Proceedings of the 1998 Winter Simulation Conference
D.J. Medeiros, E.F. Watson, J.S. Carson and M.S. Manivannan, eds.

THE EFFICIENT IMPLEMENTATION OF WAIT STATMENTS

Ingolf Stahl

Stockholm School of Economics
Box 6501
S-113 83 Stockholm, SWEDEN

ABSTRACT possible to use a reasonably efficient wait statement, when
trying to simulate a specific system, the best thing might be
This paper gives an overview of some of the factors that to migrate to another system with more efficiently
determine the efficiency of differently implemented wait implemented wait statements. For a constructor of a
statements. The purpose is to give some guidance tosimulation system or a programmer writing a simulation
simulation modelers as to what system to choose and, forprogram in a General Purpose Language it is also of great
the chosen system, what wait constructs to use in order toimportance to implement efficiently working wait
make program execution efficient. It is also aimed at statements.
informing constructors of simulation software about what It should be stressed that the term efficiency should
issues are important when implementing these statementsnot be limited to only execution speed. There is also
In particular, we present some brand new features that canefficiency in terms of time required to program the model,
speed up the execution of wait statements, in particular in in particular connected to debugging due to errors caused

some versions of GPSS. by an improper wait statement construct. Even if the focus
is on efficient execution, we shall also touch upon this
1 INTRODUCTION other aspect of efficiency.

We want to look at the idea of execution efficiency

One of the most fundamental concepts in Discrete Event from a theoretical point of view and disregard the
Simulation is thewait concept This deals with an entity ~ compilation/interpretation choice and the programming
being delayed until some defined condition or set of skill of the implementers of a specific system. Obviously, a
conditions becomes true. We can e.g. think of a ship that compiled system, with a compiler written by skillful
will wait before entering a harbor until there is no storm, Programmers, using an optimizing compiler, wigteris
and there is a free berth as well as a free tug. The waitParibus execute faster than an interpretative system,
command, which we call the wait word, by which an Written by a less skillful programmer, using a less
entity, like the ship, is kept waiting, has many different €xpensive programming system. This difference might
names, like GATE and TEST in GPSS/H, WAITIF in make a compiling system with a theoretically poor wait
micro-GPSS, WAITUNTIL in DEMOS, WAIT UNTIL in statement out-perform an interpretative system with a
SLX and SCAN or WAIT in SIMAN, just to mention a theoretically superior wait statement. Our hypothetical test
few examples. The wait word is usually followed by a Of performance should hence assume that the systems are
logical expression that can be either true or false. If due to implemented in the same type of system as regards the
some event, this condition changes (from TRUE to FALSE compiling/interpretation choice, using the same type of
or from FALSE to TRUE), one or several entities that have Software and by the same type of programmers. Such a
been waiting can at this clock time become the active hypothetical test will, of course, never take place. Hence,
entity and move forward in the model system. our comparisons as regards efficiency must deal with

There is no other statement in simulation systems that questions of e.g. how many times a search of a certain list
can cause such a difference in execution efficiency. We Will take place and how many values will have to be
shall below give an example when one use of a wait investigated each time.
statement in a system can cause a twenty times longer run This article is in line with a series of articles, started
time than a better use of the statement, even though we usdy those of Schriber and Brunner (e.g. 1994 and 1997) and
the same simulation system. It is hence important to know followed, inter alia, by one by myself (Stahl, 1996). The

if it is possible within a certain system to use an efficient Main idea behind these articles is that it is important to
wait statement rather than an inefficient one. If it is not kKnow more about how discrete event software works in

523

Stahl

order to be a good user of these systems. While the otherwait conditions, the focus is on delay lists, but we shall
articles mainly focused on how knowledge about the also occasionally touch on user managed lists.

software is important for avoiding logically faulty The efficiency of the specific delay list approach
programming and dealt with several different types of chosen is in turn connected to the question of whether we
statements, the present article is mainly concerned with thehave what Brunner and Schriber call related or polled
efficiency of one particular type of statement. waiting. Both procedures refer @mutomatic removal of

