End

Reduce

Recv

ewald vf2

Spawning
processes

Parallel
md3

Figure 5: Flowchart of Parallel md3 Program

The main process, written in Fortran 77 but convert
automatically to C via the f2c utility, reads the md35 file to
obtain the problem description and then spawns 
appropriate number of processes for both ewald and vf2,
both written in C. The main process then reads the md
file to obtain the initial position and energies of all th
particles. The main loop of the program now consists 
broadcasting the current particle parameters to the proce
of both ewald and vf2, waiting for the interaction results
from all the processes, and calculating the new parti
positions and energies. It then repeats the loop. T
interaction results from each process can arrive and
processed in any order. Each MPI message is tagged
distinguish between ewald and vf2 data.

The individual processes of both ewald and vf2 wait for
the new particle parameters to arrive, compute t
interaction force on their subset of the data, send th
results back to the main process, and then repeat the l
Since the results of the ewald processes are not independen
they must first be integrated together before being sent b
to the main process. We use the MPI collective functi
MPI_REDUCE to accomplish this. Similar dependenci
exist for the vf2 processes and the application o
MPI_REDUCE is also employed. An optima
implementation for the MPI_REDUCE function is a binar
tree which optimizes the overlapping summations. In th
494
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case, the minimum number of communication steps neede
to gather the results is  log2 P, where P is the number of
processes.

Table 2 lists the input and output data requirements, i
bytes, of the ewald and vf2 processes.As the problem size,
N, increases, the granularity of md3 also increases, since
communication time, O(N),  grows slower than computation
time, O(N2).  This large grain characteristic makes md3 an
excellent candidate for parallel processing. An additiona
benefit to the parallel version of md3 is that larger problem
sizes can be run, since the distributed data can use t
combined total memory of all the processing nodes.

Table 2: I/O Data Requirements.

4 LOAD BALANCING

To obtain optimum performance from a parallel code it is
necessary to balance the execution time of the individu
processes involved, since the slowest process dictates t
performance achieved. For SPMD codes it is usuall
sufficient to distribute the data uniformly and spawn as
many processes as there are nodes available. The nature
the problem or data can introduce further restrictions, suc
as only use an even number of nodes or a power of 
Individually, for ewald and vf2, this is true on a set of
homogeneous nodes, but because of the difference 
computational complexity between the two it is necessary t
determine an allocation of nodes that will achieve equa
execution times for both. Because this is an MPMD cod
there is an opportunity to utilize heterogeneous processor
making the load balancing even more difficult.

4.1 Static Load Balancing

Our objective is to determine the allocation of P node
among ewald and vf2 processes so that the computation
time of each process is approximately equal. For the gener
case of a heterogeneous environment, we can represent 
computation times of the ewald and vf2 processes, based on
their computational complexities, as:

         ( )')'(

1

N
N

CPUj

CPUi
iNTeTe

Pe

j

××=

∑
=

                (1)

       and     ( )' 2
)'(

1

N
N

CPUj

CPUi
iNTvTv

Pv

j

××=
∑

=

  ,

vf2 ewald
input parameters 48N 48N
output parameters 12052+80N 44+72N
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respectively, such that P = Pe +Pv, where:

• N is the problem size in number of particles,
• N’ is a problem size with known computation times,
• Pe is the number of ewald computational nodes,
• Pv is the number of vf2 computational nodes,
• CPUi is the relative processing rate of the ith CPU
• compared to CPU1,
• Te(N’)i  the ewald computation time for N=N’ on
• CPUi,
• Tv(N’)i the vf2 computation time for N=N’ on CPUi.

For example, on the NIST ATM cluster we could alloca
SGI nodes to ewald and Pentium nodes to vf2, or vice versa.
The drawback here is that balancing the workload m
result in a node allocation that doesn’t use all the proces
available.

For the case where all nodes are homogeneous,
reduces to:

Te = 
Pe

NN
NTe

)'/(
)'( ×

and    Tv = 
Pv

NN
NTv

2)'/(
)'( ×   .

Let k=Pe/P be the fraction of nodes allocated to ewald and
(1-k)=Pv/P is the fraction of nodes allocated to vf2.
Substituting k in the above equations yields:

kP

NN
NTeTe

)'/(
)'( ×=

and     
Pk

NN
NTvTv

)1(

)'/(
)'(

2

−
×=   .

Load balance is achieved when Tv=Te. Substituting 
above equations in this equality and solving for k yields:

)'(

)'(

'
1

1

NTe

NTv

N

N
kopt

×+
= .

Its clear that as the problem size increases a lar
proportion of nodes should be allocated to the vf2 processes
which have a higher computational complexity. Thus, as
increases, k decreases. As a first pass we can estimat
ratio of Tv(N’) and Te(N’) empirically from the measure
execution times of the sequential version of md3 from
figure 3. Tv(N’) and Te(N’) are equal at approximate
N’=400, resulting in:

                      

400
1

1
N

kopt

+
=     .
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For the parallel md3 program, we can run all the
combinations of possible node allocations on a 16 no
Pentium cluster for a few problem sizes and measure 
execution times. Thus for each problem size, N, we c
determine the node allocation, kopt, which yields the
minimum execution time. Substituting the measured valu
of N and kopt back into the equation above we can the
solve for the ratio Tv(N’)/(N’*Te(N’)). For a given
problem size, the measured value for kopt results in a small
range of values, shown in figure 6, rather than a sing
value because fractional nodes are not allocated and
minimum of 2 nodes are allocated to both ewald and vf
Averaging these values yields:

                     

360
1

1
N

kopt

+
=   .

