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ABSTRACT

This paper gives an overview of some of the factors 
determine the efficiency of differently implemented w
statements. The purpose is to give some guidanc
simulation modelers as to what system to choose and
the chosen system, what wait constructs to use in ord
make program execution efficient. It is also aimed
informing constructors of simulation software about w
issues are important when implementing these statem
In particular, we present some brand new features tha
speed up the execution of wait statements, in particula
some versions of GPSS.

1 INTRODUCTION

One of the most fundamental concepts in Discrete E
Simulation is the wait concept. This deals with an entity
being delayed until some defined condition or set 
conditions becomes true. We can e.g. think of a ship 
will wait before entering a harbor until there is no stor
and there is a free berth as well as a free tug. The 
command, which we call the wait word, by which 
entity, like the ship, is kept waiting, has many differe
names, like GATE and TEST in GPSS/H, WAITIF 
micro-GPSS, WAITUNTIL in DEMOS, WAIT UNTIL in
SLX  and  SCAN or WAIT in SIMAN, just to mention 
few examples. The wait word is usually followed by
logical expression that can be either true or false. If du
some event, this condition changes (from TRUE to FAL
or from FALSE to TRUE), one or several entities that h
been waiting can at this clock time become the ac
entity and move forward in the model system.

There is no other statement in simulation systems 
can cause such a difference in execution efficiency. 
shall below give an example when one use of a w
statement in a system can cause a twenty times longe
time than a better use of the statement, even though w
the same simulation system. It is hence important to k
if it is possible within a certain system to use an effici
wait statement rather than an inefficient one. If it is 
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possible to use a reasonably efficient wait statement, wh
trying to simulate a specific system, the best thing might 
to migrate to another system with more efficientl
implemented wait statements. For a constructor of 
simulation system or a programmer writing a simulatio
program in a General Purpose Language it is also of gr
importance to implement efficiently working wait
statements.

It should be stressed that the term efficiency shou
not be limited to only execution speed. There is als
efficiency in terms of time required to program the mode
in particular connected to debugging due to errors caus
by an improper wait statement construct. Even if the foc
is on efficient execution, we shall also touch upon th
other aspect of efficiency.

We want to look at the idea of execution efficienc
from a theoretical point of view and disregard the
compilation/interpretation choice and the programmin
skill of the implementers of a specific system. Obviously,
compiled system, with a compiler written by skillful
programmers, using an optimizing compiler, will, ceteris
paribus, execute faster than an interpretative system
written by a less skillful programmer, using a les
expensive programming system. This difference mig
make a compiling system with a theoretically poor wa
statement out-perform an interpretative system with 
theoretically superior wait statement. Our hypothetical te
of performance should hence assume that the systems
implemented in the same type of system as regards 
compiling/interpretation choice, using the same type 
software and by the same type of programmers. Such
hypothetical test will, of course, never take place. Henc
our comparisons as regards efficiency must deal w
questions of e.g. how many times a search of a certain 
will take place and how many values will have to b
investigated each time.

This article is in line with a series of articles, starte
by those of Schriber and Brunner (e.g. 1994 and 1997) a
followed, inter alia, by one by myself (Ståhl, 1996). The
main idea behind these articles is that it is important 
know more about how discrete event software works 
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order to be a good user of these systems. While the o
articles mainly focused on how knowledge about t
software is important for avoiding logically fault
programming and dealt with several different types 
statements, the present article is mainly concerned with
efficiency of one particular type of statement.

The issue of efficient implementation has receiv
renewed attention during the last couple of years, due
the emergence of the SLX simulation language (Schu
& Henriksen 1998). A prominent aspect of SLX is the ve
efficient implementation of the wait statement. There 
hence reasons to look more closely at the main princip
of how SLX handles this wait statement, as well as to
some evaluation of it, by comparing it to other ways 
implementing the wait statement.