The issue of efficient implementation has received entities from the delay list. Thelated waiting resolution
renewed attention during the last couple of years, due to implies that the checking of a delay condition is connected
the emergence of the SLX simulation language (Schulze to a specific event. Thpolled waiting resolution implies
& Henriksen 1998). A prominent aspect of SLX is the very that entities are not necessarily immediately removed from
efficient implementation of the wait statement. There are the delay list as a certain event occurs, but will in another
hence reasons to look more closely at the main principles process, but at the same simulation clock time, be
of how SLX handles this wait statement, as well as to do removed, possibly in the same process for several different
some evaluation of it, by comparing it to other ways of waiting conditions. For the case of independent user
implementing the wait statement. managed lists, the removal of entities is done by modeler

It should be stressed that this overview of issues supplied signals that are sent out by specific events.
regarding the wait statement is in no way exhaustive. It can In order to be better able to discuss the issues of what
only point at some of the main alternatives among the types of lists and what type of removal procedure to choose
many combinations possible. It is also limited to those in connection with waiting, | also want to introduce some
systems for which one in the literature can find a new distinctions. It appears in this context to make sense to
reasonably clear discussion about how the wait conditions distinguish betweersimple waiting, where the entities
are implemented. It also reflects the systems about which | wait for onesingle event to happen, armbmplex waiting,
have some knowledge and for which | have access to atwhere the entities wait for more than one single event to
least some version of the software. happen.

As regards simple waiting, it is suitable to distinguish
between simple waiting dealing with common events,
usually concerning a resource or a switch, and waiting
To facilitate the reading of the paper, we first look at the concerning some other not so common event. Since these
five states in which an entity can be according to Brunner common events are frequent, it is worthwhile, from an
and Schriber. 1. Thene single currently moving entity is efficiency point of view, to spend more efforts to have this
in the Active State 2. The entities that are ready to enter type of waiting handled in an efficient manner. We hence
the Active State at the current value of the simulation clock distinguish betweegommon simple waitingand special
are in theReady State 3. The entities that will enter the simple waiting. Common simple waiting could be waiting
Ready State at &anown higher value of the simulation for a machine to get idle, while special simple waiting
clock are in theTime-Delayed State The entities that will could be waiting for the number of a certain type of entities
enter the Ready State at amknown value of the to reach a specific value.

2 GENERAL BACKGROUND

simulation clock are in either the Condition-Delayed State
or the Dormant State. 4. Th&ondition-Delayed Stateis

the state from which the entities are transferred
automatically, implying that the modeler does not have to
supply specific software logic for getting this done. It will

be done by software logic that is supplied for doing
primarily other things. 5. From thBormant State the

As regards common single waiting, we can in turn
distinguish between implicit and explicit waiting. In the
implicit waiting case, the program contains no specific
operation starting the waiting, while in the explicit waiting
case there is always such an operation. An example of
implicit common simple waiting is the waiting in front of a
SEIZE block in GPSS and in SIMAN. There is no need to

entities are transferred to the Ready State on the basis ohave a QUEUE block in front of the SEIZE block. In both

modeler suppliedlogic, which has no other purpose than
doing this.

The entities waiting in the Time-Delayed State in all
systems discussed here wait orsiagle Future Events
List and all entities in the Ready State reside orirgle
Current Events List (CEL). The entities waiting in the
Condition-Delayed State wait on different types of lists in
the systems, usually in one or sevedalay lists The
waiting in the Dormant State is also taking place on
different types of lists, often on one or several
independent user managedists. When we below discuss

524

systems entities unable to get into the SEIZE block to use
the resource of this block will be put on a delay list, in the
case of SIMAN an internal queuexplicit waiting can for
GPSS/H be exemplified by a GATE block without a C
operand and for SIMAN by the inclusion of a QUEUE
block in front of the SEIZE block or by a SCAN block.
Thus waiting for a lathe in GPSS can be done just in front
of a SEIZE LATHE block, implying implicit waiting, and
before some other block, e.g. GATE NU LATHE (in
GPSS/H) or WAITIF LATHE=U (in micro-GPSS),
implying explicit waiting.

The Efficient Implementation of Wait Statments

It should finally be noted that in the systems discussed
here, special simple waiting and complex waitailgyays
require explicit waiting statements.