The actual value of the constant is not critical, the gene
form of the equation is much more critical since it relat
the computational complexity of the two processes. A
value in the neighborhood would suffice for the consta
since it is subject to round off due to integer node allocat
as well as normal execution time variations betwe
processes.

4.2 Dynamic Load Balancing

This initial static node allocation provides a goo
approximation to balancing the load, but variations occur
execution times between nodes even in homogene
environments. These variations can be due to backgro
workloads or even to a different configuration or version 
the same machine. Incorporating a dynamic load bala
adaptive mechanism in the code could compensate for th
variations. Since each process exchanges data with the 
control program at the end of each step, the execution t
of this last step could be added to that data from each n
The main control program could then dynamical
determine the actual load balance achieved on this last 
and send out adjustment information for the next step al
with the normal particle information. This adjustment wou
direct a process to increase or decrease its portion of
data it is processing, resulting in an uneven worklo
distribution where slower nodes could be directed to do l
processing while faster nodes could be directed to do mo
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Figure 6: Kopt vs Allocatable Nodes for N=400 and 800

The adaptive algorithm we implemented is invoked 
the end of each step and focuses on only one pair of no
the slowest and the fastest, for ewald and one pair for vf2. If
the difference in execution time between these two node
below a threshold value, then no correction is applied. If 
difference is above this threshold value then a correction
proportion to the difference between their execution times
applied.  The faster node is directed to process n additio
particles, while the slower node is directed to process
fewer particles.  n is computed as follows:

           n = Ns x (Tf – Ts)/(2*Ts) for ewald   
       and   n = Ns x (Tf – Ts)/(4*Ts) for vf2

where:

• Ns is the number of particles processed by the
• slow node during the previous step,
• Tf is the execution time of the fastest node,
• Ts is the execution time of the slowest node.

To test the effectiveness of this dynamic adapti
algorithm we simulated a simple case of uneven execu
times for a few ewald processes. At the end of each step, w
added different delays (via a sleep function) to each ewald
process as follows:

• Node 0 is the fastest, no delay added,
• Node 1 is 10% slower than node 0,
• Node 2 is 20% slower than node 0,
• Node 3 is 30% slower than node 0.
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Figure 7 shows the initial uniform data distribution and the
measured and theoretical data distribution after ten step
Figure 8 shows the load balance achieved during those te
steps. The load imbalance, initially 40%, is reduced to 10%
in four steps and to less than 5% by ten steps.

5 PERFORMANCE

The performance of the parallel and the sequential (1 node
implementations of md3 are compared in figure 9 for a
number of different machines.  It is clear that the Cray C90
is fastest for the sequential implementation, but the SGI i
not far behind.  With 8 nodes, using the kopt allocation of
nodes, all three machines, both the Pentium and SG
clusters and the IBM SP2, outperform the Cray; both
clusters outperform the SP2 and the SGIs outperforms th
Pentiums. Using 16 nodes the performance differenc
between the SP2 and the Pentium cluster narrows, but th
Pentiums still outperforms the SP2.
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Steps on Different Machines

The Gant charts shown in figure 10, produced using
Upshot performance visualization tool (available on the w
from ftp://info.mcs.anl.gov), provides an indication of th
load balance achieved through the use of the kopt static
allocation of nodes.  In these charts Process 0 is the m
control program, Processes 1-3 are the ewald processes, and
Processes 4-7 are the vf2 processes, see figure 5. The lig
areas for processes 1-7 indicate computation, while the 
areas indicate communications. The reverse is true 
process 0. We can see that the load balance between ewald
and vf2 processes is not perfect, since vf2 processes finish
faster than ewald  processes  and  must wait longer 
complete the synchronization at the end of each s
Because of integer node allocation we can only approxim
the allocation specified by kopt, which results in round off
errors for small numbers of nodes. As the number of no
increase this approximation gets better.

These Gant charts verify that the computation is fas
on the SGI processors and slowest on the SP2 proces
They also show that the communication is superior on 
SP2 compared to the commodity ATM network support
the SGI and Pentium clusters. This is due to the hig
bandwidth interconnect of the SP2 as well as the optimi
implementation of MPI.
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6 CONCLUSION

The md3 molecular dynamics simulation program benefited
from its parallel implementation in both performance an
scalability.  Execution time was diminished by 50% on a 1
node Pentium cluster compared to the original sequent
code on a Cray C90.  The parallel implementation include
the ability to scale the problem size. This feature that cou
be added to the sequential code, but the collective memo
of the Pentium cluster supports a larger problem size th
can fit on the Cray. These results indicate that othe
molecular dynamics simulation applications of this clas
could also benefit from similar parallel implementations.

The use of MPI provides ease of portability betwee
machines that support a message passing environment
allows us to run and compare the performance of th
parallel implementation on our Pentium cluster, a simila
SGI cluster, and an IBM SP2. The results of thi
comparison show that inexpensive commodity PC cluste
provide good performance when compared to mor
expensive machines like the Cray C90 and the IBM SP2 f
this class of molecular dynamics simulation applications
The economy, however, applies only to the initial purchas
cost of these commodity clusters, because they do requ
significant and expensive support.
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