It should be stressed that this overview of issu
regarding the wait statement is in no way exhaustive. It 
only point at some of the main alternatives among 
many combinations possible. It is also limited to tho
systems for which one in the literature can find 
reasonably clear discussion about how the wait conditi
are implemented. It also reflects the systems about whi
have some knowledge and for which I have access t
least some version of the software.

2 GENERAL BACKGROUND

To facilitate the reading of the paper, we first look at t
five states in which an entity can be according to Brun
and Schriber. 1. The one single currently moving entity is
in the Active State. 2. The entities that are ready to ent
the Active State at the current value of the simulation clo
are in the Ready State. 3. The entities that will enter the
Ready State at a known higher value of the simulation
clock are in the Time-Delayed State. The entities that will
enter the Ready State at an unknown value of the
simulation clock are in either the Condition-Delayed St
or the Dormant State. 4. The Condition-Delayed State is
the state from which the entities are transferr
automatically, implying that the modeler does not have 
supply specific software logic for getting this done. It w
be done by software logic that is supplied for doi
primarily other things.  5. From the Dormant State the
entities are transferred to the Ready State on the bas
modeler supplied logic, which has no other purpose tha
doing this.

The entities waiting in the Time-Delayed State in 
systems discussed here wait on a single Future Events
List  and all entities in the Ready State reside on a  single
Current Events List (CEL) . The entities waiting in the
Condition-Delayed State wait on different types of lists
the systems, usually in one or several delay lists. The
waiting in the Dormant State is also taking place 
different types of lists, often on one or sever
independent user managed lists. When we below discuss
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wait conditions, the focus is on delay lists, but we sh
also occasionally touch on user managed lists.

The efficiency of the specific delay list approac
chosen is in turn connected to the question of whether 
have what Brunner and Schriber call related or poll
waiting. Both procedures refer to automatic removal of
entities from the delay list. The related waiting resolution
implies that the checking of a delay condition is connect
to a specific event. The polled waiting resolution implies
that entities are not necessarily immediately removed fr
the delay list as a certain event occurs, but will in anoth
process, but at the same simulation clock time, 
removed, possibly in the same process for several differ
waiting conditions. For the case of independent us
managed lists, the removal of entities is done by mode
supplied signals that are sent out by specific events.

In order to be better able to discuss the issues of w
types of lists and what type of removal procedure to choo
in connection with waiting, I also want to introduce som
new distinctions. It appears in this context to make sense
distinguish between simple waiting, where the entities
wait for one single event to happen, and complex waiting,
where the entities wait for more than one single event
happen.

As regards simple waiting, it is suitable to distinguis
between simple waiting dealing with common event
usually concerning a resource or a switch, and waiti
concerning some other not so common event. Since th
common events are frequent, it is worthwhile, from a
efficiency point of view, to spend more efforts to have th
type of waiting handled in an efficient manner. We hen
distinguish between common simple waiting and special
simple waiting. Common simple waiting could be waiting
for a machine to get idle, while special simple waitin
could be waiting for the number of a certain type of entiti
to reach a specific value.

As regards common single waiting, we can in tu
distinguish between implicit and explicit waiting. In th
implicit waiting case, the program contains no specif
operation starting the waiting, while in the explicit waitin
case there is always such an operation. An example
implicit common simple waiting is the waiting in front of a
SEIZE block in GPSS and in SIMAN. There is no need 
have a QUEUE block in front of the SEIZE block. In bot
systems entities unable to get into the SEIZE block to u
the resource of this block will be put on a delay list, in th
case of SIMAN an internal queue. Explicit waiting  can for
GPSS/H be exemplified by a GATE block without a 
operand and for SIMAN by the inclusion of a QUEUE
block in front of the SEIZE block or by a SCAN block
Thus waiting for a lathe in GPSS can be done just in fro
of a SEIZE LATHE block, implying implicit waiting, and
before some other block, e.g. GATE NU LATHE (in
GPSS/H) or WAITIF LATHE=U (in micro-GPSS),
implying explicit waiting.
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It should finally be noted that in the systems discus
here, special simple waiting and complex waiting always
require explicit waiting statements.