The efficiency of the two approaches is, however,
contingent on the decision under 3.3, i.e. when to check for
exit from the delay lists. If we at the same time are to
check for many waiting conditions, it might be more
efficient to scan just one single list than scanning many
lists. There is always some overhead moving from list to
list. If we only check for one specific waiting condition and
There are many different choices to be made as regardsthe search is done in only one list, the search procedure is
waiting when constructing a system or a model of discrete probably faster in the specific delay list than in the one
event simulation: 1. the number of delay lists, 2. types of general delay list. If the waiting of some entities will be
delay lists, 3. when the testing for exit from a delay list ended by specific events, peculiar to this type of entity,
shall take place, 4. how many entities shall then be while the end of waiting for many other entities has to be
removed from the list at a time, 5. whether or not all investigated together, there are hence reasons for a mixed
waiting shall be explicit and 6. if waiting shall be in terms approach, with some entities waiting on their specific delay
of WAIT UNTIL or WAIT WHILE. lists, while other entities, although with different delay
conditions, wait on a joint delay list. This will be discussed
further below under 3.3.

The search of the joint list is inefficient only if there
are several waiting conditions represented on this list. If

3 DIFFERENT ISSUES IN DEALING WITH
WAITING

3.1 Number of delay lists

We can here distinguish between the following three main
cases: A. There is only one single list for all entities one has onlyone type of condition on the list, the scan
waiting at wait statement®3. There is one specific list for procedure could be very simple. Take the case when 100
each waiting condition, i.e. there are as many delay lists asentities wait on the common delay list, all with the same
there are delay conditionsC. There is a mixture of these delay condition. Using the general procedure, which is
conditions, so that entities from some wait statements arenecessary, if we do not know that the same condition
on one joint list, but other wait statements each have their applies to all entities, we might have to investigate the
own list. delay condition of all 100 entities, even if we search only

If there is one single list for all waiting entities and the for the first entity that can move.
entities do not all wait for the same condition, a Now suppose that the program has only one single
considerable search activity is required. If a certain waiting statement and that it is concerned with waiting that
condition has just changed, e.g. a tug is now free to serveis to be handled on this joint single list. Assume further
ships, we have to search the single delay list for ships that this condition does not concern any value that can be
waiting for a tug, among many other entities, held up due specific for an entity, like a priority or other entity specific
to other conditions. Regardless of the choice made attribute (in GPSS: a parameter). In such a case, all waiting
sections 3.3 and 3.4 below, the search procedureircan conditions on the joint list are certain to be the same. If we
case the first entity is located far from the starting point of then find that the waiting condition is still true for the first
search, usually at the front of the list, be considerable. entity on the list, then it is also true for the remaining 99
Examples of systems where all (except user controlled) entities, which we then do not have to investigate. A
waiting appears to take place on one single list are procedure of this type has been introduced into micro-
GPSS/H, GPSSS (Vaucher, 1977) and many simulation GPSS this year. In section 4, we show that this can speed
packages, written in a GPL, like Pascal_Sim, using the up execution a great deal.
Tocher three-phase approach (Davis & O’Keefe 1989).

If each waiting condition has its own list, all entities 3.2 Types of delay lists used
on the list wait due to exactly the same condition. If one
entity is allowed to move, they are all potentially allowed In the case of a single delay list for all waiting entities, we
to move. One can here, depending on the choice madedistinguish between the case when there is a specific delay
under 3.3 below, either just move tbee at thefront of list for all conditionally delayed entities and the case when
the list (provided the entities are sorted according to these delayed entities are on Hagnelist as all the entities
priority and entry time, so that front entity is the first one to in the Ready State, i.e. when the single delay list and the
move), or moveall the entities, to the CEL. No search CELs are merged into one single list. The first case can be
activity is then required. Examples of systems where all exemplified by systems based on the three-phase approach
waiting appears to take place on separate delay lists areand the second case by GPSS/H, where the Current Events

SLX, SIMAN, DEMOS and (Schriber & Brunner, 1997, p.
19, Schulze & Henriksen 1998, Banks alia 1995 and
Birtwistle 1979).

525

Chain also incorporates all entities in the Condition
Delayed State.

When it comes tospecific delay lists, we can
distinguish between the case when delay lists also perform

Stahl

the gathering of some queue statistics and the case wherhead of the list. Sometimes, one might have to search
they serve only as a pure delay list. In the last case, through the whole list just to find the first one to move. An
additional linked lists are needed for the queue statistics example of such a system is GPSS/H (see e.g. Schriber &
gathering, e.g. to measure the time when an entity startsBrunner,1994, pp. 51-52).

waiting. Examples of systems using the first approach are This might be regarded as surprising, since GPSS/H is
micro-GPSS and SIMAN (when using attached queues); anknown to be relatively execution efficient. GPSS/H uses,
example of a system using the second approach is SLX (inhowever, for common simple waiting a mechanism that

its lowest layer form).
3.3 When shall the wait condition be tested?