3 DIFFERENT ISSUES IN DEALING WITH
WAITING

There are many different choices to be made as reg
waiting when constructing a system or a model of disc
event simulation: 1. the number of delay lists,   2. types
delay lists, 3. when the testing for exit from a delay 
shall take place, 4. how many entities shall then 
removed from the list at a time, 5. whether or not 
waiting shall be explicit and 6. if waiting shall be in term
of WAIT UNTIL or WAIT WHILE.

3.1 Number of delay lists

We can here distinguish between the following three m
cases:  A. There is only one single list for all entitie
waiting at wait statements.  B. There is one specific list fo
each waiting condition, i.e. there are as many delay list
there are delay conditions.  C. There is a mixture of thes
conditions, so that entities from some wait statements
on one joint list, but other wait statements each have t
own list.

If there is one single list for all waiting entities and t
entities do not all wait for the same condition, 
considerable search activity is required. If a cert
condition has just changed, e.g. a tug is now free to s
ships, we have to search the single delay list for sh
waiting for a tug, among many other entities, held up d
to other conditions. Regardless of the choice made in
sections 3.3 and 3.4 below, the search procedure ca in
case the first entity is located far from the starting poin
search, usually at the front of the list, be considera
Examples of systems where all (except user control
waiting appears to take place on one single list 
GPSS/H, GPSSS (Vaucher, 1977) and many simula
packages, written in a GPL, like Pascal_Sim, using 
Tocher three-phase approach (Davis & O’Keefe 1989).

If each waiting condition has its own list, all entitie
on the list wait due to exactly the same condition. If o
entity is allowed to move, they are all potentially allow
to move. One can here, depending on the choice m
under 3.3 below, either just move the one at the front  of
the list (provided the entities are sorted according
priority and entry time, so that front entity is the first one
move), or move all the entities, to the CEL. No searc
activity is then required. Examples of systems where
waiting appears to take place on separate delay lists
SLX, SIMAN, DEMOS and (Schriber & Brunner,  1997, 
19, Schulze & Henriksen 1998, Banks et alia 1995 and
Birtwistle 1979).
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The efficiency of the two approaches is, however,
contingent on the decision under 3.3, i.e. when to check fo
exit from the delay lists. If we at the same time are to
check for many waiting conditions, it might be more
efficient to scan just one single list than scanning many
lists. There is always some overhead moving from list to
list. If we only check for one specific waiting condition and
the search is done in only one list, the search procedure 
probably faster in the specific delay list than in the one
general delay list. If the waiting of some entities will be
ended by specific events, peculiar to this type of entity,
while the end of waiting for many other entities has to be
investigated together, there are hence reasons for a mixe
approach, with some entities waiting on their specific delay
lists, while other entities, although with different delay
conditions, wait on a joint delay list. This will be discussed
further below under 3.3.

The search of the joint list is inefficient only if there
are several waiting conditions represented on this list. If
one has only one type of condition on the list, the scan
procedure could be very simple. Take the case when 10
entities wait on the common delay list, all with the same
delay condition. Using the general procedure, which is
necessary, if we do not know that the same condition
applies to all entities, we might have to investigate the
delay condition of all 100 entities, even if we search only
for the first entity that can move.

Now suppose that the program has only one single
waiting statement and that it is concerned with waiting that
is to be handled on this joint single list.  Assume further
that this condition does not concern any value that can b
specific for an entity, like a priority or other entity specific
attribute (in GPSS: a parameter). In such a case, all waitin
conditions on the joint list are certain to be the same. If we
then find that the waiting condition is still true for the first
entity on the list, then it is also true for the remaining 99
entities, which we then do not have to investigate. A
procedure of this type has been introduced into micro-
GPSS this year. In section 4, we show that this can spee
up execution a great deal.