We can here distinguish between three caae$he wait

cuts down the search activity on the single list
considerably, by each entity having a Scan Skip indicator.
This indicator is switched on, if the entity's delay condition
is true. At the search of the list, all entities having the
indicator switched on can be skipped, which cuts down

condition is tested after every single event or at least every search time significantly. Another factor of importance is

event bringing the active entity to a stdp. The wait

the fact that GPSS/H is a compiled system and skilfully

condition is tested only after some very specific event has programmed, using special procedures to speed up the

occurred.c. Some wait conditions are tested after every
single event or entity stop event, while other wait

hanling of waiting. This is an example of discrepancy
between theoretical inefficiency and practical efficiency.

conditions are tested only after some specific events haveEarlier GPSS versions, like GPSS/PC and GPSS V, using

occurred.

the same type of procedures as GPSS/H, display less

The issue of when testing should take place is closely discrepancy between the two efficiency concepts.

connected to the general issue, discussed above, of related

or polled resolution of waiting. Related resolution for a
specific condition implies that the test takes place in
connection with the execution of a specific event, while
polled resolution refers to the case when waiting is
resolved at some other stage in the process. Inaase
use polled resolution , while we in casbk. userelated
resolution forevery delay condition. In case. we use
related resolution for some conditions and polled for
others.

Combining the choices in this section with those in
section 3.1, we find that the most efficient type of
implementation from an execution point of view are the
systems of typ8b, i.e. when there are as many delay lists

The question is then why do not more systems use the
Bb combination, i.e. separate delay lists for every condition
and only related waiting resolution. One reason is that
related waiting is simple to implemeonly in the case of
common simple waiting, referring mainly to servers and
switches. It is then clear which events, in terms of
operations, will send out the order to start looking at the
delay condition, namely the events which refer to the start
or end of using a server (like SEIZE and RELEASE) or to
the setting or resetting of a switch. It is hence quite natural
to have related waiting resolution in this case.

Already for the case ofpecial simple waiting, it is
difficult to implement related waiting, without including
special instructions that a signal shall be sent out for these

as there are delay conditions and a wait condition is testedevents. Take the case of waiting until the number of
only after a specific event has occurred. In this case, theentities that has carried out a certain count has reached at
search of wait lists will take place only when certain least 4, with WAITIF N$LABEL<4 in micro-GPSS and
events have taken place. In many programs, this concernsTEST GE N$LABEL,4 in GPSS/H. The event that sends
only a small subset of all events. Secondly, one does notthe signal can here be any kind of event. In order to have
have to scan through the whole list to find the entity to be related resolution here, one must in principle define which
moved first. One only needs to pick the entity at the front events, or which control factors connected with events, will
of the list. The search activity is hence minimal. The only send signals. The difficulty becomes even larger in the case
example of this, at least for systems mentioned in this of complex waiting, dealing with more than one event.
paper, appears to be SLX (with reactivation chains = delay In order to have related resolution also for special
lists; Henriksen 1995, p. 506). Since SLX is also compiled simple waiting and complex waiting, one must include
and skillfully programmed, it is very efficient not only in information in the program that certain events are
theory, but also in practice, as shown by various connected with related waiting. This is the approach taken

benchmark runs (Schulze and Preuss 1997).
The mostinefficient system from a theoretical point of
view is systenAg, i.e. there is only one single list for all

by SLX. One here defines certain variables as control
variables. Every operation that refers to such a control
variable will send out a signal similar to that sent out by

entities waiting at wait statements and the wait condition is the events influencing common simple waiting in other
tested each time the active entity is stopped. Extensivesystems. Thus, by defining in a program ecgntrol
scanning might take place after every few events. Since allinteger countandcontrol booleandone one can have not
waiting entities are on the same list, there is no guaranteeonly wait until count-10 andwait until done but also

that the entity that is to move, if any, will lie close to the

526

wait until (count5 or dong. Every time an event dealing

The Efficient Implementation of Wait Statments

with a control defined value, likeount is carried out, a
signal will be sent to all wait statements in whaguntis