3.2 Types of delay lists used

In the case of a single delay list for all waiting entities, we
distinguish between the case when there is a specific dela
list for all conditionally delayed entities and the case when
these delayed entities are on the same list as all the entities
in the Ready State, i.e. when the single delay list and th
CELs are merged into one single list. The first case can b
exemplified by systems based on the three-phase approac
and the second case by GPSS/H, where the Current Even
Chain also incorporates all entities in the Condition
Delayed State.

When it comes to specific delay lists, we can
distinguish between the case when delay lists also perform
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the gathering of some queue statistics and the case w
they serve only as a pure delay list. In the last ca
additional linked lists are needed for the queue statis
gathering, e.g. to measure the time when an entity s
waiting. Examples of systems using the first approach
micro-GPSS and SIMAN (when using attached queues)
example of a system using the second approach is SLX
its lowest layer form).

3.3 When shall the wait condition be tested?

We can here distinguish between three cases: a. The wait
condition is tested after every single event or at least e
event bringing the active entity to a stop. b. The wait
condition is tested only after some very specific event 
occurred. c. Some wait conditions are tested after eve
single event or entity stop event, while other w
conditions are tested only after some specific events h
occurred.

The issue of when testing should take place is clos
connected to the general issue, discussed above, of re
or polled resolution of waiting. Related resolution for
specific condition implies that the test takes place
connection with the execution of a specific event, wh
polled resolution refers to the case when waiting 
resolved at some other stage in the process. In case a. we
use polled resolution , while we in case b. use related
resolution for every delay condition. In case c. we use
related resolution for some conditions and polled 
others.

Combining the choices in this section with those
section 3.1, we find that the most efficient type 
implementation from an execution point of view are t
systems of type Bb, i.e. when there are as many delay li
as there are delay conditions and a wait condition is te
only after a specific event has occurred. In this case,
search of wait lists will take place only when  certa
events have taken place. In many programs, this conc
only a small subset of all events. Secondly, one does
have to scan through the whole list to find the entity to
moved first. One only needs to pick the entity at the fr
of the list. The search activity is hence minimal. The o
example of this, at least for systems mentioned in 
paper, appears to be SLX (with reactivation chains = de
lists; Henriksen 1995, p. 506). Since SLX is also compi
and skillfully programmed, it is very efficient not only i
theory, but also in practice, as shown by vario
benchmark runs (Schulze and Preuss 1997).

The most inefficient system from a theoretical point o
view is system Aa, i.e. there is only one single list for a
entities waiting at wait statements and the wait conditio
tested each time the active entity is stopped.  Exten
scanning might take place after every few  events. Sinc
waiting entities are on the same list, there is no guara
that the entity that is to move, if any, will lie close to t
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head of the list. Sometimes, one might have to searc
through the whole list just to find the first one to move. An
example of such a system is GPSS/H (see e.g. Schriber
Brunner, 1994, pp. 51-52).

This might be regarded as surprising, since GPSS/H 
known to be relatively execution efficient. GPSS/H uses
however, for common simple waiting a mechanism tha
cuts down the search activity on the single list
considerably, by each entity having a Scan Skip indicato
This indicator is switched on, if the entity's delay condition
is true. At the search of the list, all entities having the
indicator switched on can be skipped, which cuts down
search time significantly. Another factor of importance is
the fact that GPSS/H is a compiled system and skilfully
programmed, using special procedures to speed up t
hanling of waiting. This is an example of discrepancy
between theoretical inefficiency and practical efficiency.
Earlier GPSS versions, like GPSS/PC and GPSS V, usin
the same type of procedures as GPSS/H, display le
discrepancy between the two efficiency concepts.