3.4 How many entities shall simultaneously be removed
from the delay list?

mentioned.
If the same control variable is used in only one or a An important question is how to handle the move from a
couple of statements, the programming effort might not delay list to the CEL in detail. To exemplify, ten students
necessarily be significantly smaller than in some wait on a delay list for books to arrive from the publisher,
approaches, when all waiting resolution is solved by but only two books arrive. As the two books arrive, a
programmer supplied logic, like in DEMOS. Here one has signal (automatic or user supplied) is sent, implying that it
to include a signal event after every event that can affect ais time to check the waiting condition. There are two main
conditional delay of thepecialsimple waiting or complex ways of handling this: 1. Let onlgne student at a time
waiting type. A potential problem with both of the SLX leave the delay list to go into the Ready State. 2.allet
and DEMOS approaches, compared to a completely waiting students leave the delay list at once.
automatic approach, is that, if one forgets to define a If only one student moves at a time and we assume
variable as control, or to send a signal at its change, noequal priority, the student having waited the longest time
checking will occur when this value changes. This can be a will move to the CEL. When the active entity, here e.g. the
problem for inexperienced programmers. mailman having brought two books into the bookstore, has
The ideal would be to have related waiting for all been brought to a halt, it is time for this first student entity
events, without having to explicitly define control variables. to become the active entity. Having become active, it
I have investigated, if it would be possible in a system like moves to the wait statement and it checks again that it does
micro-GPSS to have a pre-compilation phase in which all not have to wait any longer. If this is true, it can move on
wait conditions are analyzed with the purpose of defining in the system. Before doing so, it will, however, since it
all variables that can occur in wait statements. My comes from the delay list, cause the next entity, i.e. the
conclusion is that it would be impossible to define all such student now in front on the delay list, to move to the CEL.
variables automatically. There are two main problems: 1. The system must hence keep track of whether an entity
The use of parameters in indirect addressing referring to comes to a wait operation for the first time or whether it
block numbers in a wait block, like WAITIF N(P1)>10. comes from a delay list.
Since the entity dependent attribute P1 can take any integer If, for some reason, all books have already been taken
value and N(P1) is the number of entities having reached by some other entity, the now active entity will have to
the block with the number P1, all events have to be return to the delay list. (This will in the example happen
investigated, since any event can change the number offor the third student.) If there are many entities on this list,
entities reaching a block. 2. The use of V$name in an it will require more computer time to sort it in the ordinary
expression, where the definition of this expression in turn way from the end of the list, than just put it back on the
refers to Vnamel, which in turn refers to V$name2, etc. first position of the list. However, in order to be sure that it
Due to this, | have given up the idea of having is correct to put the entity back at the front of the list, the
automatic related resolution of all wait conditions. Related computer system must know for sure that there is no other
waiting resolution in micro-GPSS is hence limited to entity that has been put back at the front of this list since
common simple waiting. The entities waiting due to other the time when this entity was moved from the list. Such a
types of waiting conditions are placed on one single list, system, avoiding time consuming sorting, is implemented
where the waiting resolution is handled by polling. It in micro-GPSS.
should be mentioned that there are in fact even some Some other systems haedl entities that wait on a
instances also of common simple waiting, where it is delay list transferred at the same instant to the CEL. They
reasonable to use polled waiting, namely when multi-user are then, as they become active and find that the waiting
servers (storages) are referred to by parameters withcondition holds again, placed, one at a time, back on the
different conditions in the same program, like one delay list, sorted in the ordinary order. In programs, in
condition P1=E (the storage with number P1 is empty) and which a delay condition can switch back to being true
later in the program another condition P2=F (the storage again at the same value of the clock, like in the example
with number P2 is full). Since the parameters can take any with the bookstore, this might be an inefficient mechanism.
value (up to the maximum number of servers allowed), it is The computer program of the simulation system can,
problematic to implement separate lists for 1=E, 1=F, 2=E, however, be kept simpler.
2=F,.., etc. In this case we only allow for related polling
regarding P1=E, while the waiting regarding P2=F will be
done on the one joint list with polled waiting resolution
(Stahl, 1996, p. 820).