The question is then why do not more systems use th
Bb combination, i.e. separate delay lists for every condition
and only related waiting resolution. One reason is tha
related waiting is simple to implement only in the case of
common simple waiting, referring mainly to servers and
switches. It is then clear which events, in terms o
operations, will send out the order to start looking at the
delay condition, namely the events which refer to the sta
or end of using a server (like SEIZE and RELEASE) or to
the setting or resetting of a switch. It is hence quite natura
to have related waiting resolution in this case.

Already for the case of special simple waiting, it is
difficult to implement related waiting, without including
special instructions that a signal shall be sent out for thes
events. Take the case of waiting until the number o
entities that has carried out a certain count has reached
least 4, with WAITIF N$LABEL<4 in micro-GPSS and
TEST GE N$LABEL,4 in GPSS/H. The event that sends
the signal can here be any kind of event. In order to hav
related resolution here, one must in principle define which
events, or which control factors connected with events, wil
send signals. The difficulty becomes even larger in the cas
of complex waiting, dealing with more than one event.

In order to have related resolution also for specia
simple waiting and complex waiting, one must include
information in the program that certain events are
connected with related waiting. This is the approach take
by SLX. One here defines certain variables as contro
variables. Every operation that refers to such a contro
variable will send out a signal similar to that sent out by
the events influencing common simple waiting in other
systems. Thus, by defining in a program e.g. control
integer count and control boolean done, one can have not
only wait until  count>10 and wait until done, but also
wait until  (count>5 or done). Every time an event dealing
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with a control defined value, like count, is carried out, a
signal will be sent to all wait statements in which count is
mentioned.

If the same control variable is used in only one or 
couple of statements, the programming effort might no
necessarily be significantly smaller than in som
approaches, when all waiting resolution is solved b
programmer supplied logic, like in DEMOS. Here one ha
to include a signal event after every event that can affec
conditional delay of the special simple waiting or complex
waiting type. A potential problem with both of the SLX
and DEMOS approaches, compared to a complete
automatic approach, is that, if one forgets to define 
variable as control, or to send a signal at its change, 
checking will occur when this value changes. This can be
problem for inexperienced programmers.

The ideal would be to have related waiting for al
events, without having to explicitly define control variables
I have investigated, if it would be possible in a system lik
micro-GPSS to have a pre-compilation phase in which a
wait conditions are analyzed with the purpose of definin
all variables that can occur in wait statements. M
conclusion is that it would be impossible to define all suc
variables automatically. There are two main problems: 
The use of parameters in indirect addressing referring 
block numbers in a wait block, like WAITIF N(P1)>10.
Since the entity dependent attribute P1 can take any inte
value and N(P1) is the number of entities having reach
the block with the number P1, all events have to b
investigated, since any event can change the number
entities reaching a block. 2. The use of V$name in a
expression, where the definition of this expression in tu
refers to V$name1, which in turn refers to V$name2, etc.

Due to this, I have given up the idea of having
automatic related resolution of all wait conditions. Relate
waiting resolution in micro-GPSS is hence limited to
common simple waiting. The entities waiting due to othe
types of waiting conditions are placed on one single lis
where the waiting resolution is handled by polling. I
should be mentioned that there are in fact even som
instances also of common simple waiting, where it i
reasonable to use polled waiting, namely when multi-us
servers (storages) are referred to by parameters w
different conditions in the same program, like on
condition P1=E (the storage with number P1 is empty) an
later in the program another condition P2=F (the storag
with number P2 is full). Since the parameters can take a
value (up to the maximum number of servers allowed), it 
problematic to implement separate lists for 1=E, 1=F, 2=E
2=F,.., etc. In this case we only allow for related pollin
regarding P1=E, while the waiting regarding P2=F will b
done on the one joint list with polled waiting resolution
(Ståhl, 1996, p. 820).
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3.4 How many entities shall simultaneously be removed
from the delay list?