3.5 Shall all waiting be explicit?
One design question is whether to have all waiting explicit.

In the lowest, fundamental, level of SLX all waiting is
explicit, using one single, but very efficient WAIT UNTIL

527

Stahl

statement, as discussed above. It appears also that som@/e take the example in the introduction, namely with a
new systems, like e.g. Silk (Healy and Kilgore, 1997), have ship that will wait before entering a harbor until there is no
waiting explicit, with the waiting in front of a server taken storm and there is a free berth as well as a free tug. We
care of by a wait operation and with the SEIZE block only study the following micro-GPSS program.

handling the book-keeping regarding the utilization of the It should be mentioned that the system on purpose is
resource. In other systems, like GPSS/H, micro-GPSS andmade to lead to explosive queueing so that one with a short
DEMOS, waiting in front of servers is implicit. The program can illustrate the differences in execution times
insertion of QUEUE blocks will not affect the actual that can occurin longer programs. (For those more familiar
waiting. In SIMAN one can use explicit queues, which with GPSS/H, the corresponding program in GPSS/H is
function as delay lists, but if they are not used, implicit presented in table 2 in section 5.)

(internal) queues will be introduced automatically, e.g. in We see at the top the followingalueof expression:
front of a SEIZE block. The actual execution might be notok valueof (tug=u)+(berth=f)+(storm=u).

different. Internal SIMAN queues, for example, always

work with FIFO, in contrast to the explicit (attached)

gueues, where alternative priorities can be established. It Table 1: Program 1 in micro-GPSS

appears, however, that as regards execution efficiency, the

choice between implicit and explicit waiting is not as simulate

; ; ; notok valueof (tug=u)+(berth=f)+(storm=u)
crucial as the other questions discussed above. notok2 valueof ~ (tug=t)-+(storm=L)

-) berth storage 3
3.6 Shall waiting be in terms of WAIT UNTIL or * Storm segment
WAIT WHILE? generate ,,1
next advance 48*n$xpdis
. . . . seize storm
Another choice to be made when constructing a simulation advance 4,2
system, or a simulation model in a General Purpose release storm
Language, is whether the waiting condition shall be of the _ 90 next

type WAIT UNTIL, implying that entities move from the *Sh'gjﬁggteen%E

delay list, when the condition becomes true, or of the WAIT arrive area

WHILE type, implying that entities move from the list, waitif v$notok>0
when the condition becomes false. While most systems use Zf]'tf; gfrth
a WAIT UNTIL statement, micro-GPSS (with WAITIF) advance 2
uses a WAIT WHILE type of statement. release tug

In micro-GPSS, we initially used the traditional GATE advance 18,4
block of GPSS, which is of the WAIT UNTIL type, but ~ gant ‘oo
around 1987 we switched to the WAITIF block, which advance 2
works like a WAIT WHILE statement. We wait, prior to the release tug
WAITIF block, if, and as long as, the stated condition is leave berth

true. The reason for the switch was partly pedagogical, ?;fna};tatearea

partly one of ease of usage. The WAITIF statement is more: stop segment

in line with the IF block, where you go to an address, if the generate 14050

tested condition isrue, in contrast to the traditional TEST tsei;rr‘:'”atle 1

block of GPSS (St&hl 1993). Furthermore, we found that in ¢4

around two thirds of ouexamples, WAIT WHILE applying

to servers wouldllow a simpler code, like WAIT WHILE

server is in Use (WAITIF SerVer:U), than WAIT UNTIL v$notok will take a value >0, if at least one of the

server isNot in Use (GATE NU server). As regards three conditions is true, i.e. the tug is in use, the berth is
execution efficiency, there is no measurable differencefy|| or there is a storm going on. The ship will wait as long

between the two approaches. It should finally be noted thalys this is true. Since this is clearly a complex waiting
in an extendable system, like SLX, a couple of lines of codecondition, the waiting will be resolved by the polled

are enough for implementing the WAIT WHILE statement. method, with all ships waiting on the joint delay list,
investigated after each event. This causes the program

4 THE SEQUENTIAL WAIT STATEMENTS example to execute quite slowly. On a 233 MHz Pentium
o) the run time was 140 seconds.
We study a method for more efficient execution of In the program we also have a similar wait condition,

programs with complex wait conditions, implemented in \hen the boats leave the harbor, now with the difference
micro-GPSS and dealing with complex wait conditions. that they only have to wait for a tug and for the storm to