An important question is how to handle the move from a
delay list to the CEL in detail. To exemplify, ten students
wait on a delay list for books to arrive from the publisher,
but only two books arrive. As the two books arrive, a
signal (automatic or user supplied) is sent, implying that it
is time to check the waiting condition. There are two main
ways of handling this: 1. Let only one student at a time
leave the delay list to go into the Ready State. 2. Let all
waiting students leave the delay list at once.

If only one student moves at a time and we assume
equal priority, the student having waited the longest time
will move to the CEL. When the active entity, here e.g. the
mailman having brought two books into the bookstore, has
been brought to a halt, it is time for this first student entity
to become the active entity. Having become active, it
moves to the wait statement and it checks again that it does
not have to wait any longer. If this is true, it can move on
in the system. Before doing so, it will, however, since it
comes from the delay list, cause the next entity, i.e. the
student now in front on the delay list, to move to the CEL.
The system must hence keep track of whether an entity
comes to a wait operation for the first time or whether it
comes from a delay list.

If, for some reason, all books have already been taken
by some other entity, the now active entity will have to
return to the delay list. (This will in the example happen
for the third student.) If there are many entities on this list,
it will require more computer time to sort it in the ordinary
way from the end of the list, than just put it back on the
first position of the list. However, in order to be sure that it
is correct to put the entity back at the front of the list, the
computer system must know for sure that there is no other
entity that has been put back at the front of this list since
the time when this entity was moved from the list. Such a
system, avoiding time consuming sorting, is implemented
in micro-GPSS.

Some other systems have all entities that wait on a
delay list transferred at the same instant to the CEL. They
are then, as they become active and find that the waiting
condition holds again, placed, one at a time, back on the
delay list, sorted in the ordinary order. In programs, in
which a delay condition can switch back to being true
again at the same value of the clock, like in the example
with the bookstore, this might be an inefficient mechanism.
The computer program of the simulation system can,
however, be kept simpler.

3.5 Shall all waiting be explicit?

One design question is whether to have all waiting explicit.
In the lowest, fundamental, level of SLX all waiting is
explicit, using one single, but very efficient WAIT UNTIL
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statement, as discussed above. It appears also that 
new systems, like e.g. Silk (Healy and Kilgore, 1997), ha
waiting explicit, with the waiting in front of a server take
care of by a wait operation and with the SEIZE block on
handling the book-keeping regarding the utilization of t
resource. In other systems, like GPSS/H, micro-GPSS 
DEMOS, waiting in front of servers is implicit. The
insertion of QUEUE blocks will not affect the actua
waiting. In SIMAN one can use explicit queues, whi
function as delay lists, but if they are not used, impli
(internal) queues will be introduced automatically, e.g.
front of a SEIZE block. The actual execution might 
different. Internal SIMAN queues, for example, alwa
work with FIFO, in contrast to the explicit (attache
queues, where alternative priorities can be establishe
appears, however, that as regards execution efficiency
choice between implicit and explicit waiting is not a
crucial as the other questions discussed above.

3.6 Shall waiting be in terms of WAIT UNTIL or
WAIT WHILE?

Another choice to be made when constructing a simula
system, or a simulation model in a General Purp
Language, is whether the waiting condition shall be of
type WAIT UNTIL, implying that entities move from th
delay list, when the condition becomes true, or of the W
WHILE type, implying that entities move from the lis
when the condition becomes false. While most systems
a WAIT UNTIL statement, micro-GPSS (with WAITIF
uses a WAIT WHILE type of statement.

In micro-GPSS, we initially used the traditional GAT
block of GPSS, which is of the WAIT UNTIL type, b
around 1987 we switched to the WAITIF block, wh
works like a WAIT WHILE statement. We wait, prior to t
WAITIF block, if, and as long as, the stated condition
true. The reason for the switch was partly pedagog
partly one of ease of usage. The WAITIF statement is m
in line with the IF block, where you go to an address, if
tested condition is true, in contrast to the traditional TES
block of GPSS (Ståhl 1993). Furthermore, we found tha
around two thirds of our examples, WAIT WHILE applying
to servers would allow a simpler code, like WAIT WHILE
server is in Use (WAITIF server=U), than WAIT UNTI
server is Not in Use (GATE NU server). As regard
execution efficiency, there is no measurable differe
between the two approaches. It should finally be noted
in an extendable system, like SLX, a couple of lines of c
are enough for implementing the WAIT WHILE statemen

4 THE SEQUENTIAL WAIT STATEMENTS

We study a method for more efficient execution 
programs with complex wait conditions, implemented 
micro-GPSS and dealing with complex wait condition
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We take the example in the introduction, namely with a
ship that will wait before entering a harbor until there is no
storm and there is a free berth as well as a free tug.  W
study the following micro-GPSS program.

It should be mentioned that the system on purpose 
made to lead to explosive queueing so that one with a sho
program can illustrate the differences in execution time
that can occur in longer programs. (For those more familia
with GPSS/H, the corresponding program in GPSS/H i
presented in  table 2  in section 5.)

We see at the top the following valueof expression:
notok  valueof   (tug=u)+(berth=f)+(storm=u).

Table 1: Program 1 in micro-GPSS

        simulate
 notok  valueof   (tug=u)+(berth=f)+(storm=u)
 notok2 valueof   (tug=u)+(storm=u)
 berth  storage   3
*  Storm segment
        generate  ,,,1
 next   advance   48*fn$xpdis
        seize     storm
        advance   4,2
        release   storm
        goto      next
* Ship segment
        generate  7,5
        arrive    area
        waitif    v$notok>0
        seize     tug
        enter     berth
        advance   2
        release   tug
        advance   18,4
        waitif    v$notok2>0
        seize     tug
        advance   2
        release   tug
        leave     berth
        depart    area
        terminate
*  Stop segment
        generate  14050
        terminate 1
        start     1
        end

v$notok will take a value >0, if at least one of the
three conditions is true, i.e. the tug is in use, the berth 
full or there is a storm going on.  The ship will wait as long
as this is true. Since this is clearly a complex waiting
condition, the waiting will be resolved by the polled
method, with all ships waiting on the joint delay list,
investigated after each event. This causes the progra
example to execute quite slowly. On a 233 MHz Pentium
the run time was 140 seconds.

In the program we also have a similar wait condition
when the boats leave the harbor, now with the differenc
that they only have to wait for a tug and for the storm to
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stop. Replacing waitif v$notok2>0 with the two sequential
blocks waitif storm=u and waitif tug=u,1, we can speed
up the program execution greatly. The main reason for
speed up is the C operand 1 of the block waitif tug=u,1.
This number 1 implies that there is one, immediat
preceding, WAITIF block connected with this block, whic
the ship entity must have gone through at exactly the s
clock time, in order to pass through this last block. Assu
the ship goes through waitif storm=u at time 200, but there
is no tug then, and the tug is free first at time 210. Wh
the ship at time 210 is able to pass through the bl
waitif tug=u,1, it will then have to go back to the bloc
waitif storm=u and check that it can now go through bo
blocks at the same time. This ensures that the ship 
leave the harbor only when at the same time there is a tug
and no storm (Ståhl 1990, p. 332).

Each simple sequential WAITIF block has its ow
specific delay list, subject to related resolution. We test
for delay resolution only when there is an event affect
STORM or TUG. When we ran this modified progra
with the sequential WAITIF blocks on the mentione
computer, it took only 7 seconds. The original progra
hence took 20 times longer time to execute.

We can also replace the block  waitif  v$notok>0
with the three blocks waitif storm=u, waitif berth=f and
waitif tug=u,2. Here we will from waitif tug=u,2 go
back two blocks to waitif  storm=u, if we have not gone
through the last of these three blocks at the same tim
we were able to pass through the first of these blocks. If
run this modified program, we will find that it will not run
much faster than the one, where we had eliminated only
block waitif v$notok2>0. The reason for this has to d
with the facts discussed at the end of section 3.1. By do
the first elimination, the block waitif v$notok>0 became
the only waiting block and hence all conditions on the jo
list became identical and it is enough to look at the v
first entity on the list.