528

The Efficient Implementation of Wait Statments

stop. Replacingvaitif vénotok2>0 with the two sequential The idea is that when a wait statement executes very
blockswaitif storm=u and waitif tug=u,1, we can speed slowly, because one has to scan a great number of entities
up the program execution greatly. The main reason for the on the delay list, and the scanning of each activity takes
speed up is the C operand 1 of the bleditif tug=u,1 noticeable time, then one can cut down the search activity
This number 1 implies that there is one, immediately by putting a SEIZE block in front of the wait block and a
preceding, WAITIF block connected with this block, which RELEASE block immediately after this. Only one entity
the ship entity must have gone through at exactly the samewill then be allowed to rest between the SEIZE and
clock time, in order to pass through this last block. Assume RELEASE blocks. Hence, only one entity at a time will be
the ship goes throughaitif storm=uat time 200, but there waiting on the joint delay list, on which search is slow due
is no tug then, and the tug is free first at time 210. When to polled waiting resolution. All entities instead wait on a
the ship at time 210 is able to pass through the block delay list with related resolution of waiting and hence
waitif tug=u,l, it will then have to go back to the block faster search.
waitif storm=u and check that it can now go through both When | used a Born sandwich in program 1, by
blocks at the same time. This ensures that the ship will insertingseize waibefore, andelease waitfter, the block
leave the harbor only when at tkemetime there is a tug waitif v$notok>0andseize waitbefore, andelease wait2
and no storm (Stahl 1990, p. 332). after, the blockwaitif v$notok2>Q the execution time
Each simple sequential WAITIF block has its own went down from 140 to 10 seconds.
specific delay list, subject to relatetesolution. We test
for delay resolution only when there is an event affecting

STORM or TUG. When we ran this modified program Table 2: Program 1 in GPSS/H

with the sequential WAITIF blocks on the mentioned

computer, it took only 7 seconds. The original program SIMULATE . .

hence took 20 times longer time to exec.u.te. :Egﬁzi\(}:ﬂ&%ﬁ FF'T“%@TT%%*SF%?&ETFS;MFNU$STORM
We can also replace the blockwaitif v$notok>0 BERTH STORAGE 3

with the three blocksvaitif storm=u waitif berth=f and * Storm segment

waitif tug=u,2 Here we will from waitif tug=u,2 go GENERATE 1

back two blocks tavaitif storm=uy if we have not gone NEXTSQI';EAN%EOéﬁRVEXPO(Z'1)

through the last of these three blocks at the same time as ADvANCE 4,2
we were able to pass through the first of these blocks. If we RELEASE STORM
run this modified program, we will find that it will not run TRANSFER ,NEXT

h faster than th h had eliminated only the > 229ment
much faster than the one, where we had eliminated only the ™ "cengraTE 75
block waitif v$notok2>0 The reason for this has to do QUEUE AREA
with the facts discussed at the end of section 3.1. By doing ~ TESTE BVSITSOK1

the first elimination, the blockvaitif v$notok>0 became EE'TZEER T|l3J|5GRTH

theonly waiting block and hence all conditions on the joint ADVANCE 2

list became identical and it is enough to look at the very RELEASE TUG

first entity on the list. ADVANCE 184
TESTE BVS$ITSOK2,1
SEIZE TUG

5 THE BORN SANDWICH ADVANCE 2

RELEASE TUG

If one has a good understanding of how various wait EEE';*:\AET BESE;'
conditions work, the simulation modeler can in certain cases TErRMINATE
design the program so that it will run a lot more efficiently * Stop segment

than would otherwise be the case. We shall here introduce = GENERATE 14050
only one such design feature, which can be important in not ;Eig"#NATlE !
only micro-GPSS, but also in several other simulation END

systems.
We shall call this the Born sandwich after Professor R.
Born, who introduced this for the first time in an article It should finally be shown that this Born sandwich idea

this year, applying it to a micro-GPSS program (Born can be useful also in other simulation systems than micro-
1998, pp. 315-316). The idea is quite simple, but | have not GPSS, in fact in any system, where related resolution of
found any similar idea in e.g. the standard GPSS textbooks.waiting is used for common simple waiting and polled
It involves putting a SEIZE block on top of the wait block resolution of waiting is used for other types of waiting.
and a RELEASE block below the wait block, thus Then the introduction of common simple waiting, referring
constituting a kind of sandwich. to a server, with a capacity of ongne entity, around a