5 THE BORN SANDWICH

If one has a good understanding of how various 
conditions work, the simulation modeler can in certain c
design the program so that it will run a lot more efficien
than would otherwise be the case. We shall here intro
only one such design feature, which can be important in
only micro-GPSS, but also in several other simula
systems.

We shall call this the Born sandwich after Professor
Born, who introduced this for the first time in an artic
this year, applying it to a micro-GPSS program (Bo
1998, pp. 315-316). The idea is quite simple, but I have
found any similar idea in e.g. the standard GPSS textbo
It involves putting a SEIZE block on top of the wait bloc
and a RELEASE block below the wait block, thu
constituting a kind of sandwich.
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The idea is that when a wait statement executes v
slowly, because one has to scan a great number of ent
on the delay list, and the scanning of each activity tak
noticeable time, then one can cut down the search activ
by putting a SEIZE block in front of the wait block and 
RELEASE block immediately after this. Only one entit
will then be allowed to rest between the SEIZE an
RELEASE blocks. Hence, only one entity at a time will b
waiting on the joint delay list, on which search is slow du
to polled waiting resolution. All entities instead wait on 
delay list with related resolution of waiting and henc
faster search.

When I used a Born sandwich in program 1, b
inserting seize wait before, and release wait after, the block
waitif  v$notok>0 and seize wait2 before, and release wait2
after, the block waitif v$notok2>0,  the execution time
went down from 140 to 10 seconds.

Table 2:  Program 1 in GPSS/H

        SIMULATE
 ITSOK  BVARIABLE  FNU$TUG*SNF$BERTH*FNU$STORM
 ITSOK2 BVARIABLE  FNU$TUG*FNU$STORM
 BERTH  STORAGE    3
* Storm segment
        GENERATE   ,,,1
 NEXT   ADVANCE    48*RVEXPO(2,1)
       SEIZE      STORM
        ADVANCE    4,2
        RELEASE    STORM
        TRANSFER   ,NEXT
* Ship segment
        GENERATE   7,5
        QUEUE      AREA
        TEST E     BV$ITSOK,1
        SEIZE      TUG
        ENTER      BERTH
        ADVANCE    2
        RELEASE    TUG
        ADVANCE    18,4
        TEST E     BV$ITSOK2,1
        SEIZE      TUG
        ADVANCE    2
        RELEASE    TUG
        LEAVE      BERTH
        DEPART     AREA
        TERMINATE
* Stop segment
        GENERATE   14050
        TERMINATE  1
        START      1
        END

It should finally be shown that this Born sandwich id
can be useful also in other simulation systems than mi
GPSS, in fact in any system, where related resolution
waiting is used for common simple waiting and polle
resolution of waiting is used for other types of waitin
Then the introduction of common simple waiting, referri
to a server, with a capacity of only one entity, around a
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statement referring to another type of waiting, implies that
there will be at most only one single entity waiting on the
delay list, on which search would be very slow, when there
are many entities waiting. The Born sandwich can be used
for example, in the GPSS/H program on the next page
which is a translation of program 1 above. The Born
sandwich will here involve the two TEST blocks.

There is also here a significant reduction in execution
time, although not of the same magnitude as for the
program in table 1. It should be mentioned that one in
GPSS/H, instead of SEIZE WAIT, TEST E BV$ITSOK,1
and RELEASE WAIT, as an alternative could write   LINK
WAIT,FIFO,TOK, TOK TEST E BV$ITSOK,1 and
UNLINK WAIT,TOK,1. This is even more efficient. We
can call this a Crain sandwich after its inventor R. Crain.
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