529

Stahl

statement referring to another type of waiting, implies that Schulze, T. and F. Preuss, 1997, Benchmarks fir diskret
there will be at most only one single entity waiting on the Simulationssysteme. In Deussen, O. and P. Lorenz (eds.
delay list, on which search would be very slow, when there Simulation und Animation '9%&CS, Erlangen.

are many entities waiting. The Born sandwich can be usedStahl, 1., 1990Introduction to Simulation with GPSS: On the
for example, in the GPSS/H program on the next page, PC, Macintosh and VAXPrentice Hall International,
which is a translation of program 1 above. The Born Hemel Hempstead, U.K., 1990.

sandwich will here involve the two TEST blocks. Stahl, 1., 1993, Principles Behind the Design of an Easy-to-
There is also here a significant reduction in execution Learn Simulation Languageln Roberts, R. and S.
time, although not of the same magnitude as for the Monroe (eds.), Simulation Applications in Business
program in table 1. It should be mentioned that one in Management and MISCS, La Jolla.
GPSS/H, instead oBEIZE WAIT, TEST E BVS$ITSOK,1 stahl, 1., 1996, Steps towards a Better Internal GPSS
and RELEASE WAITas an alternative could writeLINK Mechanism. In J. Charnes, D. Morrice, D. Brunner and J.
WAIT,FIFO,TOK TOK TEST E BVSITSOK,land Swain (eds.)Proceedings of the 1996 Winter Simulation
UNLINK WAIT,TOK,1 This is even more efficient. We ConferenceSCS.

can call this a Crain sandwich after its inventor R. Crain. vaucher, J., 1977, Code of GPSSS, version 5.1, at

http://www.jsp.umontreal.ca/~vaucher/Software/gpsss.sim
ACKNOWLEDGEMENTS

AUTHOR BIOGRAPHY
The author gratefully acknowledges valuable comments from

T. J. Schriber, T. Schulze and J. O. Henriksen. INGOLF STAHL is Professor at the Stockholm School of
Economics, Stockholm, and has a chair in Computer Base
REFERENCES Applications of Economic Theory. He was visiting Professor,

Hofstra University, N.Y., 1983-1985 and leader of a researct
Banks, J., B. Burnette, H. Kozloski and J. Rose, 199%roject on interactive simulation at the International Institute
Introduction to SIMAN V and Cinema, Wiley, New for Applied Systems Analysis, Vienna, 1979-1982. He has

York. taught GPSS for twenty years to over 5000 students a
Birtwistle, G.M., 1979 Discrete Event Modelling on Simula universities and colleges in Sweden and the USA. He has o
Macmillan, London. the basis of this experience led the development of the micro

Born, R. G., 1998, Teaching Simulation of ManufacturingGPSS system. He is now involved in putting the micro-GPSS
Systems Through Stepwise Refinement Using microsystem with a tutorial on the Web.
GPSS, in D. Davani and D. Elizandro (eds.)
International Conference on Simulation and Multimedia
in Engineering Education (ICSEE '9§CS, La Jolla.

Davis, R. and R. O’Keefe, 198Simulation Modellingwith
Pascal Prentice Hall, New York.

Healy, K. and R. Kilgore, 1997, SN H: A Java-Based
Process Simulation Language. In S. Andradéttir, K.
Healey, D. Withers and B. Nelson (ed®jpceedings of
the 1997 Winter Simulation Conferen&csS.

Henriksen, J.O., 1995, An Introduction to SLX. In C.
Alexopolos, K. Kang, W.R. Lilegdon and D. Goldsman
(eds.) Proceedings of the 1995 Winter Simulation
ConferenceSCS.

Schriber, T. J. and D. T. Brunnet994. Inside Simulation
Software: How It works and Why It Matters. In J. Tew,
S. Manivannan, D. Sadowski, and A. Seila (eds.),
Proceedings of the 1994 Winter Simulation Confergnce
SCS.

Schriber, T. J. and D. T. Brunnet997. Inside Simulation
Software: How It works and Why It Matters. In S.
Andradottir, K. Healey, D. Withers and B. Nelson (eds.),
Proceedings of the 1997 Winter Simulation Conference
SCsS.

Schulze, T. and J. Henriksen, 19%8mulation Needs SL X
Otto-von-Guericke Universitat, Magdeburg.

530

	MAIN MENU
	PREVIOUS MENU

	Search
	Search Results
	Print

